'Honeywell FORTRAN IV

SERIES 16

SUBJECT:

Coding and Operating Procedures for Series 16 Fortran IV. Includes General Formats,
Five Classifications of Statements, Subprograms, and a Fortran System Description.

SPECIAL INSTRUCTIONS:

This manual, BX32, Rev, 0, is a reprint of Order Number M-142. The order number
has been changed to be consistent with the overall Honeywell publications numbering
system. Contents are the same as the previous edition,

DATE:
April 1967

ORDER NUMBER;
BX32, Rev. 0 (Formerly M-142)

DOCUMENT NUMBER:
70130071364A

PREFACE

This manual describes Fortran coding and operating procedures for Series 16. FortranIV
processes the standard Fortran language specified by the United States American Standards

Institute (USASI); it can express any problem of numerical computation.

Five classifications of Fortran statements (arithmetic and logical, control, input/output,

specifications and subfunction) are discussed, along with general formats and subprograms.

Series 16 Fortran IV is a coded program designed to extend the power of
Series 16 in the area of program preparation and maintenance., It is
supported by comprehensive documentation and training; periodic pro-
gram maintenance is furnished for the current version of the prog»am,
in accordance with established Honeywell specifications, provided it is
not modified by the user.

©1965, 1967, Honeywell Inc.
®1971, 1973, Honeywell Information Systems Inc. File No.: 1A23

BX32

CONTENTS

INTRODUCTION
SECTION 1.
GENERAL FORMAT

FORTRAN Character Set
Line Format .
Constants And Vanables
Subscript Notation

SECTION II.

Page

ARITHMETIC AND LOGICAL STATEMENTS

Format .

Operator errarchy
Mixed Expressions

Logical Expression

SECTION III.
CONTROL STATEMENTS

GO TO Statement

IF Statements

DO Statement.
CONTINUE Statement
PAUSE Statement.
STOP Statement

END Statement .

End Of Job

SECTION 1V.
SPECIFICATION STATEMENTS

INTEGER Statements

REAL Statement .
DOUBLE PRECISION Statement
COMPLEX Statement
LOGICAL Statement
DIMENSION Statement
EXTERNAL Statement
EQUIVALENCE Statement
COMMON Statement .

2-1
2-1
2-2
2-2

3-1
3-2
3-3
3-4
3-4
3-5
3-5
3-5

4-1
4-1

4-1
4-2
4-2
4-3

iii

DATA Statement
Alternate Methods of Declanng Arrays
TRACE Statement e e

SECTION V.
INPUT/OUTPUT STATEMENTS AND
FORMAT SPECIFICATIONS

Input/Output Statements .

External Records .

I/O Statements Argument Lxsts .

Format Statement .

Summary Of Control. Characters . .
Format Statements Entered At Run Txme .

SECTION VI.
SUBPROGRAMS

Function Subprograms
Subroutine Subprograms
Block Data Subprogram .

SECTION VII.
FORTRAN SYSTEM DESCRIPTION

Listings

Tracing . .
Chaining Facxhty .
Operation Details .

APPENDICES
A. Sample Programs . .
B. Modification of I/O Devxce Assxgnments
C. Dynamic Storage Allocation
D. Statement, L1brary Funotxon. and I/O
Summanes . .
E. Compiler Error Messages .
F. Proposed USASI FORTRAN IV
INDEX

Page

4-5
4-7
4-8

5-1
5-2
5-2
5-3
5-4

5-11

BX32

INTRODUCTION

Every type of electronic computer is designed to
respond to a special code, called a machine lan-
guage, that differs for different types of computers.
A program (set of instructions) telling a computer
what steps to perform to solve a problem must ulti-
mately be given to the computer in its own lan-
guage. However, FORTRAN makes it unnecessary
for the programmer to learn the machinc language
for a specific computer. Using FORTRAN, the
programmer states in a relatively simple language,
resembling familiar usage, the steps to be carried
out by the computer. The program written in the
FORTRAN language is entered into the computer
and is automatically translated by the FORTRAN
compiler into a program called the object program.
The computer solves the problem by executing the
object program which is expressed in a language
the machine can understand.

Virtually any numerical or logical procedure can
be expressed in the FORTRAN language. The
FORTRAN system is intended to substantially
reduce the time required to produce an efficient
machine language program for the solution of a
problem, and to relieve the programmer of a con-
siderable amount of manual clerical work, min-
imizing the possibility of human error by relegating
the mechanics of coding and optimization to the
computer.

The name FORTRAN (FORmula TRANslator)
was chosen because many of the statements re-
semble algebraic formulas. These statements define
the computer operations and can be grouped into
five classifications:

Arithmetic and logical

Control

Input/output

Specification

Subfunction

FORTRAN was originally written by IBM for the
IBM 704 but has since been offered by several

computer manufacturers. FORTRAN is relatively
easy to learn. Of great importance is the fact that
a FORTRAN source program can be compiled on
many different computers, thereby avoiding the
need for language translations when changing from
one type of computer to another.

FORTRAN 1V process2s the standard FORTRAN
language specified by the *United States American

Standards Institute (USASI); it can express any
problem of numerical computation. In particular,

it deals easily with problems containing large sets of
formulas and many variables, and permits variables
to have up to three independent subscripts. For
problems in which machine words have a logical
rather than a numerical meaning, provisions in the
FORTRAN language permit logical computation.
In instances where FORTRAN may not be suited
to the specific problem solution, provision has been
made for calling machine language subroutines
with FORTRAN statements. Certain statements
in the FORTRAN language equip the object pro-
gram with its necessary input and output programs.
Those which deal with decimal information include
conversion to and-.from binary and permit consid-
erable freedom of format in the external medium.
Arithmetic in the object program is generally per-
formed with floating-point numbers. These numbers
provide 23 binary digits (about 7 decimal digits) of
precision and may have magnitudes between 10:75
(DDP-24, -124, -224) or 10=** (DDP-116, -516).
Full-word, fixed-point arithmetic, double precision
floating-point arithmetic and complex number arith-
metic is also provided.

Consider the quadratic equation:

3x* 4+ 1.7%x— 3192 = 0

*The Proposed American Standard FORTRAN (see Ap-
pendix E) was followed in writing the FORTRAN com-
piler described in this manual.

BX32

The algebraic representation for one of the two
roots of the equation could be written:

-B + VB2 —4AC

ROOT = oA
where: A = 43
B= +1.7
C= -3192

The complete FORTRAN program which describes
this calculation and provides for output of the re-
sult may be written in eight separate statements,
including the two statements which provide for the
end of the job, as shown in Figure 1.

The first statement means: assign the floating-

point value 3 to the variable A. The next two
statements have a similar meaning. The fourth
statement means: evaluate the expression on the
right side, and assign the result to the variable
ROOT. The fifth statement outputs the computed
value of ROOT in a form indicated by the sixth
statement. The last two statements indicate that
the job is complete.

Notice the sequential nature of the program. The
computer executes instructions in the same order
as the order of the statements. For example, if the
fourth statement were to be made the first state-
ment, the computer would evaluate ROOT before
obtaining the desired values of A, B, and C. ROOT
would therefore be evaluated using arbitrary un-
known values for these variables.

Figure 1 illustrates the use of variables. However,
the same result could be obtained by writing state-
ment number 4 as shown in Figure 2 in which
the numerical values appear in the statement de-
scribing the evaluation of ROOT.

FORTRAN coding and operating procedures are
given in this manual. In learning the FORTRAN
system, the novice will profit by reading texts on
the FORTRAN language, such as “A Guide to
FORTRAN Programming” by D. A. McCracken
(Wiley), “FORTRAN Autotester” by Smith and
Johnson (Wiley), or “Comprehensive FORTRAN
Programming” by James N. Haag (Hayden).

e

Honesywelt, Computer Controt Diviston, Framingham, Mass. 01701

FORTRAN CODI!NG FORM

TPROGRAMMER

1

DATE

AN

PROGRAM

’anea:

" COMMENT CONTINUE
T SVA'E‘NYG[__J
i § NUMBER
3 yislr 9]
T T

Ic
N T

8y (13
T +

QUADRATIC EQUATION

9; 30
T T

FORTRAN STATEMENT

i3]

40)
T

as|
T

A=3.0

T T T T

T T T T

| B=1.7

T T T T T

c=-31.92

-
A
¢

\

ROBT = (-B+SQRT(B**2 -

WRITE(1,7) RGBT '

4.*A*C))/(2.%A)

/
\
e
P,

F¢RM'AT(I H_El17.8)
sTOP

T T T T T

END

T T T T T

FIGURE 1

BX32

=

Honeyweit, Computer Control Division, Framingham, Mass. 01701

FORTRAN CODING FORM

J

PROGRAMME R DATE 7

o FORTRAN STATEMENT °l N
H er 101 19 20| 23; 301 39 40] a3 80(LTI 80 . 0] rafry

C QUADRATIC EQUATION 7/

4 RGP T=(-1.7+SQRT(1.7**2-4,*3.*(-31.92)))/(2.*3.) ' ' ' \

‘ WRITE(1,7) R@@T ' ' ‘ ' , 1 ' T ' ?

7 FORMAT(IH E17.8) A\

ST¢P‘ T T T T T T]

T END' T T T T T T T T T T T T S

T T T T T T T T T T T ¥ T T

FIGURE 2

BX32

[€484 (& 18® fLid 190 L) Lid Jor 19¢ |os 198 (2] 1 Ll L) L]
i 1 L 1 1 i 1 1 1 1 1 1 1 L
i i 1 i i H i H i - | 1 1 L
1. 1 1 L 1 i 1 ' 1 i 1 1 i
1 1 i 1 1 1 1 1 1 i A1 1 1 1
1 1 i 1 1 1 1 1 1 1 1 1 1 1
L 1 1 1 1 L1 1 1 1 L 1 1 1 1
i 1 it A 1 1 1 i ' 1 A 1 1 1
1 1 Ll 1 1 1 i i 1 1 i 1 1
Il 1 1 1 1) 1 d 1 1 i 1 1 1
L 1 i 1 L L 1 L 1 1 1 1 1
1 1 i 1 i 1 1 1 A 1 1 1 1 A
1 J I I\ 4 1 i 1 1 L 1 it 1
1 L 1 1 1 1 1 1 i 1 A4 i i L
i 1 1 1 1 1 1 1 1 1 1 i 1
1] e 1 i Ll 1 1 1 L 1 A 1 1.
1 1 L L 1 > i 1 L 1 H =1]] 1
1 1 1 1 i 1 L i 1 1 A4 1 1 I
1 1 1 1 i 1 1 J| i 1 e 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 L 4 A 1 1 1 1 1 1 1 1 1 L
1 Il 1 1 i 1 1 1 1 i 1 1 i
1 1 1 1 i A4 i 1 1 1 1 1 1 1
1 1 It L L 1 i 1 A 1 1 -y L 1
i 1 1 A 1 1 1 e 1 i 1 A | L
L L L] T- \“.0 »o- «o. = *3 L_-|+n..||||+-r +I! irn. J_.. r : 1
rourasin LNINILVLS NVYLHO 1
© [)
NN NYUBOuY
40
Wvd v Y IRAVEOOud

NYHO4 9NIQOD NVH1¥04

10£10 ssep ‘weyBuiuelj ‘UOISIAI] 10AU0) Mindwo) ‘omAsuoy

il

BX32

-,

SECTION I
GENERAL FORMAT

FORTRAN CHARACTER SET

The FORTRAN language requires the use of the
following characters, to specify constants, variable
names, statement identifiers, or any other element
of the language:

Letters
A, B, C,DEFGHI J KL MNOPQR,
S, T,UV,.WXY,Z

Digits
0,1,2,3,4,5,6,7,8,9

Special

Period or decimal point (.), comma (,), plus (+),
minus or hyphen (=), slash (/), asterisk (¥), equals
(=), open parenthesis ((), close parenthesis ()),
apostrophe ('), dollar sign ($), and blank (or
space)

LINE FORMAT

A line is made up of four fields: Statement Num-
ber Field, Line Continuation Field, Statement
Field, and Identification Field. A coding form
showing these fields appears at the end of the In-
troduction Section.

STATEMENT FIELD (Figure 1-1)

Any arithmetic statement, specification statement,
control statement, I/O statement or function

@ Honeywell, Computer Control Division, Framingham, Mass 01701 (

PROGRANME R

OGRAM

[COMMENT Bcontinue
T STaTEMENT
4 men

X = Z+3.0) -/
! X = Z + 3. 0 I
' ' ' X=3.0)
' DP20I=1,10) o\
' p@ 20 1=1,10 ' "/

FIGURE 1—1

statement as described in later sections may appear
in the statement field (card columns 7-72). Except
in the Hollerith descriptor within a FORMAT
statement (see I/O Section), blanks (or spaces)
are ignored and may be used freely for appearance
purposes.

LiNe ConTINUATION FieLp (Figure 1—2)

If a FORTRAN statement is so large that it can-
not conveniently fit into" one statement field, the
statement field of as many additional lines as is
needed may be used to specify the complete state-
ment. Continuation lines must have a character
other than blank or zero in column 6. A statement
may have any number of continuation statements
with the following exceptions: (1) a DO statement
must be on one line, and (2) the equals character
(=) of an arithmetic statement must be on the
first line if continuation lines are used. Any line
which is not continued, or the first line of sequence
of continued lines, must have a blank or the digit 0
in column 6.

@ Honeywell, Computer Control Division, Framimgham, Mass 01701
TPRGGRAMME R (
e [T FORTR
A = B+C ‘
T T T T T
X = Y14Y2+Y3+Y4+Y5+Y6+Y7+Y8 \
X +Y9+YI0+YTI4YI24Y13+Y14 P
‘ X +Y15+Y16+Y17 \
T T T T T T
B = D/2 Vg
Os = T + \
T T T T T
] u * J
T 2 T v /l T L T >
1 3 _W-2.0/(4] 1
_ 12 % AL LN
sl PHA))
FIGURE 1—2

BX32

StaTEMENT NUMBER FIELD (card columns 1-5)

If the statement located in the statement field is to
be referenced by another statement (such as a GO
TO statement), a reference number is placed in the
statement number field (card columns 1-5). This
reference number is made up of digits only. Leading
zeros and all blanks in this field are ignored. For
example, the reference numbers shown below are all
of the same value.

™ —Y
ci‘:.i:.'!‘ :’ETCI@"M[FOR
t sleir lo% Il} N%; ‘.} ‘O%
10
T T 1 T T T
J 0
! o T T T T T '—‘
00010 ’
T T T T T T
010
e J) SR I S . L — —

Specification statements (Section I1V), FUNC-
TIONS, SUBROUTINE, or END statements, or
arithmetic statement functions should not have
statement numbers. All other statements may have
a number whether or not that statement is referred
to by another statement. Statement numbers need
not be in sequence. (See Figure 1-3.)

IpENTIFICATION FIELD

The last eight columns of a line (card columns
73-80) are reserved for sequence identification.
This field is ignored by the compiler and may be
left blank if desired.

CoMMENT LINES

Any line which starts with the letter “C” in column
1 is presumed to be a line of comments. This line is
printed onto any listings requested but is otherwise
ignored by the compiler. The statement number,
line continuation, and statement fields may be used
in any format for comment purposes. (See Figure
1—4.) The identification field, however, is used for
sequencing only. A blank line is ignored.

SpeECIAL CONTROL LINES

A line that starts with a dollar sign character ($)
in column 1 is presumed to be a special control
line. The digit in column 2 indicates the type of
control, and columns 3-72 are ignored and may be
used for comments. Columns 73-8C are used for
card sequencing purposes. The following codes are
currently used as shown in Figure 1—4,

$0 End of job

$1 Continuation segment of a chain job

$2-$9 Spares

The use of the control lines is explained in later
sections.

@ Honeywell, Computer Lo trot Diviscon, Framingham, Mass. 01701

FORTRAN CODING FORM

TPROGRANMER

JOHN DOE

DATE

AUGUST 3, 1965

"PROGRAM .
; TEST PROGRAM

Teomment OJcontinug
L] STATEMENT
i & NomaER

FORTRAN STATEMENT ©

a0y

T alr 10f "y 20 23y L1

o
o
-
-
{*
.
o
»
3
™
<
o
5
b
<
>

.
T T T T T

SUBRGUTINE @UTEST(B, Y)
10 | |A = B-1

T T T T

T T T

[200[[x = Y+3

| IF(X-A)15,15,3
{15 | WRITE(3,4000)X, A

4000 | F@RMAT(2E20.6)
| T T
3| RETURN

END

ANAINAALIN

FIGURE 13

1-2

BX32

CONSTANTS AND VARIABLES

Any programming language must provide a means
"of expressing numerical constants and wvariable
quantities. FORTRAN 1V allows six types of con-
stants and five types of variables to be expressed
in an arithmetic expression: integer, real, double
precision, complex, logical, and Hollerith.

@_ Honeywell, Computer Control Division, Framingham, Mnn.o(
inoouuu:u (
e T FORTR
' sleir 0L 8y 20 sy 30}
C CHAIN J@B, SEGMENT N@. 3
$ 1 CBNTINUE CHAIN A\
‘ T A - T B T T T T)
—istee. T\
END)
$0 'END BF JOB AN
\'vAv T P T T T T)
FIGURE 1—4

CONSTANTS

Constants may have a sign and must start with a
digit or a decimal point following one of the formats
defined in Table 1-1.

VARIABLES

Variable names must start with a letter, and con-
tain one to six characters made up of letters and
digits only. The mode of the variable and the num-
ber of memory words reserved for it are defined in
Table 1-2.

SUBSCRIPT NOTATION

If programming were done using only the types of
variables presented in the preceding pages, labo-
rious programming would be necessary to carry out
relatively simple iterative calculations or logical
steps such as those encountered in the addition of
two vectors or the selection of a specific entry in a
list of numbers. However, it is possible to employ
the subscript notation of mathematics to simplify
the programming of such problems.

A mathematician would denote that ci is the sum
of the vectors (ai, az, as) and (b, b2, bs) as follows:

ci=ai+b; i=123

Note that the first part of the statement (¢ = a.
4+ b)) is a general statement which becomes, in
effect, three specific statements:

c1 = ai4bi
c: = axz+be
C: = a:c+b:z

when the values 1, 2, and 3 are assigned to i.

By using the FORTRAN language, it is possible to
make general statements like ¢ci = ai+b, and to
make other statements which assign the desired

values to i. When a general statement is executed,
it is always executed in one of its specific senses.
For example, if the variable I has the value 3 when
the FORTRAN equivalent of ¢ = ai+b:

CI) = A(I) + B(D)
is executed, the values denoted by A(3) and B(3)

are added and the sum is assigned as the value of
C(3). Thus, to compute the sum vector

(C(1), C(2), C(3))
it is necessary to execute the general statement
three times, with I being equal to 1 the first t_ime,

2 the second time, and 3 the third time. Therefore,
in addition to providing for arithmetic statements
with subscripted variables, it is necessary to pro-
vide a method of stating that a given set of such
statements should be executed repetitively for
certain values of the subscript. The FORTRAN
statement which provides this ability is called a
DO statement. An example of a DO statement is

DO 201 = 1, 250

This statement instructs the computer to execute
all statements which immediately follow, up to and
including the statement numbered 20, 250 times
(the first time for I = 1, the second time for I = 2,
and so on, and the last time for I = 250), and then
go on to the statement following statement 20.
Thus, to return to the example of vector addition,
the FORTRAN statements necessary to add A (I)
and B(I) are:

R

o — _I [T RN 1Y — 291
1 - T l‘ T e St T
| | [DIMENSION _ C (3),A(3),8(3) _

D@ 1 1=1,3
S St -ty | e e T
1| €(1) = A(1) + B(1)
1" O e T R A S S -
2 :
F—r — - T N Y T o= T e
A S - T l. I T T A

BX32

TABLE 1-—1.
CONSTANT FORMAT

MODE OF CONSTANT

GENERAL FORMAT

EXAMPLES

INTEGER
(Occupies 1 word)

REAL
(Single precision floating
point — occupies 2 words)

DOUBLE

PRECISION

(Double precision floating
point — occupies 3 words)

COMPLEX

(Two single precision
floating point constants
— occupies 4 words)

LOGICAL
(Occupies 1 word)

HOLLERITH
(Occupies 2 words)

1 to 7 decimal digits (only 5 digits for DDP-116, -516). A pre-
ceding 4 or — sign is optional. The magnitude of the constant
must be less than 8388608 (32768 for DDP-116). No decimal
point is allowed.

Any number of decimal digits may be used but only the most
significant 7 digits will be retained.

The requirement of a decimal point in constants having a decimal
exponent is also optional.

A preceding + or — sign is optional.

A decimal exponent with magnitude less than 76 (38 for DDP-116,

-516) and preceded by an E may follow the constant, but is optional.

A decimal point must be included at the beginning, at the end, or
within the constant.

Any number of decimal digits may be used (followed by a decimal
exponent) but only the most significant 13.7 (11.5 for DDP-116,
-516) digits will be retained.

A decimal exponent with a magnitude less than 76 (38 for DDP-
116, -516) and preceded by a D must follow the constant.

A preceding + or — sign is optional.
A decimal point is optional and may be included either at the
beginning, at the end, or within the constant.

Two REAL format constants separated by a comma and enclosed
by parentheses.

The first constant represents the real part of the complex con-
stant and the second constant represents the imaginary part.

Either constant may be preceded by an optional + or — sign.

The word TRUE or FALSE preceded and followed by a decimal
point. TRUE generates an INTEGER format 1 and FALSE generates
an integer FORMAT 0.

An integer constant, followed by the letter H, followed by the
integer constant number of characters (blanks included) equal to
the integer constant.

Any acceptable FORTRAN character including blank may be used
as an integer constant and can be up to 4 characters long (2
characters for DDP-116, -516).

This type of constant is only accepted in CALL or DATA state-
ments.

3

+1
—28987
0

17.
5.0
—.0003

.0000005
0.0

5.0E--7
+56E-—-7
5.0E3

.5E+3
5000.

1.736247D5
3002625D—4

1DO
1234.567890123D0

(17.0,5.0)
(—2.35,1.E—6)

.TRUE
.FALSE

1HX

4HB.24
4HTEST
4H Z

14

BX32

When the statement numbered 2 is encountered,
the values of C(1), C(2), and C(8) will have been

GENERAL FORM EXAMPLES
A real, integer, double A
precision, complex, or K(3)

logical variable followed
by parentheses enclosing
1, 2, or 3 subscript
expressions separated by
commas. The subscripts
must be integer and one
of the following formats:

k
v
vtk
c*v
c*vxk
k or ¢ = integer constants
v = integer variable

BETA (5*J — 2,K+2,L)
X(l1,J,K)
X(1+4,6,2*1)

computed and stored. (The DO statement is dis-
cussed in detail in Section III.)

For each variable that appears in subscripted
form, the size of the array (i.e., the maximum
values which its subscripts can attain) must be
stated in a DIMENSION statement preceding the
first executable statement in the source program.
(DIMENSION statements are described in Section
IV.) The value of a subscript expression must not
be greater than the corresponding array dimension.

Subscripting to handle two- and three-dimensional
arrays greatly facilitates the solving of many en-
gineering and scientific problems which require
matrix manipulations for their solution. The follow-
ing example of matrix multiplication illustrates DO

nests and multiple subscripts. (A DO nest is a set
of two or more DO statements, the range of one
of which includes the ranges of the others.)

EXAMPLE OF MATRIX MULTIPLICATION

Problem. Given matrix A with dimensions 10 x 15,
and matrix B with dimensions 15 x 12, compute
the elements of Cj; of matrix C = AB.

Solution. To compute any element Cy, select the i
row of A and the j column of B, and sum the prod-
ucts of their corresponding elements. The general
formula for this computation is:

k=15
C\;= E AikBk]
k =
, R
i DIME,NSIO[Q A'(IO,15):B(|5,l2);C(YIO,12)T
. 4 DO 2‘0 l-—-|1,10 . - § -
5 D@ 20 J=1112
T 6 C(".vj) = ov'o T T T T
10 D@ 20 K=1,15 B}
. 20 Ci .'J) = CT(I.J)U}(I‘K):B(K.JT) ,
\ ‘\ﬁ Bl

Statement 5 indicates that the program is to be
repeated 12 times, first for J = 1,thend = 2, ...

TABLE 1—2,
VARIABLE FORMAT

MODE OF VARIABLE GENERAL FORMAT EXAMPLES
INTEGER 1 to 6 alphabetic or numeric characters, the first of which is the letter I, J, K, 12
(1 word reserved) L, M, or N. If the first character is not one of these letters, it is an integer NAME
variable only if also mentioned in an INTEGER declaration. NUMBER
KEY
J
REAL 1 to 6 alphabetic or numeric characters, the first of which is not the letter VAR43
(2 words reserved) L J, K, L, M or N. If the first character is one of these letters, it is a real X
variable only if mentioned previously in a REAL declaration. TEST
DELTA
DOUBLE 1 to 6 alphabetic or numeric characters, the first of which is a letter and the ALPHA
PRECISION variable is mentioned previously in a DOUBLE PRECISION declaration. K33
(3 words reserved) ¥4
COMPLEX 1 to 6 alphabetic or numeric characters, the first of which is a letter and the J6
(4 words reserved) variable is mentioned previously in a COMPLEX declaration. XTEST
XFL4
LOGICAL 1 to 6 alphabetic or numeric characters, the first of which is a letter and the LOGT
(1 word reserved) variable is mentioned previously in a LOGICAL declaration. LTEST
A23L

BX32

J = 12. Notice that for each repetition of state-
ments 6 through 20, statement 20 is executed 15
times (first for K = 1, then for K = 2, and so on).
Thus, when the process demanded by statement
5 is complete, the I row of the product matrix
has been computed and stored. Control then re-
turns to statement 4 to obtain a new value for I,
and statements 5 through 20 are repeated for the
new value. The process continues until all of the
rows of the product matrix are produced.

ARRANGEMENT OF ARRAYS IN STORAGE

In the object program, a two-dimensional array A
will be stored sequentially in the order A1, Az, ...
Ami; Avz, A2z, ..., Am2; ..., Aun Thus the ar-
ray is stored with the first of its subscripts varying
most rapidly, and the last varying least rapidly.

1-6

The same is true of the subscripts of three-dimen-
sional arrays.

All arrays are stored forward in storage; i.e., the
following sequence is in the order of increasing
absolute locations.

ARRANGEMENT

ARRAY IN STORAGE

A1, 1 Az,1 A3, 1 A, (D)
A1,2 A2,2 A3,2 A2,1 (2)
A1,3 A2,3 A3,3 A3, (D
Ar,2 4

A2,2 (5

A3z, 2 (6)

A,z (D)

A2,3 (8)

A3, 3 (9)

BX32

SECTION II
ARITHMETIC AND LOGICAL STATEMENTS

FORMAT

An arithmetic statement (or arithmetic formula)
defines a numerical calculation. A FORTRAN
arithmetic statement resembles very closely a con-
ventional arithmetic formula. It consists of a single
variable to be computed, followed by an equals sign
(=), followed by an arithmetic expression.

GENERAL FORM EXAMPLES

a = b where a is a Ll = K + 1
variable (subscripted A(l) = B(1) + SIN
or not subscripted)

and b is an expression.

€1y

In a FORTRAN arithmetic statement, however,

the equals sign means is to be replaced by rather
than is equivalent to. An arithmetic statement in-

structs the computer to compute the value of the
expression on the right side of the equals sign and
to store the result in the memory location assigned
to the variable on the left side of the equals sign.
Thus the arithmetic statement Y = A — B*C
directs the computer to replace the value of the

variable Y with the computed value of the expres-
sion A — B*C.

The expression on the right side of an arithmetic
statement may be any sequence of constants, vari-
ables (subscripted or not subscripted), and func-
tions, separated by operation symbols, commas,
and parentheses to form a meaningful expression.

The five basic operations in the FORTRAN lan-
guage are:

OPERATOR DEFINITION EXAMPLE
+ Add a+b
- Subtract a—>b
. Multiply a*h
/ Divide al/b
hkd To the exponent a*pb

One arithmetic operation symbol cannot immedi-
ately follow another. An arithmetic expression must
not contain logical data.

Following are examples of arithmetic statements:

2-1

FORMULA DESCRIPTION
A=B Store the value of B in A.
|=B Truncate B to an integer and store in I.
A=1 Convert | to floating point, and store in A.
=141 Add 1 to | and store in [. (This illustrates
that an arithmetic formula is not an equa-
tion but rather a command to replace a
value.)
A= 3.0*B Replace A with 3B.

Parentheses are used as in ordinary mathematical
notation to specify order. For example, (A(B +

C))® written in FORTRAN is (A*(B+C))**D.
Some exceptions to the rules of ordinary mathe-
matical notation are:

a. In ordinary notation AB means A times B or
A * B. However, AB does not mean A*B in

FORTRAN. The multiplication symbol cannot be
omitted.

b. In ordinary usage, expressions such as A/B*C
are considered ambiguous. However, such expres-
sions are allowed in FORTRAN and are interpreted
as follows:

A/B*C means (A/B)*C
A*B/C means (A*B)/C
A/B/C means (A/B)/C

Thus, for example, A/B/C*D*E/F means ((((A/

B)/C)*D)*E)/F. That is, the order of operations
is taken from left to right.

c. The expression A is often considered mean-
ingful. However, in FORTRAN the corresponding
expression (A**B**C) is not allowed. It should be
written (A**B)**C if (AB)C is meant, or A**
(B**C) if A®® is intended.

d. The expression A/—B, which in ordinary nota-
tion would be interpreted as A divided by the
negative value of B, is illegal in FORTRAN since
two operators are not permitted to be side-by-side.
It should be written as A/(—B) or —A/B.

OPERATOR HIERARCHY

When a group of operators are not enclosed in
parentheses, the following implied hierarchy dic-
tates the order in which the operations are per-
formed:

BX32

PRIORITY OPERATOR OPERATION
8 FUNCTIONS Function subroutine
7 b Exponentiation
6 */ Multiply or divide
5 +,— Add or subtract
4 ll:JELGETE(SE Relational operators
3 .NOT. Logical negate
2 .AND. Logical AND
1 .OR. Logical OR

The operator with the highest priority takes prece-
dence over the other operators in the same ex-
pression.

Thus, when the arithmetic statement
F = A4SIN(B)*C**D

is encountered at execution time, the computer
would perform the indicated operations in the fol-
lowing order:

a. SIN(B)

b. C**D

c. (SIN(B))*(C**D)

d. A+ ((SIN(B))*(C**D))

Again, parentheses that have been omitted from a
sequence of consecutive multiplications and divi-
sions are interpreted as being grouped from the left.
Thus: A/B/C/D/E means (({((A/B)/C)/D)/E)
NOTE:—~Special care must be taken to indicate the
order of integer multiptication and division. FORTRAN
integer arithmetic is “‘greatest integer’ arithmetic; i.e,
truncated or remainderless. Therefore, the expression
5*4/2 is evaluated as 10, but 5/2%4 is evaluated as
8. To insure the desired result in integer multiplication

and division, it is suggested that parentheses be used
in the expression.

MIXED EXPRESSIONS

In general, FORTRAN IV does not allow variables
or constants of one mode to appear in the same
statement with variables or constants of another
mode. For example, integer variables cannot be
added to real variables, real variables cannot be
added to logical variables, etc.

There are, however, the following exceptions to this
general rule:

a. Arguments of functions or subroutines may be
any mode (or Hollerith) but must agree in mode
in transmission.

CALL DUMP (A,1,CPLX,LOGI)
ACPLX = BCPLX + CABS (REAL)

2-2

b. Subscripts of subscripted variables must be ex-
pressed in integer mode.

A = ARRAY (I) + TABLE (4,J,2)

c. When raising a value to a power, the power
may have a different mode than that of the value
being raised. Only those modes shown in the fol-
lowing eight examples are acceptable where I, R,
D and C indicate INTEGER, REAL, DOUBLE,
or COMPLEX mode variables or constants.

I**] INTEGER Result
R™I | ReaL Res
N n | REAL Result
R**D ?

* %
g**% . DOUBLE Result
D**D
C**I COMPLEX Result

d. Arguments may be intermixed between REAL,
DOUBLE, or COMPLEX modes. If one of the
arguments of an arithmetic operation (+4,—,%,/) is
REAL and the other is DOUBLE or COMPLEX,
the REAL argument is converted to DOUBLE or
COMPLEX format, and the result of the arith-
metic operation is in DOUBLE or COMPLEX
format.

e. Automatic mode conversion will take place
“across” the equals sign of an arithmetic expres-
sion between INTEGER, REAL, or DOUBLE
format. The following list shows allowable modes
of the variable preceding the equals sign and the
expression following the equals sign.

I-1 I-R I-D
R=1 R=R R=0D
D-1 D R D=D
c-cC
L =1L

f. All alphanumeric data occupies one word per
variable and is typed as INTEGER mode.

LOGICAL EXPRESSION

The result of any logical expression is a TRUE or
a FALSE logical quantity. Two types of operators
may be used in logical expressions: relational op-
erators or logical operators.

RELATIONAL OPERATORS

Relational operators join two arithmetic expres-
sions. The mode of the two arithmetic expressions
must be either INTEGER, REAL, DOUBLE PRE-

BX32

CISION, or a combination of REAL and DOUBLE
PRECISION.

"The result of a relational operation is a TRUE or
FALSE answer to the question posed by the re-
lational operator.

ExXAMPLE OF LOGICAL STATEMENT

The logic of a simple adder is to be simulated in
FORTRAN language. (See Figure 2—1.) A 20-bit
accumulator word and a 20-bit memory word are
to be added with a 20-bit result appearing in the
accumulator,

LOGICAL
RELATIONAL MEANING EXAMPLES OPERATOR MEANING EXAMPLES
OPERATOR .NOT. Reverse the .NOT.L
.LT. Less than ALT.B state of the) .NOT.X.GE.6.47
.LE. Less than or X.LE.Z+ kr)\g'tcafl ’?uant«ty
equal to DELTA that follows.
.EQ. Equal to (1+3)/5 .AND. Generate a L1.AND.L2
.EQ.10 logical result L1.AND.(.NOT.L2)
.NE. Not equal to R.NE.0.4 based on (X.LT.E).AND.L3
GT. Greater than SIN(C) two logical L3.AND.(Y.NE.0.0)
.GT.3.14157 Juantities as
.GE. Greater than or D.GE.DF offows:
equal to A B AANDB
TAND.T —»T 1 1 1
TANDF —»F 1 0 0
FANDT —>F 0 1 0
FANDF —>F 0 O 0
LOGICAL OPERATORS .OR. Generate a L1.OR.L2
logical resuit (.NOT.L1).0R.L2
Logical operators generate a TRUE or FALSE :’ﬁze?o;gan (L'éloAhae lhf:)x?R -(L2.AND.L3)
answer based on other TRUE or FALSE logical quantities as ((L1.0R.L2).AND.L3).0R.L4
quantities. These logical quantities may be logical follows:
constants, logical variables or subscripted variables, TORT T ’; ? A‘OIR'B
logical functions, relational expressions (described T.OR.F —T 1 0 1
in the previous paragraph), or other logical expres- lf-og-T —T 0 1 1
sions (enclosed in parentheses). OR.F >F 0 0 0
I slejr 1o} A-u-v L1 LI Aun 1) a0y ey ‘ YN sy Py ay voy ‘qw
LOGICAL C, A, M, PVERFL ' A
DIMENSIIDN A(20), M(20) ?
c - FALSE A\
T T T T T T T T T T T
. Dg |=1 20 ' ' . ‘ ‘ ' ’ I /
A(l) = (A(I) AND M), AND C) oR. \
T T T T T T T
X ((N¢T A(l)) AND . (NBT.M()). AND. C) oR.)
X (A(1). AND.(.NBT.M(1)).AND.{(. NBT.C)) @R, ||
X (. NBT.A(I)).AND. M(I) AND (. N¢T c)) ' /
10 [lc = (A(I). AND.M(1).AND.C).BR. i Q
(A(I) AND. (. N¢T M(1)). AND. C) oR.)
' X ((N¢T A(1)).AND, M(l) AND, C) @R, ' ' ' (S
' (A(I) AND . M(l) AND (. N¢T C)) ' ' LS
' ¢VERFL = ¢VERFL oR. c ' 1/
— ——— ———— DR, \
FIGURE 2—1
2-3

BX32

SECTION III
CONTROL STATEMENTS

GO TO STATEMENTS

There are three types of GO TO statements:
Unconditional GO TO
Assigned GO TO
Computed GO TO

UNCcONDITIONAL GO TO STATEMENT

The unconditional GO TO statement is in the
form:
GO TO k

where k is a statement number. Execution of this
statement causes the statement identified by the
statement number to be executed next.

ASSIGN STATEMENT

This statement is required with the assigned GO
TO and is in the form:

ASSIGN k TO i

where k is a statement number and i is an integer
variable name. After execution of such a statement,
subsequent execution of any assigned GO TO state-
ment using the integer variable (i) will cause the
statement identified by the assigned statement
number to be executed next.

AssigNED GO TO STATEMENT

This type of GO TO takes the form:
GO TO i, (ki, ko, ..., ka)

where i is an integer variable reference, and the k’s
are statement numbers.

At the time of execution of an assigned GO TO
statement, the current value of i must have been

assigned by the previous execution of an ASSIGN
statement to be one of the k. statement numbers
in the parenthesized list. The execution of such an
assigned GO TO statement causes the statement
identified by the statement number k to be ex-
ecuted next.

31

ASSIGN 320 T9@ [o
T T T T T 1
e — . S —— ;-
200 |G@ TQ 1,(100,310,320,409)
T T T i S i
320 l1A =B + C
| 2SR TR e ,
ASS_IGNMH_IOO T¢| I
G@ 1@ 20
T — T I -
100/ |lY = A*X ———
Fr—— - R ': 1
b gt p—

CoMPUTED GO TO STATEMENT

This type of GO TO statement is an n-way branch
where the value of an integer variable determines
the statement number to which the transfer is
effected. The format of a computed GO TO state-
ment is:
GO TO (ky, ks, ..., ka), i

where the k’s are statement numbers and i is an
integer variable reference.

Execution of the above statement causes the state-
ment identified by the statement label k; to be
executed next, where j is the value of i at the time
of the execution. This statement is defined only
for values such that 1 < j < n. In other words, if
j = 3, the statement identified by the third state-
ment number in the list will be executed next.

20| |c@ T@ (100,310,320,409), 1
T T T

320/ |A =B + C
v | ='] T T T :
cote 25

100]Y = A"X'

IF STATEMENTS

All GO TO statements cause an unconditional
transfer to a single statement. The IF statements
branch to one of two or three statements depending
on a condition. Two types of IF statements are
recognized:

Arithmetic IF statement
Logical IF statement

ARITHMETIC IF STATEMENT
This type of statement takes the form:
IF (e) kx, kz, ks

where e is any arithmetic expression of type in-
teger, real, or double precision, and the k’s are
statement labels.

The arithmetic IF is a three-way branch in which
the expression e is evaluated. If the expression e is
negative, there is a transfer to the statement iden-
tified by k.; if the expression is zero, there is a
transfer to statement k.; if the expression is posi-
tive (non-zero), there is a transfer to ks.

M

' IF(A) 103,20, 69

IF(1+46) 30,30,32
T T T T

I F(A-B(1+1)/CPS(X-4.2))1,6,6

T T

T

—r

VALAS

e S

——

As can be seen in the second and third IF state-
ment above, the three-way branch can be converted
to a two-way branch by assigning the same state-
ment number to two of the three statement numbers
in the list.

LocicaL IF STATEMENT

The logical IF statement takes the general form:
IF (e) S

where e is a logical expression and S is any ex-
scutable statement except a DO statement or
another logical IF statement. Upon execution of
this statement, the logical expression e is evaluated.
if the value of e is FALSE, statement S is ignored
and the next sequential statement is executed. If
the value of e is TRUE, statement S is executed
followed by the next sequential statement (unless
statement S is a GO TO or arithmetic IF state-
ment).

3-2

P

_—
i jéjr ™ ., w0y any 20 ny
1 t

LBGICAL L1,L2

l
y

T
T Y T T

T+

JF(L1) A=A+1.0
JF(L1.PR.L2) G@ T@ 20

JF(L1.AND.(.N®T.L2)) CALL EXIT(L
JF(X.LE.Z+DELTA) IF(X)20, 30,30

JF(L1.@F.(X.NE.Z)) L2=.TRUE.
13 T T T T

.
T v T T T T Y
d

T

-

NN\

AL

)

CoMPUTER TEST IF STATEMENTS

FORTRAN II statements such as IF ACCUMU-
LATOR OVERFLOW, IF (SENSE LIGHT m),
IF (SENSE SWITCH m), IF QUOTIENT OVER-
FLOW, IF DIVIDE CHECK, and SENSE LIGHT
are replaced in FORTRAN IV with functions on
the library tape that provide the same tests and
action. (See Table 3—1.) These functions are ex-
plained in detail in their respective program listings
and include the following:

SLITE(I). Sense light I will be set. All sense
lights will be reset if I = 0. (DDP-24, -124, and
-224 have 24 simulated sense lights. DDP-116, -516 -
have 16 simulated sense lights.)

SLITET(I1,J). Sense light I will be turned off. J is
set to 1 if sense light I was set, or set to 2 if sense
light I was reset.

SSWTCH (1,J). J is set to 1 if sense switch I is
set, or set to 2 if sense switch I is reset. (DDP-24,
-124, and -224 have six sense switches; DDP-1186,
-516 have four sense switches.)

TABLE 3—1.

FORTRAN II VERSUS FORTRAN 1V
STATEMENTS

FORTRAN Ii FORTRAN IV

SENSE LIGHT 3
IF (SENSE LIGHT 6) 20, 30

CALL SLITE (3)
CALL SLITET (6,1)
GO TO (20,30),1
CALL SSWTCH (1,N)
GO TO (15,13),N
CALL OVERFL(K)
GO TO (5,10),K
CALL OVERFL(K)
GO TO (5,10),K
CALL OVERFL(K)
GO TO (5,10),K

IF (SENSE SWITCH 1) 15, 13
IF ACCUMULATOR

OVERFLOW 5, 10

IF QUOTIENT OVERFLOW 5, 10

IF DIVIDE CHECK 5, 10

BX32

OVERFL(J). The error flag is turned off. J is set
to 1 if the error flag was on, or set to 2 if the
error flag was off. The error flag is located in sub-
routine FSER and is set on anytime an error con-
dition (including underflow as well as overflow)
exists in an arithmetic calculation or in an input/
output conversion.

DO STATEMENT

The general format for the DO statement is:

DOni = mi, mz ms
or

DOni=m;, me
where:

1. n is the statement number of an executable
statement. This statement, called the terminal
statement of the associated DO, must physically
follow and be in the same program as that DO
statement. The terminal statement may not be a
GO TO (of any form), arithmetic IF, RETURN,
STOP, PAUSE or DO statement, nor a logical IF
containing any of these forms,

2. iis an integer variable.

3. m, called the initial parameter; m:, called the
terminal parameter; and m:, called the incrementa-
tion parameter, are each either an integer constant
or integer variable reference. If the second form of
the DO statement is used so that m: is not ex-
plicitly stated, a value of 1 is implied for the
incrementation parameter. At time of execution of
the DO statement, mi, m:, and m: must be greater
than zero.

The DO statement is a command to repeatedly
execute the statements that follow, up to and in-
cluding statement number n. The first time the
statements are executed, i is equal to mi. Each
succeeding time the statements are executed, i is
increased by mi. When i is equal to the highest
value not exceeding m:, control passes to the state-
ment following statement number n.

The range of a DO is defined by the set of state-
ments that will be executed repeatedly; it is the
sequence of consecutive statements immediately
following the DO, up to and including the state-
ment numbered n.

The index of a DO is the integer variable i, which
is controlled by the DO in such a way that its
value begins at m: and is increased each time by
m: until further incrementation would cause the

33

s sleyr 1% 9y T0) ay [T
T T T T T
.

T T T

10/ pg@ 1:1 |-1:,1o '
[A@) = 1 * N(1)
12 :

value of m: to be exceeded. Throughout the range
it is available for computation, either as an ordi-
nary variable or as the variable of a subscript. After
the last specified execution of the range, the DO is
said to be satisfied.

Assume, for example, that control has reached
statement 10 of the following partial program.

The range of the DO is statement 11, and the
index is I. The DO seis I to 1 and control passes
into the range. The vaue of 1*N(1) is computed,
converted to a real number, and stored in A (1).
Because statement 11 is the last statement in the
range of the DO and the DO is unsatisfied, I is
increased to two and control returns to the be-
ginning of the range (also statement 11), where
2*N(2) is computed and stored in A (2). This itera-
tion process continues until statement 11 has been
executed with I equal to 10. Control is then passed
to statement 12 since the DO loop has been
satisfied.

NEesTED ‘DO’s

Among the statements in the range of a DO loop
may be other DO statements. When such is the
case, all of the statements in the range of the latter
DO loop must also be in the range of the former.
A group of DO loops satisfying this rule is called a
nest of DO’s. Figure 3—1 illustrates this rule.

ExampLE oF NEsTED DO’s

: : : s 7
bp 20 k=1,14,2 K
A(K,T) = 0.0 ' T T
' D® 15 L-4,31,3 i T
TS5 A(K, T)=A(K,) +A(K, L))
S

p—

A(K,2)=A(K,1)/3.14
20| IA(K, 3)=A(K,1)/503.7

T
B i S S e e
S

BX32

It is possible for a terminal statement to be the
terminal statement for more than one DO state-
ment. The following example shows this type of
nested DO statements used to sum a triangular
array. The value summed is

X(1,1) + X(2,1) + X (2,2) + X(3,1)
+X(3,2) +X(3,3) +X(4,1) +X(4,2) +X(4,3) +X

(4,4) +...+X(10,9) +X(10,10)
SUM = 0.0)
D@ 40 1=1,10 "\
D@ 40 J=1,1)
40| [SUM = SUM + xu e \
IE I T 1
™ T T T
. T)

As mentioned previously, the terminal statement
cannot be a STOP, PAUSE, DO, RETURN, IF or
GO TO statement or logical IF containing one of
these forms because execution of these statements
would cause the DO-loop to lose control.

CONTINUE

The CONTINUE statement causes no action and
generates no coding. It is used for terminating DO
loops and its form consists of the single word

|

‘Y\./\/w" \J’

|

N . 2y oy =
pDP 32 M=2,23
IF(X(M)-10.0)30,32, 31

30 X(M)‘= SIN(X(M))+3 14 .
) cp 19 32 . 1
31| [x(M) = 3. 14 - _CPS(X(M)

T T T

32| ICONTINUE

.
= T T T T

—

PAUSE

This statement is useful when the run-time pro-
gram must stop temporarily for operator action
such as changing data tapes. A PAUSE statement
takes one of the following forms:

PAUSE m

or

PAUSE
where m is an identification constant and is an
integer value in the range (0 < m < 32768).
The PAUSE statement transfers to the FSHT sub-
routine which types the message PAUS (the DDP-
116, -516 types the letters PA) and then halts the
program with the value m in the accumulator.
The identification constant m, when included,
usually indicates the particular PAUSE statement
that caused the halt. Pressing the computer’s start
button causes the program to continue, starting
with the first statement following the PAUSE

CONTINUE. statement.
PERMITTED NOT PERMITTED
T T v T v* T j T ’f 1o 2} = 224 Ww
. D@ 6,1=1,10 — (D@ 1,1=1,10 : o
. D@ 1,J=1,10 —— D@ 2,J=1,10 —]
U IC@NTINUE —— ! | |CHNTINUE ' - /7
T D@ 4,K=1,10 —— \] 0o 3.k-1,00 _— | \
T DO 2,L=1,i0 — / 2 |CANTINUE : ‘)
2 C¢NT'NUE — \ 3 |CONTINUE, —_ C
__bp am-0 — J 5)
_ dlc@NTINUE — || —— i ' 3
4 C¢NTINUE —_— /
i pp s5,N=1,10 —— | §
5 ¢NTINUE —J)
g NTINUE ' .
T ¢ 2y T T T S

FIGURE 3—1

34

BX32

STOP

The STOP statement is placed at the logical end
of the program and causes the computer to halt.

The STOP statement uses one of the following
forms:
STOP m
or
STOP

where m is an identification constant and is an
integer value in the range (0 < m < 32768).

This statement transfers to the F$HT subroutine
that types the message STOP (the DDP-116 types
the letters ST) and then halts the program with
the value m in the accumulator. The identification
constant m, when included, usually indicates the
particular STOP statement that caused the halt.
Pressing the computer’s start button will cause the
message to be retyped. There is no return from the
STOP statement.

END

The statement placed last physically in every pro-
gram must be the END statement that consists of
the word

END.

It signals the compiler that the program is com-
plete and no additional statements remain to be
processed. No coding is generated by this state-
ment, although at this time the compiler assigns

all variables and constants needed by the program
compiled. There must be END statement in every
program.

END OF JOB

If a program job consists of just one program, the
END statement is followed by an END OF JOB
card that consists of dollar sign in column 1 and
the digit 0 in column 2. The rest of the line is
ignored and may be used for comments.

If a programming job consists of a FORTRAN
program and several FORTRAN subprograms,
they may be grouped together with the program
first followed by the subprograms. The program
and each subprogram is terminated by an END
statement; and the last subprogram in the group
is also followed by an END OF JOB card (line).

T + T v T T I A

IF(A-3.5) 40,40,41
WRITE(5,14) A
14| FORMAT(IH
STOP '

T T T T T
41 A=A+0.1)
T — T T T T
- ST@P, S B
END

END QF JOB
T T

E10.3)

T T

BX32

SECTION IV
SPECIFICATION STATEMENTS

Specification statements are considered non-exec-
utable statements in that they do not generate
any object program instructions, but organize or
classify data to be used by subsequent statements.
All specification statements must appear before
any statement that generates coding (executable
statements). There is no “ordering” needed within
a series of specification statements except for the
DATA statement which must appear last.
SPECIFICATION

STATEMENTS DESCRIPTION

INTEGER Declares mode of variables is
INTEGER.

REAL Declares mode of variables is
SINGLE PRECISION Floating
Point (Real).
DOUBLE Declares mode of variables is
PRECISION DOUBLE PRECISION Floating
Point.
COMPLEX Declares mode of variables is
COMPLEX FLOATING POINT.

LOGICAL Declares mode of variables is
logical.

DIMENSION Declares arrays and sets their
sizes.

EXTERNAL Declares subroutine names

that are to be used as argu-
ments for other subroutines.

EQUIVALENCE Shares storage assignments of

variables and/or arrays.

COMMON Assigns variable and/or array
storage to a common area.
DATA Sets variables and/or array

elements to initial values.

INTEGER STATEMENT

Unless otherwise declared, a variable, array, or
function whose first letter is I, J, K, L, M or N
is of the INTEGER mode. Other variables, arrays,
or functions may also be mode-classified as IN-
TEGER, regardless of first letter, by including
them in the list of an INTEGER statement.

by ¢ 11 19y i 10 1y ey LT
INTEGER X1,ALPHA, ARRAY, SUBR,XABS)
T T T T T T T (

REAL STATEMENT

Unless otherwise declared, a variable, array, or
function whose first letterisnot I, J, K, L, M or N
is of the SINGLE PRECISION floating point
(REAL) mode. Other variables, arrays, or func-
tions may also be mode-classified as REAL, re-
gardless of first letter, by including them in the list
of a REAL statement.

l !REAL: 13, NUMBER, LIST L@G, INT

p—

e

DOUBLE PRECISION STATEMENT

All variables, arrays, or functions that are to be of
the DOUBLE PRECISION floating point mode,
must be included in the list of a DOUBLE PRE-
CISION statement.

A4, TAage,osllN,osoinB
X, INCR, M@NEY

po——

\ D¢UBYLE PR;CISL@'N
D¢UB‘LE PRECISIQN
- e

COMPLEX STATEMENT

All variables, arrays, or functions that are to be of
the COMPLEX floating point (or COMPLEX)
mode, must be included in the list of a COMPLEX
statement.

M—M
' | lcompPLEX " TEST,DECK,CSQRT,CABS, X\
7T T T T T T T

S
'

T

LOGICAL STATEMENT

All variables, arrays, or functions that are to be of
the LOGICAL mode, must be included in the list
of a LOGICAL statement.

-M
LBGICAL L1,L2,B@@L,PILE,BETA,ETC)
: : . ' L 7

—

e pa—

BX32

e
—

e——

" ——

o

g

DIMENSI®N

LIST(400) TABLE(10,10,4), ARRAY(40,10)

p——
g e

DIMENSION STATEMENT

The DIMENSION statement is used to declare
arrays and to define their sizes. A DIMENSION
statement takes the form:

DIMENSION Vl(il), V'_'(i'_'), Vn(in)

Each v is an array declarator where v is the name
of the array. The mode of each item in the array
is determined by the first letter of the name of the
array or by including the name in one of the decla-
ration statements (INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, and LOGICAL). The
subscript “1"" is comprised of one, two, or three
positive non-zero integer constants, or dummy vari-
ables separated by commas. The number of con-
stants represents the number of dimensions by
which the array is referenced; and the value of
each constant represents the maximum size of each
dimension.

When arrays are passed to subprograms, the sub-
program must re-declare the array. The mode,
number of dimensions, and size of each dimension
must agree with that declared by the calling pro-
gram, but the name of the array need not agree.

LIST(400)
_L15T(400)

R

DIMENSI®N

' CALL CHKSUM (LIST,ISUM)
P —
I VTS 1 T I
SUBR¢UTINE CHKSUM(ITEMS, K)
-

DIMENSI¢N |TEMS(400

T L T - T e S

Tt is possible for one or more of the subscripts in a
DIMENSION statement to be an integer variable
instead of a constant. This situation is only possi-
ble in a FORTRAN subfunction where the calling
program provided (and declared) the array name
and all variable subscripts. In other words, for any

variable-dimensioned array given in a subfunction’s
DIMENSION statement, both the array’s name

and all variable subscripts must be dummy names.

42

jp——
——

T T T T k
e —)
el

This feature is useful for general-purpose subpro-
grams that manipulate arrays (such as a matrix
multiply subroutine). Since the subprogram could
work with any size array (given enough memory),
it lets the calling program specify the size of ar-
ray, rather than specifying an array of constant
size. The calling program, of course, must declare
the array using constant subscripts.

T T
- DIMENSI@N ARRAY(40,40)

T g L T T

| |CALL MATMPY(ARRAY, 40, X)
[T - T : T LA S

g e e e

"SUBR¢UTINE MATMPY(TABLE MAX A
('DIMENSI¢N TABLE(MAX MAX)

F— -

. ; L;

S —

—r— . ———

Other methods in which arrays may be declared
and sized are discussed in the paragraph entitled
‘“Alternate Methods of Declaring Arrays” later in
this section.

EXTERNAL STATEMENT

One of the allowable types of arguments passed on
to a subprogram is another subprogram’s name. In
order to do this, the subprogram name being used
as an argument must be declared as a subprogram
by placing the name in the list of an EXTERNAL
statement. Only subprogram names used as argu-
ments need to be declared * 7 an EXTERNAL
statement.

sjeyr 19) 18y 20 1 30(
T =t

EXTERNAL TEST!,TEST2,TEST3

T T T
.

T T T T T

CALL I')EBUVG(TES'I:l,A,I)'

JeaLL l')EBUTG(TE ST3,X,1)

CALL DEBUG(TEST2,A,J)

T T—* T T T

/NI~ N

BX32

P N e
j—

— — . §
SUBROUTINE ossue(nsmsa 1.))

po—
—r
T

cALL TESTN@(J)

.
T L T T T T

EQUIVALENCE STATEMENT

The EQUIVALENCE statement is used to permit
the sharing of memory storage by two or more
entities. The general format of the EQUIVA-
LENCE statement is:

EQUIVALENCE (ki1), (kz), , (kn)

where each k represents a list of two or more vari-
able or subscripted variable or array names sepa-
rated by commas. Each element in the list repre-
sented by k is assigned the same memory storage
by the compiler. All subscripts appearing in an
equivalence list must be integer, positive, non-
zero constants.

An EQUIVALENCE statement may equate single
variables to each other, entire arrays to each other,
elements of an array to single variables, or vice
versa as shown in Figure 4—1. An element of an
array may be expressed in an EQUIVALENCE
statement in one of two ways.

1. It may be expressed exactly as in a DIMEN-
SION statement. Assume the element A (4,1) of
the two-dimensional array A (4,2) is to be equated
to variable B (6) of the one-dimensional array B
(10), the statement could be:

EQUIVALENCE (A (4,1), B (6))

2. It may be expressed as the equivalent fictitious
single-dimensional subscript that indicates the or-
der in which the element is stored in memory.
Again assuming element A (4,1) is to be equated
to variable B (6), the statement could be written:

P e e — Jpe— Jo—

EQUIVALENCE (A (4), B (6))

where A (4) specifies that the element A (4, 1) is
stored in the fourth location of the storage block
reserved for the two-dimensional array A (4,2).

The mode assigned to each element determines the
number of memory cells occupied by each element
as shown in Table 4—1.

If an INTEGER or LOGICAL mode variable is
made equivalent to a REAL, DOUBLE PRE-
CISION or MPLEX mode variable, the former
variable shares. memory storage with the first
of the words required by the later variable. Figure

4—1 shows the relative memory assignments caused
by an EQUIVALENCE statement.

Variables and array elements appearing in EQUIV-
ALENCE statements may also appear in COM-
MON statements. The resulting effect is explained
in the following paragraph. Dummy arguments for
a subprogram cannot be used as elements within
an EQUIVALENCE statement contained in that
subprogram.
TABLE 4—1.

MODE/MEMORY CELLS CORRESPONDENCE

NUMBER OF

MODE ASSIGNMENT MEMORY WORDS

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL

=AW=

COMMON STATEMENT

The COMMON statement provides a means of
sharing memory storage among subprograms or
transferring data between subprograms or between

segments of a chained program. The format of the
COMMON statement is:

e S’

'
T T T

COMMO N A B, C(]O)

s|efr 104 13 20 23] 30; 39
t

COMMBN // A,B, C(IO)

CHMMDN /c1/o,£ F

COMMBN

/CI/D E, F/C2/G H(lb 3), I

3 | lcoMmMpN A B, C(IO)/CI/D E, F

COMMPN //A8, C(IO/CI/D E, F

T

x

/C2/G H(16, 3) 1

c¢MM¢N /CI/D E//A/CI/F//B C(IO)

STATEMENTS 3 AND 4 ARE EFFECTIVELY

pr—

B
——

4.3

”\f\/\vbf\u

BX32

—

r—
'

DIMENS|¢N

A(4 2), D(IO)

D¢UBLE PRECISI¢N

Dl

D2, D3

C¢MPLEX

Cci, C2 C3

T

EQUIVALENCE(X DI C3) (A(4, l) DS,CI) (A(l

EQU!VALENCE(B(B) A(2, 2) Il)

1)D2)

[x [p1] c3]
-
T S [B(1) |
AN L] B(2)
or A(1) | D2 []
A2,1) | B(3)
or A(2)
A3, 1) | [B(4)]
or A(3)
| A@, 1) -B()
or A(4) BT
A(L2) | [p3far
or A(5) 1T Tem
| A2,2)
or A) -8(8)
| AG,2), 55
or A(7) - 1
A4,2) B(10)
or A(8) T

k\ﬁwu”\fi

@ NN o O

W N — O 0 O N OO LM~ O

FIGURE 4—1. MEMORY ASSIGNMENTS CAUSED BY EQUIVALENCE STATEMENT

44

BX32

COMMON a,, az, .
COMMON/Xx/al, az, . .

.y @n

., an/Xnfai, az, ..., @n

where a: specifies a list of variable names or array
names and x is a COMMON block name. If a speci-
fies an array name, it may be followed by its dimen-
sioning information in parentheses. COMMON
block names, when specified, are enclosed between
two slashes. A COMMON block name may be
unspecified (called blank common) and if such a
block appears first in a COMMON statement, the
two slashes may be omitted. Names of COMMON
blocks must not be identical with the name of a
subprogram called on by the program job, or the
name of a subroutine on the library tape. The fol-
lowing example illustrates some acceptable COM-
MON statements.

The data items within a COMMON block are as-
signed sequentially in the order of appearance. The
actual location of a COMMON block is made by
the loader program in such a way that all COM-
MON blocks with the same name are assigned to
the same area regardless of the program or sub-
program in which they are defined. The loader
program is designed to assign all blank common
data in such a way that it overlaps the loader pro-
gram, thereby making the memory area occupied
by the loader program available for data storage.

Elements within a COMMON block may be over-
lapped and interrelated by listing such elements in
a group. If an element included within an EQUIV-
ALENCE statement group is also specified to be in
a COMMON area, all other items within the equiv-
alence group are also in that COMMON area.

P J—
L v s

12 1 "y »y LI T}
t

The number of words that a COMMON block
occupies depends on the number of elements,
the mode of the elements, and the interrelations
between the elements specified by an EQUIV-
ALENCE statement. COMMON blocks that ap-
pear with the same block name (or no name) in
various programs or subprograms of the same job
are not required to have the elements within the
block agree in name, mode, or order; but the
blocks must agree in total words occupied.

Figures 4—2 and 4—3 show the relative memory
assignments caused by COMMON statements.

DATA STATEMENT

The DATA statement is used to set variables or
array elements to initial constant values during
loading of the object program. (The variables are
not re-initialized if the program is restarted with-
out reloading.) A DATA initialization statement is
of the form:

DATA k./d./ k:/d:/, y ka/dn/

Each k is a list containing non-dummy names of
variables or array elements (with constant sub-
scripts) separated by commas. Each d is a cor-
responding list of constants with optional signs.

There must be a correspondence in order and mode
between the name list and the data list. If the data
list consists of a sequence of identical constants,
the constant need only be written once and pre-
ceded by the number of repeats (integer constant)
w

[
AS

B U

DIMENSION B(3,3), L(20)
C¢M'M¢N 'AI,A'Z,]l,g/CQle/G(B)

EQUI‘VALENCE (L3,15)

Y T

g

e e e e e,

T T

SUBRGUTINE _ ALPHA

COMMBN /COMI/I1(20)/COM2/X(7)

T . - T T T
get, —

T

—
—
e

P .

e S

T

SUBRGUTINE BETA(Z)

T

-

COMMBN //X1,X2,1D,T(9)/CHM2/ Y(7)

T T M T T T T

= -—

T

4

I
A

—

FIGURE 4—2. COMMON STATEMENTS EFFECTING MEMORY ASSIGNMENTS IN FIGURE 4—3

45

BX32

- Start loading

COM 1 }\\ LSI) 1)
L
¥ > e ! :
MAIN ™~ ! T
B ey ~ : i
POV ~ G(2) '
PROGRAM | !
B o
, G(3)| | |
COM 2 } T \ B
' v
SUBROUTINE \ T ! H
o~ \ X(2) | Y(2) G(5) : |
ALPHA \ 1 : ;
\| [X® | Y@ G| | ;
SUBROUTINE \ 1 T i
) 1 |X@) | Y4 e | :
BETA i i i
1 1
X(3) | Y5 G f
OTHER I . ; i
M X(6) | Y(6) : !
SUBROUTINES ; :
% | |xo0 [v L20)| 1(20)
COMMON COMMON
| UNUSED | block block
(T labeled labeled
MEMORY COM 2 COM 1
(14 words) (20 words)
gaoeR 17 =
BLANK —
C¢MQA¢N End of
Memory
Memory
Map

Al T X1
A2 T X2
N +1ID

B(1, 1)+ T(1)

B(2,1)r T(2)

B(3, 1)1 T(3)

B(1,2)T T(4)

B(2,2)+ T(5)

B(3,2)+ T(6)

B(1,3)+ T(7)

B(2, 3)+ T(8)

B(3,3)1 T(9

Blank
(unlabeled)
COMMON

block
(23 words)

FIGURE 4—3. MEMORY ASSIGNMENTS CAUSED BY COMMON STATEMENTS IN FIGURE 4—2

4-6

BX32

INTEGER | /13,-4179,1,+6 ,6%0/ i
REAL 13.0,-4.179E3,100E-2, 6. 0,6%0./
DOUBLE 13.D,-4.179D3, 100D- 2, +0. 6DI 6*0.D/ |
lcompLex [/(13.0, -4.179€3), (1 00E - 2,+6.0),6%(0.,0.)/
looical | . TRue., . TRUE., FaLse, T]
HOLLERITH 4HDIEC.,3HDEG) o]
| e 13,13.0,1.3€2,13.D,(13.0,0.0)/

FIGURE 4—4

and an asterisk character. For example:
/1.4,3*2.0,0.0/=/1.4,2.0,2.0,2.0,0.0/

A Hollerith constant may appear in the data list
as a string of characters preceded by the letter H
that, in turn, is preceded by a constant indicating
the string length. The characters will be stored in
their BCD code, left justified if necessary. Types
of constants allowed within the data list are shown
in Figure 4—4.

Consider the first DATA statement shown in the
example below. This statement assigns the value
0.10762 to Al (4), 1.0E5 to X, 1 to 1, etc. The
assignment is done at load time not at execution
time. A DATA statement is not executable.

RESTRICTIONS

The DATA statement(s) must appear as the last
specification statement(s). Variables or array ele-
ments assigned to unlabeled (blank) COMMON

T T

DIMENSI¢N A1(10), A2(10)

' DBUBLE PRECISI¢N DI
LBGICAL L1,12,13

—_——-

COMPLEX _ CI o
_IbAtA _A1(4),%,1,01,11,12,
_ M ciz0.10762,7. 085, 1_1.00, \
' X . TRUE. TRUE (4.3,0.0)/ Y
' DATA P/14.9/, Q/O.lE-s/,T C
' R/0./, 1/4095/, L3/.F./,)
! X K2(1),A2(2),A2(3),A2(4), S
W A2(5),A2(6),A2(7),A2(8), /
X A2(9),A2(10)/10%0.0/ \

4.7

may not be initialized by the DATA statement.
Variables or array elements assigned to labeled
COMMON areas may be initialized by a DATA
statement but only within a BLOCK DATA sub-
program (see Section VI).

ALTERNATE METHODS OF
DECLARING ARRAYS

The size and mode of an array is normally de-
clared by a DIMENSION statement. However, it
is sometimes more convenient to declare arrays by
other specification statements. This is allowed in
the INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, and COMMON state-
ments. The specification of the size of the array is
made in the same manner as in the DIMENSION
statement, by following the array name with the
maximum size of each dimension within paren-
thesis.

The following two examples accomplish the same
task of declaring arrays and typing variables. The
second example, however, does not use a DIMEN-
SION statement. Both methods are acceptable.

ko
-
~
1
5
.
s
L:
-
e

|

/\/‘\J/J\w\rvj

INTEGER X,Y,2

EAL K1,K2

DBUBLE PRECISIGN D

) COMPLEX C1,C2

LBGICAL L '

COMMON BTC/T/P'

DIMENSIQ)NI x(10),x2(4 3),
z(s,3, 2), 0(10) c2(3,7),

L(4 4, 4) B(6), P(IOO lO)

=

N

.
T T T T T

{j

BX32

P

P ——

INTE:GER x:(w),v;,.z-(s,a:,z)
EAL K1, K2(4,3)
DPUBLE PRECISIBN D(10)
COMPLEX Cl, C2(3,7)
LAGICAL L(4,4,4)
COMMBN Al,B(6),C/T/P(100,10)

/kwv"‘\u"

T T T T T

t

TRACE STATEMENT

The TRACE statement causes coding to be in-
serted into the object program, when specified
variables or array names are defined by an arith-
metic statement, or after every variable definition
within a specified area. The effect of the inserted
coding and examples of TRACE statement formats

are described in Section VII. The TRACE state-
ment has two acceptable formats: item trace and
area trace.

ITEM TRACE

Item trace takes the form:
TRACE x1,%2,..... Xm

where each x represents a variable or array name.
Special coding is inserted after each time one of
the list names is defined by an arithmetic state-
ment.

AREA TRACE

Area trace takes the form:
TRACE n

where n represents a single statement number.
Trace coding is inserted after all statements start-
ing with this statement, up to and including state-
ment number n.

BX32

SECTION V
INPUT/OUTPUT STATEMENTS
AND FORMAT SPECIFICATIONS

INPUT/OUTPUT STATEMENTS

There are two main types of input/output state-
ments:

(1) READ and WRITE statements
(2) I/0 Control statements

This section deals primarily with the former, and
with associated format specifications.

In the statement descriptions in Table 5—1, the
arguments “u”’, “f”, and “list” are used as follows:

The argument u represents the input/output unit
number and may be an integer constant between 0
and 9, or an integer variable. Standard assignment

of device numbers is as follows:

0 = spare 5 = magnetic tape no. 1
1 = typewriter 6 = magnetic tape no. 2
2 = paper tape 7 = magnetic tape no. 3
3 = cards 8 = magnetic tape no. 4
4 = line printer 9 = magnetic tape no. 5

(Changing device assignments is discussed in

Appendix B.)

The argument f represents the format statement
reference and must be a format statement number
if the format statement is included in the program
being compiled, or an array name if the format

TABLE 5—1.
I/O0 STATEMENTS

TYPE STATEMENT

DESCRIPTION

Formatted READ READ (u,f) list, or READ (u,f)

Formatted WRITE

Unformatted READ READ (u) list, or READ (u)

Unformatted WRITE Write (u) list

Control Statements REWIND u

BACKSPACE u

ENDFILE u

WRITE (u,f) list, or WRITE (u,f)

Input from unit u according to format statement f, and
assign the resulting values to the list elements (if any).

Convert the list elements according to format statement f,
and output using device u.

Input the next record from device u in binary format and,
if there is a list, assign these values to corresponding
items on the list. If the record contains more items than
are required for the list, the rest of the record is lost. If
more information is required for the list than is in one
record, additional records will be read. If no list is present,
one record will be read but ignored (resulting in an effective
forward skip action).

Write all words specified by the list in binary format without
converting. Writing is performed on device u. If the list
elements do not fill one record, the rest of the record is
padded with zero bits. If the list elements require more
than one record, multiple records will be written and the
last record padded with zero bits if necessary.

Rewind magnetic tape unit u to its initial start point. Only
unit 5, 6, 7, 8 or 9 (magnetic tape 1, 2, 3, 4 or 5) shouid
be specified.

Backspace magnetic tape unit u by one record (unless it
is at its initial start point). Only unit 5, 6, 7, 8 or 9 (mag-
netic tape ‘1, 2, 3, 4 or 5) should be specified.

Punch a stop code on paper tape if the unit number is 2,
or write an ENDFILE record on magnetic tape 1, 2, 3, 4 or
5 if the unit number is 5, 6, 7, 8 or 9. When an ENDFILE
record or stop code character is read during input, a coded
message will be typed followed by a halt.

5-1

BX32

TABLE 5--2.
EXTERNAL RECORDS

FORMATTED (BCD) UNFORMATTED (BINARY)
UNIT (DEVICE) RECORD DEFINITION RECORD DEFINITION
Typewriter One line of type terminated by a carriage return. Undefined

Maximum of 120 characters/line (72 charac-
ters/line on DDP-116, -516)

Line Printer One line of printing with a maximum of Undefined
120 characters/line
Cards One card, 80 characters One card, 40 words (60 words on DDP-116,
-516)
Paper Tape One card image of 80 characters One card image of 40 words (60 words on
DDP-116, -516)
Magnetic Tape Line printer image 120 characters One card image of 40 words (60 words on

DDP-116, -516)

statement is to be entered into the array at execu- quantities to be transmitted. The list is ordered,
tion time. and its order must be the same as the order in

which the words of information exist (for input),
The argument list represents the list of individual or will exist (for output), in the external medium.

arguments that are to be input or output. The items within the list may be variables, sub-

EXTERNAL RECORDS scripted variables, or array names. Constants are

The information transmitted between computer not allowed as list items.

storage and external media by one input/output When an integer variable is used as a subscript to
statement is separated into physical groups called a variable in the list of a READ statement, it must
records. The definition of a record varies with the be previously mentioned as a variable in that same
1/0 device, the type of machine, and whether the list (physically to the left of where it appears as a
record is BCD or binary. Table 5—2 defines the subscript). Following is an example of two accept-
data that comprises a record for each I/0 unit. It able lists.

is the programmer’s responsibility to avoid exceed- " vo‘Avl‘ —— — -TA —
ing the maximum record size for a given device. DIMENSI®N X(100),Y(10,10) '
External formatted records may contain the values READ(1,20) A, X:(3), 1, "f(l+l , 4:)

of several variables; each variable is considered a ; ’

field of information. In order to sovecify the man- DIMENSI@ON X(100), Y(10,10)

ner of conversion on input or outpuz, it is necessary READ(1,20) A, X(3), 1, Y(1+1,4), X, B
to state the size or width of the data field. If the ' T i ' ' !

variable is floating point, it is also necessary to — —
state the position of the decimal point. The width ImpLIED DO-Loors

of the field is the total number of characters neces-
sary t- describe the information on a coding form.
Howe eer, fields may be larger if leading blanks are
included, or smaller if truncation is desired.

A group of simple arguments can be enclosed in
parentheses and include control information which
specifies the number of times ‘he group is to be
repeated. This control information is very similar

If formatted input records exceed the maximum in format to that used by the DO statement. For
number of characters allowed for a particular input example:

device, all characters after the maximum are un- et e s {
defined. The next input record is not automatically DIMENSI@N B(40),C(1 0),D(10,4),E(1 0,4),F(4,4)
read. A means of processing multiple records is WRITE(5,20) K, B(3),(C(l), D(1,K),1=1,10),
described later in this section. HX " E(L), 121,10,). F(J,3),d=1,K) T
I/0 STATEMENT ARGUMENT LISTS | T —— T 1 1]

If the list shown in the preceding ex;r;ple is used
with an output statement, the information is writ-
Most input/output statements include a list of the ten in the external medium in the following order:

SIMPLE ARGUMENTS

5-2 BX32

K,B(3),C(1),D(1,K)C(2),D(2,K),...... ,
C(10),D(10,K),
E(1,1),E(2,),...... E(10,1),F(1,3),
E(1,2),E(2,2),...... ,E(10,2),F(2,3),

...... JF(K,3).

Similarly, if the list is used with an input state-
ment, the successive words, as they were read from
the external medium, are placed in the sequence
of storage locations specified above.

Thus, the list reads from left to right with the
repetition of variables enclosed in parentheses.
Only variables, not constants, may be listed. The
repetition is identical to that of a DO loop, as if
each open parenthesis (except subscripting paren-
theses) were a DO, with indexing given immedi-
ately before the matching closing parentheses, and
with range extending up to that indexing informa-
tion. The order for the above list is the same as for
the “program”:

K

B(3)

DO5I = 1,10
(6149

D(LK)
DO9J=1K
DO 8I=1,10
E(1,J)

F(J,3)

e N i e

Notice that indexing information, as in DO’s, con-
sists of three constants or integer variables, and
that the last of these may be omitted, in which case
it is understood to be one.

For a list of the form K, (A(K))or (A(I),I = 1,K),
where an index or indexing parameter itself
appears earlier in the list of an input statement,
the indexing is carried out with the newly read-in
value.

SPECIFICATION OF MATRIX ORDER

FORTRAN, in effect, considers variables in a mat-
rix such that a list for either input or output in
the form

((ALJ),J =13), I = 1,2)

specifies that I x J items of information are trans-
mitted in the order

Ai1,A12,A13,A2 1,Az22,Az2 3.

The above is the order in which the items are out-
put; for input, it is the order in which the data

should be written on the data sheet. If it is desired
to write the data by columns or to print the items
by columns, the list takes the form

((A(LJ),I=12),d =1,3)

It can be seen here that it is the inner-most index,
rather than the inner-most subscripted variable,
that determines which subscript varies more
rapidly.

INnpUT/OUTPUT OF ENTIRE ARRAYS

When input/output of an entire matrix is desired,
an abbreviated notation may be used for the list
of the input/output statements. Only the name of
the array need be given and the indexing informa-
tion may be omitted. Thus the list

A

is sufficient to cause the read-in of all the items of
matrix A in their natural order. The natural order
is considered to be

((A(LJ),I = 1,2)d = 1,3)

In such a case, FORTRAN examines to see whether
or not the variable has been defined as an array.
If such a definition is not made, only a single ele-
ment will be transmitted.

FORMAT STATEMENT
The form of the FORMAT statement is
FORMAT (S, Sz,...... , Sn)

where S; are descriptions of the external form of
the variables comprising a record. The S: provide
the compiler with the information necessary for
conversion from and to external form.

A FORMAT specification describes the record to
be converted by giving, for each field in the record
(from left to right, beginning with the first charac-
ter), a basic field specification written in the form:

nKw.d
where:

1. The letter n represents a positive integer indi-
cating the number of successive fields within one
unit record which are to be converted according to
the same specification. If n is equal to 1, it may
be omitted.

2. The letter K represents a control character
specifying the type of conversion to be used. This
character may be LE,F,G,D,P,L,LAH or X.

3. The letter w represents the width of the field.
The field widths may be made greater than neces-

BX32

sary to provide spacing blanks between the items
on a line. Thus, a field specification of nK12, where
only four digits are to be printed, would result in
eight blanks preceding the digits. Within each field
the printed output will always appear in the right-
most positions.

4. The letter d represents the number of positions
in the field which appear to the right of the decimal
point; it is used only with E, F, G and D-type
conversions.

Within the unit record, field specifications are
separated by commas.

Iw, Ew.d, nX, Fw.d, nAw, etc.

EXCEPTION: A comma need not follow a field spec-
ified by an H or X control character.

SUMMARY OF CONTROL
CHARACTERS

There are nine different types of control characters,
seven of which provide for the conversion of data
between the internal machine language and the
external notation as follows:

INTERNAL TYPE EXTERNAL
Integer variable | Decimal integer
Real variable E Floating-point, scaled
Real variable F Floating-point, mixed
Real variable G Floating-point,

mixed/scaled
Double precision D Floating-point, scaled
variable
Logical variable L Letter T or F
Real variable A BCD characters

Complex variables are represented by types E, F
or G and appear externally as two floating-point
numbers.

An eighth control character, X, provides for skip-
ping characters in input or the specification of
blank characters in output.

A rninth control character, H, designates Hollerith
or heading. fields. It may be used to output alpha-
numerical characters originating in the source pro-
gram and for carriage control in printing or typing.

I-TyrPE CoNVERSION (FIELD SPECIFICATION
Iw or nIw)

The number of characters specified by w is con-
verted as a decimal integer.

{-Output. Negative numbers have a minus sign
before their first significant digit; no sign indicates

54

a positive number. The digits are right justified
with leading blanks. If an integer is truncated be-
cause w is not large enough, the sign position con-
tains a dollar sign ($) if positive or an equals sign
(=) if negative to indicate that some digits are
missing.

In the following examples, the letter ‘“b” indicates
a blank (or space):

OUTPUT INTERNAL CHARACTERS
FORMAT NUMBER OUTPUT

18 +12345 bbb12345

17 —12345 b—12345

16 +12345 b12345

15 —12345 =1234

14 +12345 $123

13 —12345 =12

12 +12345 $1

11 —12345 =

10 +12345 (NO OUTPUT)

I15 +00000 bbbb0

I-Input. An input field of w characters is converted
to a 23-bit plus sign binary integer (15-bit plus
sign on the DDP-116, -516). If no minus sign is
present, the value is considered positive. No decimal
point character is allowed. If blanks (or spaces)
are present in the field, they must precede the first
digit or sign. Integer values with a magnitude up
to 8388607 are accepted (32767 maximum on the
DDP-116, -516).

FORMAT CHARACTERS INTERNAL
DESCRIPTOR INPUT NUMBER

5 bbbbb +00000

5 bbbb1 +00001

5 bbb+1 +00001

I5 —bb15 —00015

5 bbb—3 —00003

5 12345 +12345

I5 —1234 —01234

E-Type CoNVERSION (FIELD SPECIFICATION
Ew.d or nEw.d)

The number of characters specified by w is con-
verted as a floating-point number with the number
of digits specified by d to the right of the decimal
point.

E-Output. Output consists of a minus sign or blank
(if positive), the digit 0, a decimal point, the most
significant d digits of the number to be output,
followed by the letter E and a two-digit-plus-sign
decimal exponent. The leading sign position is re-
placed by a dollar sign ($) if positive or an equals

BX32

sign (=) if negative to indicate that the output
must be truncated because the w field specification
is too small.

OUTPUT INTERNAL CHARACTERS
FORMAT NUMBER OUTPUT
El4.4 +12.3456 bbbb0.1235Eb0O2
E13.4 —0.0012321 bb—0.1232E—02
El12.4 —0.176 b—0.1760EbOO
E11.4 +123456. b0.1235Eb0O6
E10.4 —123456. =0.1235EbO
E9.4 +123456. $0.1235Eb

E8.4 —123456. =0.1235E

E7.4 +123456. $0.1235

E6.4 —123456. =0.123

E5.4 +123456. $0.12

E4.4 —123456. =0.1

E3.4 +123456. $0

E2.4 —123456. =0

El.4 +123456. $

E-Input. See the discussion of D-input in the para-
graph entitled “D-Type Conversion.”

F-Type ConvERsiON (Basic FIELD SPECIFICATION
Fw.d or nFw.d)

The number of characters specified by w is con-
verted as a floating-point mixed number, with the
number of digits specified by d to the right of the
decimal point.

F-Output. Output consists of a minus sign or blank
(if positive), followed by the integer portion of
the number, a decimal point, and d digits of the
fractional portion of the number. The sign is re-
placed by a dollar sign ($) if positive or an equals
character (=) if negative to indicate that w char-
acters are not sufficient to hold the sign, the integer
digits, the decimal point, and d fractional digits.

OUTPUT INTERNAL CHARACTERS
FORMAT NUMBER OUTPUT
F6.3 +0.00123 50.001
F6.3 +0.12468 b0.125
F6.3 —0.12468 —0.125
F6.3 +1.23456 b1.235
F6.3 —6.00000 —6.000
F6.3 +12.3456 $12.34
F6.3 —123.456 =123.4
F6.0 +123.456 bb123.
F6.0 +0 bbbboO.

F-Input. See the discussion of D-input in the para-
graph entitled “D-Type Conversion.”

5-5

G-TyPeE CoNVERSION (Basic FIELD SPECIFICATION
Gw.d or nGw.d)

The external field occupies w positions with d sig-
nificant digits. The value of the list item appears,
or is to appear, internally as a real number.

G-Output. The form of the output depends on the
magnitude of the internal floating-point number.
Comparison is made between the exponent (e) of
the internal value and the number of significant
digits specified (d) by the format descriptor. If e
is greater than d, an E-type conversion is used. If e
is less than or equal to d, an F-type conversion is
used, but modified by the following formula:
F(w-4). (d-e), 4X. (Four blanks, as specified by the
4X, are always appended to the value.) If the value
to be represented is less than '1], the E-type con-
version is always used.

The sign position is minus if negative or blank if
positive. If w or d is such that the number could
not be converted properly, the sign position con-
tains a dollar sign ($) if positive or an equal sign
(=) if negative to provide an indication.

Following are some correctly formatted output
values which show how the conversion formulas
are used to determine the output presentation.

OUTPUT INTERNAL CHARACTERS

FORMAT NUMBER OUTPUT
G14.6 112345123 x 100 bb0.123451bbbb
G14.6 .12345123 x 104 bbb1234.51bbbb
G14.6 .12345123 x 10# bb0.123451E+08
G14.6 .12345123 x 1010 bb0.123451E+10

G-Input. See the discussion of D-Input in the
following paragraph.

D-TyrPe CoNVERSION (Basic FIELD SPECIFICATION
Dw.d or nDw.d)

The external field occupies w character positions,
the fractional part of which consists of d digits.
The internal format is DOUBLE-PRECISION
floating-point format (three words).

D-Output. The external output format is the same
as E-output format except the letter E is replaced
by the letter D.

OUTPUT INTERNAL CHARACTERS

FORMAT NUMBER OUTPUT
D15.8 +12.34567890 b0.12345679Db02
D15.8 —0.0012321 —0.12321000D—02
D15.4 —9.176 bbbbb—.9176Db01
D11.4 +123456, b0.1235Db06

BX32

D-Input. The external format of numbers input by
the E, F, G or D input can be relatively loose.
This format is identical for any of the inputs and
is as follows:

Leading spaces (leading spaces are ignored)

2. A + or — sign (An unsigned input is assumed
positive.)

3. A string of digits
A decimal point

A second string of digits (All non-leading
spaces are considered to be zeros.)

6. The character D or E
7. A + or — sign

8. A decimal exponent

Each item in the list above is optional although it
is obvious that if format 3 and 5 (above) are
present, 4 is required; and that if format 8 is
present, 6 or 7 (or both) is required.

Input data can be any number of digits in length,
but must fall within the range of 0 to =107 (0 to
+10** in the DDP-116, -516). Double-precision
input retains 14 digits of significance (12 digits for
the DDP-116, -516), and single precision input re-
tains 7 digits of significance (same for the DDP-
116, -516).

INPUT CHARACTERS INTERNAL

FORMAT INPUT NUMBER
D12.4 bbbbbbbbbbbb +0.0
D12.4 bbbbbbbbbbb3 +0.0003
D12.4 bbbbbbbbbb3. +3.0
D12.4 1.0000000000 +1.0
D12.4 bbbbbb7bbbbb +70.0
D12.4 bbbb2b3bb.bb +20300.0
D12.4 bbbbb1.234E3 +1234.0
D12.4 bbbb1.234D3b +1.234*10%
D12.4 —12345678E—3 —1.2345678
D12.4 +123.40000—2 +1.234
E12.4 —0.1234567+4 —1234.0
E12.4 bbbbbb123456 +12.3456
F12.3 —bbbbb123456 —123.456
F12.2 bbbbbb123456 +1234.56
G12.1 bbbbb—123456 —12345.6
G12.0 bbbbb-+123456 +123456.0

Note in the above examples, if no decimal point is
given, an implied decimal point placed to the left
of the first d places from the right is assumed. If
a decimal point is included, the d specification is
ignored.

Wherever the letter D appears in the examples in
either the input format or characters input column,

5-6

it may be replaced with the letter E, F, or G with
the same result. All external numbers are con-
verted to DOUBLE-PRECISION floating-point
internal format, but are then truncated to SINGLE-
PRECISION floating point format if required. In
other words, a double-precision value can be input
by either the E, F, G or D format descriptor, as
can a single-precision value.

An error flag is set if any format errors, range
errors, or unrecognized characters are input within
the field processed during input. This flag may be
checked and reset by the use of the OVERFL
function. The result of such an input is undefined.

P ScaLe Facror (Basic FIELD SPECIFICATION
nP or —nP)

A scale factor is sometimes used preceding one of
the control characters — D, E, F, or G — to effect a
multiplication by some power of ten. When used,
it is of the form

nPrKw.d or —nPrKw.d

where n determines the power of ten to be used,
and r is the repetition number. Initially an implied
scale factor of zero is assumed. When a P descrip-
tor is processed, the scale factor specified (n) re-
mains active for all format descriptors that follow
until another P descriptor is processed. The value
n must be present and is any unsigned integer (if
positive), a minus sign followed by an integer
(if negative), or zero. The n parameter must pre-
cede the letter P.

The effect of the current scale factor is different
on input than on output.
Scale Factor Effect on Output

1. For E and D output, the fractional part is mul-
tiplied by 10" and the exponent is reduced by n.

OUTPUT INTERNAL SCALE CHARACTERS

FORMAT NUMBER FACTOR OUTPUT
E12.4 +123456. —5 bb0.0000Eb11
E12.4 —123456. —4 b—0.0000Eb10
E12.4 +123456. —3 bb0.0001EbO9
£12.4 —123456. —2 b—0.0012Eb08
E12.4 +123456. —1 bb0.0123EbO7
E12.4 —123456. 0 b—0.1235Eb06
E12.4 +123456. 1 bbbl.235EbOS5
£12.4 —123456. 2 bb—12.35Eb04
E12.4 +123456. 3 bbbl23.5EbO3
E12.4 —123456. 4 bb—1235.Eb02
E12.4 +123456. 5 bbbl1235.Eb02
E12.4 —123456. 6 bb—1235.Eb02
D12.4 +123456. —1 bb0.0123Db07
D12.4 —123456. 0 b—0.1235Db06

BX32

OUTPUT INTERNAL SCALE CHARACTERS

FORMAT NUMBER FACTOR OUTPUT
D12.4 +123456. 1 bbl.2346Db05
D12.4 —123456. 2 b—12.346Db04
D12.4 +123456. 3 bbl23.46Db03
D12.4 —123456. 4 b—1234.6Db02
D12.4 +123456. 5 bbl2345.Db01
D12.4 —123456. 6 b—12345.Db01

2. For F output, the internal number is multiplied

by 10" before output conversion.

OUTPUT INTERNAL SCALE CHARACTERS

FORMAT NUMBER FACTOR OUTPUT
F8.2 —123.456 —5 bbb—0.00
F8.2 +123.456 —4 bbbb0.01
F8.2 —123.456 -3 bbb—0.12
F8.2 +123.456 —2 bbbb1.23
F8.2 —123.456 -1 bb—12.35
F8.2 +123.456 0 bb123.45
F8.2 —123.456 1 —1234.56
F8.2 +123.456 2 $12345.6
F8.2 —123.456 4 =1234560
F8.2 +123.456 6 $1234560

3. For Gw.d output, the effect of the scale factor
is suspended if the number is in the range of 0.1
< 10% For values outside this range, the scale
factor has the same effect as with E output.

OUTPUT INTERNAL SCALE CHARACTERS

FORMAT NUMBER FACTOR OUTPUT
Gl12.4 +0.012345 2 bbb12.35E—03
Gi12.4 —0.123456 2 b—0.1235bbbb
G12.4 +1.234567 2 bbb1.235bbbb
G12.4 —1234.56 2 bb—1235.bbbb
Gl12.4 +12345.6 2 bbb12.35Eb03
G12.4 —123456.0 2 bb—12.35Eb04

4. For I, A, X or H format descriptors, the scale

factor has no effect.

Scale Factor Effect On Input

1. For E, F, G, or D format descriptors, the in-

INPUT SCALL CHARACTERS INTERNAL
FORMAT FACTOR INPUT NUMBER
El2.4 -3 bbbbbb123456 +12345.6
El12.4 -2 —bbbbb123456 —1234.56
E12.4 -1 bbbbb+123456 +123.456
El2.4 0 bbbbb—123456 —12.3456
El12.4 1 bbbbbb123456 +1.23456
E12.4 2 bbb—bb123456 —0.123456
E12.4 3 bbbbbb123456 +0.0123456
El12.4 -3 bbbbbb1234.5 +1234500.0
E12.4 -2 bb1234.5E401 +12345.0
El12.4 —1 b0.63217E—02 +0.0063217
E12.4 0 bbb—6.7809D2 —678.09

5-7

ternal value is equal to the external number divided
by 10" (n=current scale factor value). The effect
of the scale factor is suspended, however, if the
external number contains an E or D scale factor.

2. For I, A, X or H format descriptors, the scale
factor has no effect.

ComPLEX NUMBER CONVERSION

Complex numbers are made up of two single pre-
cision real numbers. Each of the numbers are de-
scribed using E, F, or G format descriptors.

et S

, COMPLEX Cl,C2 o ¢
| T V‘ T T — T T T
WRITE(1,20) 11,C1,12,C2 Q
[T~ T T T T T
_ F¢RMAT(I8,2E15.6,I8,610,4,515.6
: T T T T T
[~ T T . T T T

L-TyprE CoNvVERSION (Basic FIELD
SPECIFICATION Lw or nLw)

The external format of a logical quantity is T or
F; and the internal format is +1 (for T) or 0
(for F).

L-Output. If the internal value is 0, an F will be
output; otherwise, a T will be output. w-1 leading
blanks precede the letter.

OUTPUT INTERNAL CHARACTERS
FORMAT DATA OUTPUT

L1 0 F

L1 1 T

L4 —2 bbbT

L5 3 bbbbT

L6 0 bbbbbF

LO 1 (NO OUTPUT)

L-Input. Leading blanks are ignored. If the first
non-blank character is a T, the internal data is set
to 1. If the first non-blank character is an F, the
internal data is set to 0. If the first non-blank
character is not T or F, set the internal data to
0 and set the error flag to ON (flag sensed by
OVERFL function subroutine). The remainder of
the external field is scanned and ignored.

BX32

OUTPUT DDP-24/124 /224 FORTRAN DDP-116 FORTRAN
FORMAT INTERNAL CHARACTERS INTERNAL CHARACTERS
DATA OUTPUT DATA OUTPUT

Al ABCD A AB A

A3 ABCD ABC AB bAB

A4 ABCD ABCD AB bbAB

A5 ABCD bABCD AB bbbAB
INPUT CHARACTERS INTERNAL H-Output. The n-characters following the letter H
FORMAT INPUT DATA (including blanks) are cutput.

'L'; FT +0 FORMAT CHARACTERS

L3 EFb +1 DESCRIPTOR OUTPUT

L4 TRUE Icl) 3HXYZ XYZ

L8 bbbFALSE to lléHleNOVleGS,b ;6bNOVb1965,b

L8 TRUEbbbb +1 1Hb b

L8 bNEUTRAL +0 (error)

L8 bbb-TRUE +0 (error) This field specification provides the basic means

A-TypE CoNvVvERSION (Basic FIELD
SPECIFICATION Aw or nAw)

Four characters of alphanumeric information stored
in a computer word make up an alphanumeric item
(two characters maximum on the DDP-116, -516
FORTRAN). Any character in this format is ac-
cepted as an allowable alphanumeric character.

A-Output. For w greater than 4, w-4 leading blanks
are output followed by the four characters of the
alphanumeric argument. For w less than 4, the first
(left-most) w-characters of the alphanumeric argu-
ment are output. This discussion can be made ap-
plicable to the DDP-116, -516 by substituting the
number 2 in all references to number 4.

A-Tnput. For w greater than 4, the last four
characters are stored internally. For w less than
4, w-4 trailing blanks are added. This discussion
can be made applicable to the DDP-116, -516 by
substituting the number 2 in all references to the
number 4.

H-FieLp DEscripTor (Basic FieELp
SPECIFICATION nHaiazas a. or Hai)

The nH descriptor causes Hollerith (alphanumeric)
information to be read into or written from the
n characters (including blanks) that follow the
letter H in the format specification list (characters
a18:83..... an). The value of n must be greater
than 0. If no Yalue of n precedes the letter H, a
value of n is assumed to be 1.

5-8

for supplying headings on output reports. It is,
however, also used for vertical line spacing when
outputting on the line printer or typewriter. The
first character output determines the line spacing
as follows:

CHARACTER VERTICAL SPACING
Blank One line
0 Two lines
1 Skip to first line of next page
+ No advance (line printer only)
Others One line (and output first character)

When outputting on the line printer or typewriter,
it is common practice to begin each FORMAT
statement with a Hollerith specification that will
give the proper vertical spacing. Otherwise, a non-
blank character may be inadvertently inserted into
the control position with undesirable results.

H-Input. n characters are read from the external
device and replace the n characters following the
letter H. This function is useful for modifying a
part of a heading which will be output later (such
as date or run number).

ORIGINAL MODIFIED
_ FORMAT cuﬁ::f;ans FORMAT
DESCRIPTOR DESCRIPTOR
3HXYZ ABC 3HABC
11H16bNOVb1965 22bDECb1965 11H22bDECbH1965
8HbSMITHbb bbJONESb 8HbbJONESD
BX32

X-FieLp DEsScrIPTOR (Basic
SPECIFICATION nX or X)

The value of n is an integer number greater than
0. If the letter X is not preceded by an integer,
a value of 1 is assumed for n.

X-Output. n spaces are output.

FORMAT CHARACTERS
DESCRIPTOR OUTPUT
X b
1X b
3x bbb
10X bbbbbbbbbb

X-Input. The next n-characters are read but
ignored. This descriptor is useful in skipping over
fields that do not need processing on the input
record.

/RECORD DESCRIPTOR

Everywhere a comma is used in a format list, the
comma can be replaced by a slash character or a
series of slashes to indicate record terminations.

On input, a sequence of n-slashes (n > 1) causes:

1. The remainder of the present record to be
ignored.

2. The next n-1 records to be skipped over (n
records if slashes occur at end of format state-
ment).

3. The next record to be read if additional data
is required to satisfy list items in the READ
statement.

On output, a sequence of n-slashes causes:

1. The remainder of the present record to be
padded with blanks and outputs the record.

2. The next n-1 blank records to be output (n
records if slashes occur at end of format state-
ment).

3. The next record to be written if additional data
is required to satisfy list items in the WRITE
statement.

NO. OF RECORDS

FORMAT PROCESSED
(13/4E12.5) 2
(/F10.2,D20.12//16/6E12.6) 5
(6E12.6/10X,4110,10X,F20.10///) 5

5-9

REPEATING OF FORMAT DESCRIPTORS

Repetition of format descriptors is accomplished
at four levels.

Repetition of a Single Descriptor. The integer pre-
ceding the H or X descriptors has special meaning,
and the H and X descriptors cannot be repeated
individually. For all other descriptors, the integer
preceding their letter indicates the number of times
the descriptor is to be repeated before going on to
the next format descriptor in the format statement
list. For example:

FORMAT (4E10.3,2F12.4,614)
is equivalent to
FORMAT (E10.3,E10.3,E10.3,E10.3,F12.4,
F12.4,14,14,14,14,14,14)

Repetition of a Group of Descriptors. A group of
descriptors may be enclosed in parentheses and the
opening parentheses preceded by an integer con-
stant greater than 0. This will cause the group
of descriptors to be repeated the integer number of
times before continuing to the next descriptor
within the format statement list. An opening pa-
renthesis not preceded by an integer has an implied
repeat count of 1, meaning it is not repeated. For
example:

FORMAT (16,2(E10.2,4X,3A3),I5)
is equivalent to
FORMAT (16,E10.2,4X,A3,A3,A3,E10.2,
4X ,A3,A3,A3,15)

Repetition of Descriptor Groups. The groups de-
scribed in the preceding subparagraph may them-
selves be enclosed in parentheses preceded by an
integer repeat count. Parentheses structure with a
format descriptor list may not exceed a depth of
two (not counting the parentheses around the en-
tire format descriptor list). For example:

FORMAT (12,2(12,3(D10.4,2X)),I2)
is equivalent to
FORMAT (12,12,D10.4,2X,D10.4,2X,
D10.4,2X,12,D10.4,2X,D10.4,2X,D10.4,2X,12)

Repetition After Format List Exhausted. If, after
using all the format descriptors in the format
statement list, there still remains data to be input

BX32

or output, the format list is rescanned starting at
the opening parenthesis that matches the last
closing parenthesis in the format list. The paren-
theses around the complete format list are not
considered unless there are no other parentheses
in the list. Any repeat count preceding the start
re-scan open parenthesis is included in the re-scan.
The following examples illustrate these rules:

FORMAT (6E12.4)

FORMAT (I6 / (F10.3,4E15.6))
FORMAT (I6 / 3(415,4X),I5)
FORMAT (16,2(110,4(13,2X)))

&5 >R

On output, every time the indicated repetition is
made, the current record is padded with blanks
and output. A new record is then started. On input,
the indicated repetition causes the rest of the
current record to be skipped, and the next record
to be read.

In example a, the first 72 characters of each record
are processed. In example b, the first 6 characters
of the first record are processed, and the first 70
characters of each succeeding record are processed.
In example ¢, the first 6 characters of the first
record are processed, and the first 77 characters of
each succeeding record are processed. Finally, in
example d, the first 66 characters of the first record
are processed, and the first 60 characters of each
succeeding record are processed.

Example of Formatted Output. In the following
example, the effects of various size data lists,
repetition of format descriptors. multiple record
definitions, and line advance control is shown.

-
5
=
s

|
5
i
7

T 1 T T T T

L = 8

T T T T
WRITE(1,106)1,J, K,L,0,J,K,L,1,1,K

T T

1

2 wm'E(l 106)1 J, K,L 1) ‘
106 F¢RMAT(/4H ABC/2(3H XY,14,2(12),3(13)/))]

3 WRITEQ1, 106)1,J, K, L, 1, J, K, L, 0,0, K, L

4 WRIT[E(I,IOé)l,J,lé,LLI,J:,K,L,5,J,K,i.,l

s| IWRITE(1,108)1,0,K, L, 1,0, K, L, :]

d ' ! LKL, K, LT, ’
: . : v :

5-10

The following output on a typewriter or line
printer would result.

ABC

XY 567 8 5 6 Result of statement 1
XY 785 6 7

ABC

XY 567 8 5 6 Result of statement 2
XY

ABC

XY 567 8 5 6 Result of statement 3
XY 785 6 7 8

ABC

XY 567 8 5 6

XY 785 6 7 8 Result of statement 4
XY 5 S

ABC

XY 567 8 5 6

XY 785 6 7 8 Result of statement 5
XY 567 8 5 6‘

Example of Formatted Input. The following ex-
ample shows the effects of repeating a group of
format descriptors when the FORMAT statement
does not describe all the arguments in the input
statement list. Consider the following FORTRAN
statements:

"11 | [Reap(3,101) 11,J1,K1,L1 Y
101 | [F@RMAT(413) ' ' ' C
12 | [READ(3,102) i2,J2,K2,L2 Y
102 |=¢R~'\Ar(2|:i) ' ' ' '
13 | [READ(3,103) 13,J3,K3,L3 '
103 | [FORMAT(11,12,13,14,15, 16) }
14 | READ(3,104) 14,J4,K4,14 .
104 qul\n(snf\ac x'4|2) '()
‘ J ' T ———\

If the input data to be read by the preceding
statements appeared in the fo''ow:ng form:

1234567890123456789012345678
1234567890123456789012345678
1234567890123456789012345678
1234567890123456789012345678
1234567890123456789012345678

then:

1. Statement 11 reads one card and defines I1 =
123, J1 = 456, K1 = 789, and L1 = 012.

BX32

2. Statement 12 reads two cards. From the first
card, it sets 12=123 and J2=456. From the second
card, it sets K2=123 and L2=456.

3. Statement 13 reads one card, setting 13=1,
J3=23, K3=456, and L3=7890. Format descrip-
tors I5 and I6 are ignored.

4. Statement 14 reads one card, replaces the Hol-
lerith characters ABC in the format statement
to the Hollerith characters 123, skips a charac-
ter of the input data, and sets 14=56, J4="178,
K4=90, and L4=12.

FORMAT STATEMENTS ENTERED

AT RUN TIME

If the format of BCD data is not known at compile
time, it is possible to include the formating data
along with the input data.

A FORMAT statement, processed at compile time,
is stored in BCD format in sequential memory
locations. The following chart shows the data gen-
erated in memory by the format statement

10 FORMAT (1HO, 3E10.5, 4X, 4113/).

DDP-24/124/224 DDP-116, -516
(4 char./word) (2 char./word)

(1 H (0] (1
, 3 E 1 H (o]
0 . 5 , 3
4 X , 4 1
I 1 3 /
)

~“WwW=- bOm-
N AX. .

A READ or WRITE statement that refers to an
array name instead of a FORMAT statement, is
indicating that the format information is to be read
into memory to some other input statement (as an
alphanumeric array) prior to execution of the
READ or WRITE statement. The following exam-
ples illustrate the manner in which the list might
be entered at run time.

Array FLIST was dimensioned for 20 words since
4 characters are packed per word and there are 80
characters per card. (The DDP-116, -516 FORT-
RAN packs 2 characters per word; therefore,
FLIST is dimensioned for 40 words.) A smaller
dimension may be used if the card is not full, or
a larger dimension may be used if more than
one card is needed to define the format descrip-

tors. FORMAT statement 100 would not have to
be adjusted.

M

' DIMENSIBN FLIST(20), DATA(IOO)\
T T T
INTEGER FLIST "/
READ(3,100) FLIST (S
100 | FORMAT(20A4) B T
' READ(3, FLIST) DATA T

e Ja—

DDP-24/124/224 FORTRAN

' DIMENSI¢N FLIST(40), DATA(100)' Y
’ INTEGER _ FLIST ' ¢
READ(3,100) FLISY ' ' Y
100 | FERMAT(20A4) ' ' S
READ(3,FLIST) DATA ' i,
T : T T T T T T \

.
T MRS T T T T T

DDP-116, -516 FORTRAN

The following examples have their format lists de-
fined at run time and also refer to the device
number symbolically, allowing the device to be
determined at run time. This method of defining
the device has one drawback in that the subroutine
F$RN is unaware in advance which device drivers
are required. Therefore the subroutine must load
all drivers when the program is loaded.

— ‘DlMElNSl¢N F¢RMAT(120), TIABLE(;O*O‘\
' INTEGER F@RMAT /
' READ(3,100) N, F@RMAT \

100 [F@RMATO/(2084) " ")
, READ(N FBRMAT) TABLE ')

DDP-24/124/224 FORTRAN

P AAA‘A_
s P g o

DIMENSI®N F¢RMAT(40), TABLE(soo)
T T
INTE GER FORMAT

T T T T

: IJAD(3 100) N, F¢RM47
100 ¢RMAT(I/(40A2))

€

T T 7
READ(N F¢RMAT) TABLE \

)

—

4

T ™ T T T

DDP-116, -516 FORTRAN

BX32

SECTION VI
SUBPROGRAMS

Often it is found that a sequence of coding or a
sequence of statements used to evaluate a function
is required several times within a program, the
only difference in the evaluation being the argu-
ments for that function. In such instances, it is
desirable to express the function once rather than
repeat the coding every time the function is used.
This can be done by preparing subprograms which
perform commonly recurring operations and keep-
ing them on a library tape for progr.m use at
execution time. Another method of eliminating the
repetition of coding is to include in the FORTRAN
compiler certain basic subprograms which will be
compiled as part of the object program.

Sometimes certain subunits of the program are also
repeated frequently, and it may be desirable to
Tite each of these once and call for them many
.mes. In this case, there is a choice of several types
of subprograms.

In addition to eliminating repetitive code, another
advantage in constructing programs from subpro-
grams is that it may be possible to use the same
“building blocks” in other programs or in modifica-
tions to the original program.

In FORTRAN there are five types of subprograms
which are:

Library functions
Statement functions
FORTRAN functions
Subroutine subprograms
BLOCK DATA subprogram

Of these, the first three result in a single value and
are designated functions; the fourth may result
in more than one value and is designated a sub-
routine; and the fifth is used to initialize data
into COMMON areas and is also designated a
subroutine.

For each type of subprogram, there are standard
ractices which must be followed in reference to
alling, naming, and defining (generating) the sub-

program.

All functions are incorporated into the object pro-
gram by referencing in a source program the name
of the function in the expression part (right-hand
side) of an arithmetic formula. The following are
examples of arithmetic expressions including func-
tion names:

Y = A - SIN (B-C)
C = MINO (M,L)

The names of library, rtatement, and FORTRAN
functions are used as shown in the example. The
appearance of a function name in the arithmetic
expression serves to “call” the function. The value
of the function is then computed, using the argu-
ments which are supplied in the parentheses follow-
ing the function name. Only one value is produced
by each of the three functions.

FUNCTION SUBPROGRAMS

Function names consist of one to six alphabetic
and numeric characters (not special characters),
the first of which must be alphabetic. The first
character must be I, J, K, L, M, or N (or defined
as INTEGER) if the value of the function is to be
fixed point. Alternately, a specification statement
may be used to type a function value as REAL,
INTEGER, DOUBLE PRECISION, COMPLEX,
or LOGICAL. The name of the function is followed
by parentheses enclosing the arguments (which
may be expressions) separated by commas. Some
examples of function usage are:

SIN (A + B)
SOME (X, Y)
SQRT (SIN (A))
ITAN (3.*X)

LIBRARY FUNCTIONS

Library functions are external prewritten functions
of a special type and are usually written in assem-
bly language. Initially, they were designed to be
used on the library tape—hence the name. These
functions are closed subroutines; that is, instead of

BX32

appearing in the object program each time they are
referenced in the source program, they appear only
once.

Table 6—1 lists the library functions in the
FORTRAN IV library. A more detailed descrip-
tion of the functions is given in the individual
subroutine write-ups contained in the library

documentation.
TABLE 6—1.
FORTRAN IV LIBRARY FUNCTIONS

FUNCTION _ ARGUMENT __ RESULT __ FUNCTION
NAME MODE* MODE DEFINITION
SIN REAL REAL
DSIN __ DOUBLE DOUBLE ?r';jfaé:;
CSIN __ COMPLEX COMPLEX
cos REAL REAL
DCOS DOUBLE DOUBLE ?gi:;‘ni)(’)
CCOS COMPLEX COMPLEX
ATAN _ REAL REAL ARCTANGENT
DATAN DOUBLE DOUBLE (a)
ATANZ _ REAL (2) REAL ARCTANGENT
DATANZ DOUBLE (2) DOUBLE _ (al/a2)
TANH REAL REAL ?Xﬁggﬁ‘;’ﬂg
SQRT _ REAL REAL
DSQRT DOUBLE DOUBLE ya
CSQRT COMPLEX COMPLEX
EXP REAL REAL
DEXP _ DOUBLE DOUBLE e
CEXP _ COMPLEX COMPLEX
ALOG _ REAL REAL
DLOG _ DOUBLE DOUBLE _ L0G,(a)
CLOG _ COMPLEX COMPLEX
ALOGIO REAL REAL L0G. (a)
DLOGI0 DOUBLE DOUBLE 10
ABS REAL REAL
IABS _ INTEGER INTEGER |al
DABS DOUBLE DOUBLE
CABS COMPLEX REAL vaZ+ a2
AMOD __ REAL (2) REAL
MOD _ INTEGER (2) INTEGER _a, (mod a,)
DMOD _ DOUBLE (2) DOUBLE
AINT __ REAL REAL
INT REAL INTEGER T'”’.‘°ta"e to
IDINT __ DOUBLE INTEGER 2" 'meser
AMAXO INTEGER (>1) REAL
AMAX1 _REAL (>1) REAL Choose
MAXO _ INTEGER (>1) INTEGER largest
MAXL REAL (>1) INTEGER _ argument
DMAX1I DOUBLE (>1) DOUBLE
AMINO _ INTEGER (>1) REAL
AMINI _REAL (>1) REAL Choose
MINO _ INTEGER (>1) INTEGER smallest
MINI __ REAL (>1) INTEGER _ argument
DMIN _ DOUBLE (>1) DOUBLE

FUNCTION ARGUMENT RESULT FUNCTION
NAME MODE e MODE DEFINITION
FLOAT INTEGER REAL
IFIX REAL INTEGER
SNGL DOUBLE REAL Convert
REAL COMPLEX REAL argument
AIMAG _ COMPLEX REAL mode
DBLE REAL DOUBLE
CMPLX REAL (2) COMPLEX
SIGN REAL (2) REAL
ISIGN INTEGER (2) INTEGER Transfer sign
DSIGN DOUBLE (2) DOUBLE
DIM REAL (2) REAL Positive
IDIM INTEGER (2) INTEGER difference
CONJG COMPLEX COMPLEX ngé?t(e

*The number in parenthesis specifies the number of

arguments.

Notice, as in the example below, that a function
may have more than one argument; as in general
mathematical usage, multiple arguments are sepa-
rated by commas.
WMM
A=SQRT(X)+AMAXI(B1,B2,B3)/SIN(X+0.5)
B 0+SQRT(A®*2 + ALDG(CBS(A*3.14)+0.5))

o .

STATEMENT FUNCTIONS

Certain functions such as square root, sine, and log
can be written as arithmetic expressions. These
functions are restricted to those available in the
library. It is possible, however, to write expressions
involving functions peculiar to the problem at hand.
Each desired function is defined by a statement
function. For example, if the function

g(x) =13 4 y4.1x 4 x?

is to be used several times in a program, a state-
ment function defining G (X) might be written:

P

T

T

T T T i
GXX(X) = 1.3+SQRT(4.1*X + x*+2) C

Jp—

e

An arithmetic formula later employing GXX in the
program might be:

.

S

T T T T T T
Ly = 10.3* GXX(ALPHA*BETA)+14.7)

' ——

—

BX32

this use of GXX, before the value of the func-
«on is computed, the quantity ALPHA*BETA is
substituted for X in the expression defining GXX.

In general, statement functions must conform to
the following rules:

1. All statement functions must be the first execu-
table statements in that program.

2. The function name must have one to six alpha-
betic or numeric characters, the first of which must
be alphabetic.

3. The name of the function is followed by pa-
rentheses enclosing the argument or arguments.
Multiple arguments are separated by commas.
Each argument must be a single nonsubscripted
variable.

4. Any argument that is a real variable in the
definition of a function must be a real quantity in
any subsequent use of the function. A similar rule
applies to arguments of other modes.

5. The value of a function is a real quantity un-
less the name of the function begins with I, J, K,
L, M or N; in which case the value is an INTEGER
quantity, or the function may be specified as
*EAL, INTEGER, DOUBLE PRECISION, COM-

LEX, or LOGICAL in a specification statement.

6. The right side of a function statement can be
any expression that meets the requirements speci-
fied for expressions, except that dummy variables
cannot be subscripted. It may involve functions
freely, including library functions, previously de-
fined statement functions, and FORTRAN func-
tions.

7. No function can be used as an argument of
itself.

8. Any number of variables appearing in the ex-
pression on the right side of a function can be
stated on the left side as arguments of the function.
Since the arguments are only dummy variables,
their names are unimportant (except as indicating
mode) and may be the same as names appearing
elsewhere in the program.

9. Variables on the right side of a function that
are not stated as arguments are treated as param-
eters. The naming of parameters must follow the
normal rules of uniqueness.

Typical statement functions are:

6-3

ppre—
g

o

1 S)efr oo{ u# lo} L‘+; £§
1] FIRST(X) = X**2 + A#*#2
2| [SEC@ND(R,S) = SQRT(FIRST(R/(R+S))

\

L~

T
T M T T T T

T T . T T T T

/'L/w

_15/@(1) = FIRST(Y * B(1))
27| P = SEC@ND(1.7*DELTA,ALPHA)*PI)

v

.
T T T T T

t

FORTRAN FUNCTIONS

There are situations in which it is desired to use a
particular function in an arithmetic statement, but
this function cannot be defined by a single arith-
metic statement. However, if this mathematical
relationship has a single result, the FORTRAN
function subprogram may be used. Compiling a
FORTRAN function produces a function subpro-
gram in the same form required for a library func-
tion. Except for the method generated, FORTRAN
and LIBRARY functions are identical in use and
format. :

FORTRAN functions are closed subprograms not
stored within the range of the main program. The
main program transfers control to the subprogram
as required. After the subprogram has completed
the required calculation, control reverts to the
main program. Although the subprogram may be
used several times in the total structure, it appears
in storage only once. A FORTRAN function can
be compiled independently of the main program
which means that the function can be used with
different main programs. One of the primary dif-
ferences between a FORTRAN function and a
subroutine subprogram is that a function returns
with a single value while a subroutine may return
with multiple values.

The general form in which a FORTRAN function
is written is:

FUNCTION NAME (Argument;, Arguments, . ..)
Arithmetic statements to evaluate the function
NAME = Final calculation

RETURN

The FUNCTION statement must be the first state-
ment of the subprogram and defines it as such. The
FORTRAN function may consist of many state-

BX32

k

T

'FUNcnsz)N SUM(A, B) '
DIMENSIBN _ A(500), 8(500)
SUM = A(1)+B(1)

Pg 5 = 2 500
SUM + A(J) +

SUM = BU)

T T I

RETURN

[T T T T

END
T T T
80 END @F J@B

7
\
)
C
3

ments of any type except the statements FUNC-
TION, SUBROUTINE, or BLOCK DATA.

The name of the FORTRAN function consists of
one to six alphabetic or numeric characters, the
first of which must be alphabetic. The first charac-
ter must be I, J, K, L, M or N if the value of the
function is to be INTEGER; otherwise, the func-
tion value is REAL. The mode of the function can
also be set by preceding the word FUNCTION
with the word INTEGER, REAL, DOUBLE PRE-
CISION, COMPLEX or LOGICAL; in which case,
the first letter mode determination convention is
overruled. The function name must not be the same
as that of any variable appearing elsewhere in the
FORTRAN function or in any program which uses
the function.

There must be at least one argument; and there
may be as many as required in the subprogram.
The arguments must be non-subscripted variable
names. If any of the arguments are arrays, a
DIMENSION statement involving these argu-
ments is necessary. The arguments may be any
variable names occurring in executable statements
in the subprogram. Actually, these are dummy
variables and the calculation is set up in terms of
these dummy variables. A dummy variable in a
FORTRAN function must not appear on the left
side of an arithmetic statement except as a sub-
script. The reason is that functions may not change
the value of the arguments supplied to the sub-
program by the main program. Similarly, a dummy
variable must not appear in an ASSIGN statement.

The arithmetic statements to evaluate the function
are written in the normal fashion in terms of argu-
ments and constants. The subprograms must
evaluate a single-valued function (one which has
one and only one value for a given set of argu-
ments). The name of the function must be used
as a variable and evaluated by an arithmetic state-
ment; or stated another way, the name of the func-
tion must appear on the left side of an arithmetic

64

statement. It i1s the value of the function name,
used as a variable, that is returned as the function
value.

A RETURN statement indicates the conclusion of
the subprogram, and takes the form:

RETURN

This statement terminates the subprogram and
returns control to the main program. A RETURN
statement must be the last statement to which
control passes in a FORTRAN function; that is, it
must be the last statement logically, but it is not
necessary that it be last physically. For example:

sls L L1 to L1 LT

C¢MPLEX FUNCTI CARTMTQR
x =R os C¢S(THETA/57 3)

Y = R+ SIN(THETA/57.3)
CARTI = CMPLX(X v) |
RETukN

/
f N

— R G- E N D - R DR —
s0 1] EnND gF Jgs o f)
. ' A\

Using a FORTRAN Function Subprogram.

Statement. A subprogram introduced by a FUNC-
TION statement is called for in the main program
by an arithmetic formula involving the function
name. For example, as in Figure 6--1, the subpro-
gram introduced by FUNCTION AVRG (ALIST,
N) could be called for in the main program by the
arithmetic formula:

TEXT = AVRG (SET, 200)

THETA

Arguments. The list of arguments in the main pro-
gram may contain any legitimate FORTRAN con-
stant, variable (subscripted or non-subscripted),
expression, subfunction name, or name of any array
provided the corresponding dummy variable in the
subprogram has the same mode. A Hollerith argu-
ment cannot be used. There must be agreement in
number, order and mode between the argument list
following the function name in the main program
and the argument list (dummy variables) in the
FUNCTION statement. The subprogram must
contain the same DIMENSION statements as the
main program. Subfunction names included in ar-
gument lists must also appear in an EXTERNAL
statement. (See Section IV.)

BX32

T e mw ea w w - . w v ’
DIMENSI@N _ SET(500)

' READ(Z 5)(551(1),' 1=1,200) j j T j ' ' ' " \

s F¢RMAT(6FI2 8) ' ' T)

TEXT = AVRG(SE'I’ 200) \

B WRITE(2,10) TEXT ' ' ' " L MAIN PROGRAM j " /

" 1ol [FGRMAT(20H1 AVERAGE @F SET IS E14.5) ' ' j T \

ol)

T ENDT T T T T T T T T T T T T K

T B T T T T T T T T T . - - /

1| [FUNCTIBN AVRG(ALIST,N) .] , ’ , , ' LS

DIMENSI@N ALIST(500) ‘ ' ' ‘ ‘ ' ' ‘)

, SUM = ALIST(1) ' ' ' ' ' . ‘ ' . S

D@ 10 1=2,N LS

" Jo/ [sUM = SUM + ALIST(1) ' " " U SUBPROGRAM " ' 1/

' AVRG = SUM/FLBAT(N) ' ' ' ' ' RS

' RETURN ' ' ' ') ' " T ' ' ’ \

' ENDT ! ' ' ' ' ' ' j ' ' K v (

0 ENO_gF Jp8 00 3

FIGURE 6—1

SUBROUTINE SUBPROGRAMS

Some desirable building blocks have multiple out-
puts and can be compiled as SUBROUTINE sub-
programs. Each may also have multiple inputs and
the calculation may require many statements.

The SUBROUTINE subprogram is compiled in-
dependently of the main program and is called for
by a separate statement. When it is desired to use
a SUBROUTINE subprogram the main program
contains a statement in the form:

CALL NAME (Argument:, Arguments,)

Control is transferred at this point to the specified
subroutine. When the calculations in the sub-
routine are finished, control is transferred to the
statement following the CALL in the main pro-
gram.

The general form in which a SUBROUTINE sub-
program is written is:

*SUBROUTINE NAME (Argumenti, Argument: . .)

6-5

Statements to evaluate required results
RETURN
END

The SUBROUTINE statement must be the first
statement of the subprogram; it defines it as a
subroutine.

The name of a subroutine consists of one to six
alphanumeric characters, the first of which is
alphabetic. In fact, the subrou*ne name must not
be the same as any variable (subscripted or not)
appearing elsewhere in the subprogram, or any
program which calls it.

The arguments stated in the subroutine are
dummy variables representing input and output
variables; each is either a variable name, an array
name or a subfunction name. It is allowable to have
a subroutine with no arguments. If an argument
is the name of an array, it must appear in a
DIMENSION statement following the SUB-
ROUTINE statement. The arguments in the

BX32

SUBROUTINE list usually contain one or more
dummy variables representing the result or results
to be returned to the main program.

The intermediate part of the subroutine may con-
tain any of the usual FORTRAN statements,
arithmetic, control, input-output, or specification,
except the statements FUNCTION, SUBROU-
TINE, DATA, and BLOCK DATA. The dummy
variables representing the results of the subroutine
may be used freely on the left side of arithmetic
statements. Each dummy variable representing a
result must appear at least once on the left side of
a statement so that the value will be stored for
future use.

A subroutine is terminated by a RETURN state-
ment which is the last statement (logically) to
which control passes in a subroutine. The last card
physically in each subprogram must be an END
card.

Using A Subroutine Subprogram. When it is de-
sired to use a SUBROUTINE subprogram in a
program, a CALL statement is used to transfer
control to the subroutine. The CALL statement is
of the form:

CALL NAME (Argument;, Argument., . ..)
or
CALL NAME

where NAME represents the symbolic name of a
subroutine. The subroutine must be available to
the main program at the time of execution of the
program.

The arguments may have any one of seven forms:
Constant

Hollerith constant

¥ ariable name

Subscripted variable name

Array name

Expression

S AT -

Subfunction name

A subfunction argument must be defined in the
calling program. Except for Hollerith constants,
the list of arguments in the CALL statement must
agree in number, order, and mode with the list
given in the SUBROUTINE statement. If any of

6-6

the arguments are arrays, equivalent DIMEN-
SION statements must appear in the subroutine
and main program.

A Hollerith constant in the argument list consists
of an integer number, the letter H, followed by
the integer-number of characters. The characters
are stored as an array containing four characters
per word (two characters per word in the DDP-
116, -516) with the last word left-justified if neces-
sary. The equivalent item in the subroutine’s

argument must be an array of large enough length
to hold all characters.

Assume, for example, it is desired to multiply
matrix A, N rows and M columns, by matrix B M
rows and L columns; the product matrix C has N
rows of L columns. The subroutine shown in Figure
6—2 accomplishes this operation.

A DIMENSION statement following the SUB-
ROUTINE statement specifies the maximum size
of the matrices that can be used.

BLOCK DATA SUBPROGRAM

The DATA statement can be us 1 to initialize
values of variables or array items (see Section IV)
but cannot initialize values of items in blank or
labeled COMMON areas. Blank COMMON areas
cannot be initialized, but labeled COMMON areas
can be initialized by a BLOCK DATA subprogram
in which the labeled COMMON areas are first
described by specification statements and then in-
itialized by DATA statements. This is the only
purpose a BLOCK DATA subprogram can have.

A BLOCK DATA statement takes the form:

BLOCK DATA

This statement may only appear as the first state-
ment of specification subprog- m™s that are called
BLOCK DATA subprograms, and that are used

to enter initial values into elements of labeled
COMMON blocks. This special subprogram con-
tains only type-statements, EQUIVALENCE,
DATA, DIMENSION, and COMMON statements.
If an entity of a given COMMON block is given an
initial value in such a subprogram, a complete set
of specification statements for the entire block
must be included, even though some of the ele-
ments of the block do not appear in DATA

statements. Initial \}'alpes can be entered into more
than one block in a single subprogram.

BX32

- p— pre— r—
—

— o’ S
é)r wy »o; a8 39 2 a9

a8

(111 L1]] 0y (13}
L T -!l

DATA C1,C2,C3,C4/4%0.0/, ,C/45,(1.3,3.14)/

END

T T T T T T T

1 IDIMENSI¢N X(10,15), Y(15,12), Z(10,12),LIST (2))

' READ(2,4) ((X(l,)), J=1,15),1=1, 10):, '
' X ' ((Y(l J),Jsl 12) 1=1,15) ' ' ‘ ' 1 ' /
4| [FORMAT(6EI2. 6 r ' ‘ ' ' . ' , \
" 5| cALL MATMPY(X,5,10,Y,7,3) ‘ ' ' ' ?
. D@ 13 J=1,7 ' ' . - MAIN PRO GRAM ' i \
" 13] [WRITE(4, 15)’ (2(1,d),1=1,5)) 1 o T /
15| [FORMAT(1HO 6E17.6) ' ' . . . ' ‘ \
: CALL EXIT(6HTP1732) 1 ‘ ‘ ' ' ' ' ‘ ' P,
T ST¢P T T T T T T T T T T T T \
END T T T T T T T T = T T T T T /
T T T T T T T T T T T T T K
1| |SUBR@UTINE MATMPY(A,N,M,B,L,C) ‘ i . , ,])
DIMENSI®N _ A(10,15),8(15,12),C(10,12) . ' ‘ ‘ ' ' S
' DG 5 I=1,N ’ ' ' ' ' Q
' D@ 5 J=1,L ‘ ' ' ' ' ' ' ' ' ' 1/
" 3[jet,d) = 0.0 ' ' ' ' "+ SUBROUTINE ! AN
' DB 5 K=1,M ' ' i K ' ' ' ')
sl e, d) = €O, 0+AQU,K)*B(K,) ' ' (¢
S S S MRS
T END' T T T T T T T T T T T T }
‘ SUBR¢UTINE EXIT (usn \
DlMENSlsDN LIST(2) ‘ ' ' ' 7 r ' ‘ (
K WRITE(1 5) LIST ' ' . , ‘ ‘ ‘ ‘)
5| [F@RMAT(12H END @F J@B ,A8, /) - SUBROUTINE ~ ¢
RETURN ' ' ' ' ’ \
' END | ’ ' N ' ' ' ' ' ' ' ' '),
50 | END @F J@B ' ' ') ! ' ' ' \
R : ; ! ' ' o . 'A'_k' — . — 7

FIGURE 6—2
———— ————y
' aL¢c'|< DATA ' ' ’ ' ' ' ' S
' COMMBN /CBMI/C2,C3, ARR/CG mM2/x, 2, c ' ' ' ' ' ' Q
i DIMENSI@N ARR(40) j T ' ' ' ' /
' EQUI\/ALENCE(CI ARR(I)) (C4, Aka(z)s ! j ! j j ' ' \

— 1 —T T T T T T T T
INTEGER 2 D
' COMPLEX C ' ' o ' ' ' ' ') ' ()
)

6-7

BX32

SECTION VII
FORTRAN SYSTEM DESCRIPTION

LISTINGS
SymsoLic LISTINGS

The operator may choose to have a symbolic listing
generated along with the object output tape during
compilation of a FORTRAN program. The method
of making this choice and specifying the output
device is detailed in the specific FORTRAN com-
piler operating instructions for each computer.
The listing consists of two types of lines: source
statement and object output.

Source statement lines are inserted into the listing
prior to the object coding that the source statement
generates. The line consists of the card image (or
images) that make up a source statement.

The object output line consists of a relative location

ress (octal), a mnemonic operation code, and
an address field. If the address references a vari-
able, it is output in symbolic form. If the address
references a constant, the first word of the con-
stant is output in octal form. If the address is
absolute, it is output in octal form. If the address
is relative (not symbolic), a local address is given.
Indexing and indirect indicators are also included
when applicable.

A sample of a typical symbolic listing generated by
the DDP-24/-124/-224 compiler follows. The DDP-
116/-516 compiler generates a similar format but
with different instruction mnemonics and shorter
octal constants.

7 INTER=ITER+1
0000 LDA ITER
0001 ADD=’00000001
0002 STA INTER

K=1
0003 LDA =’00000001
0004 STA K

22 BIGX=X/Y
0005 LDA X
06 LDB X

)7 JST D$22
w10 NOP Y
0011 STA BIGX

0012 STB BIGX
C---

JM1=J-1
0013 LDA J
0014 SUB="00000001
0015 STA JM1

DO 26 J=3,10
0016 LDA ="00000003
0017 STA J

6 JM1=JM14J

0020 LDA JM1
0021 ADD J
0022 STA JM1
0023 LDA J
0024 ADD=’00000003
0025 SKG="00000012
0026 JMP 70017

ERROR MESSAGES

Any time the compiler detects an error in format
of a FORTRAN statement, a two line error mes-
sage is typed or printed in the listing. If the error
is of a type that is recognized as soon as it is en-
countered, the first line is a duplicate of the line
in which the error occurs. If the error cannot be
recognized until later in the program, the line at
which the error is recognized contains a left point-
ing arrow (+=) in column 6. In either case, the
second extra line consists of a row of asterisks
broken by the word ERROR in the left-hand
margin and the error diagnostic in approximately
the same horizontal position as the error. The error
diagnostics for the DDP-24/-124/-224 compiler
consists of four letter mnemonic whereas the diag-
nostics for the DDP-116/-516 consists of a two
letter mnemonic. Refer to Appendix E for a list of
error definitions. Typical error messages for the
DDP-116/-516 are: K = 3

20 A = B**20 + K
20 A = B**20 + K

(22X R L] ERROR ##*#%*28es ssEs MM %2

WRITE (4, 42) A
42 FORMAT (F10.4)
In statement 20 there is a mixed mode error (MM)

which is recognized immediately.

BX32

MaPPING

Generating a memory map of the program being
compiled is divided into two parts. The first part
consists of a list of variable names, array names,
and constants. This list is generated by the com-
piler after compilation of a FORTRAN program
and under operator option. The method of request-
ing such a list is detailed in the specific FORTRAN
compiler operating instructions for each computer.

The second part of the memory map is generated
by the loader program when the object program is
loaded into memory. The operating instructions for
the appropriate loader outline the procedure for
generating this second list. The map generated by
the loader consists of three addresses representing
the first and last cell of the main program and the
entry address for the main program. Following
these addresses are the entry addresses of all
COMMON blocks and subroutines called by the
main program (or its subroutines).

TRACING

Two types of TRACE statements are available for
use with the compiler. The first is used in tracing
selected variables only, and the second is used in
tracing all variables within a specified area.

ITEM TRACING

A TRACE statement used for item tracing specifies
a list of variable names and/or array names. The
format for this type of TRACE statement is

TRACE x1, X2, X3 Xm

where x is any variable or array name. When any
of the variables or array elements become re-de-
fined by an arithmetic statement, coding is inserted
into the object program, causing a line of trace
information to be typed. Such a TRACE state-
ment can be placed anywhere in a program; but
insertion of coding for tracing the listed variables
does not start until the TRACE statement is
processed. As many TRACE statements as desired
may be included in the program’s source state-
ments.

AREA TRACING

A TRACE statement used for area tracing specifies
a single statement number and has the format

TRACE n
where n is any statement number not yet defined.

7-2

This type of TRACE statement inserts coding into
the object program that causes the results of all
arithmetic expressions (including IF statements)
that follow the TRACE statement up to and in-
cluding the statement specified by n, to output a
line of trace information. This group of statements
is designated the trace range. In addition to trac-
ing all arithmetic and IF statements within the
trace range, all statement numbers defined within
the range also cause coding to be generated that
outputs a line of trace information, allowing the
programmer to follow the sequence of statements
as they are executed.

An area TRACE statement should not be placed
within the trace range of another area TRACE
statement unless all such TRACE statements refer
to the same statement number.

UNCONDITIONAL TRACE

If sense switch no. 4 is on during compilation, all
arithmetic statements, IF statements, and state-
ment numbers cause coding to be included in the
object program for generating lines of trace in-
formation at run-time. When the sense switch is
reset, trace coding is only generated as directed by
the TRACE statement. The sense switch may be
set or reset before or during compilation.

TRACE LISTING FORMAT

At run time of the object program, any trace cod-
ing inserted by the compiler causes a line to be
typed consisting of a variable name, an array name,
or a statement number, followed by an equal sign,
followed by the current decimal value assigned to
that name. The decimal value is typed in IN-
TEGER, FLOATING POINT, or COMPLEX for-
mat. Array names are followed by a subscript
indicating the element within the array just modi-
fied, as if it were a single dimensioned array. See
Figure 7—1 for sample lines of trace information
as typed at object run-time.

CHAINING FACILITY

The CHAINING facility of FORTRAN IV allows
a FORTRAN object program that is too large to
fit into the available memory space to be divided
into segments. Each segment is run separately and‘
inter-segment communication of data is accom-"
plished through common storage.

BX32

INTEGER Variable: JOKER = 1739

LOGICAL Variable: L1 = ., TRUE,

REAL or DQUBLE PRECISI®N Variable: DIVERG = 0, 3217196400E 02

IF Statement Expression Value: () = =0.1934778217E-01

Statement Number: (25)

Complex Variable: CXDLTA = 0.9171978147E 03, 0. 1037200000 00
FIGURE 7—1.

The trace output is inhibited at object program
run-time if sense switch no. 4 is set.

Y |g{ 8

DIMENSI@N
TRACE Y,A
X = 3,24
Y = X + 1.5
B o=y *#+ 2 ' '
D 48 (=1,3
A(l,2)= Y/2

48|y = Y + 1.0
X = 0.0
K = 2

TRACE 62
50{ X = X+1.0
1F(X-3.0) 51,53,53
51|k = Kk*k '
G@ 19 50

53| IF(X.LE.Y) X=X%100.0

T T
62/ X = X-1,0

|
A(3,3)

T T T

T T T

T T

T T T T

T T T T T T

3
T T T T T T

o
T 13 T T

PREPARING THE SOURCE STATEMENTS

Three special actions must be taken in order to
prepare a program for CHAIN operation:

1. The first card (or line) of all program seg-
nts except the first program segment must be a
cial card with a dollar sign in column 1, the

digit 1 in column 2, and comments in columns

3 through 72.

7-3

Y = 0.4740000000E 01

A (4) = 0.2370000000E 01
Y = 0.5740000000E 01

A (5) = 0.2870000000E 01
Y = 0,6740000000E 0!

A (6) = 0.3370000000E 01
Y = 0.7740000000E 01
(50)

X = 0.1000000000E 01
() =-0.2000000000E 01
(51)

K = 4

(50)

X = 0.2000000000E 01

() =-0.1000000000E 01
(51)

K = 16

(50)

X = 0.3000000000E 01

() = 0.0000000000E 00
éss))]

X = 0.1030000000E 03
(62)

X = 0.1020000000E 03

Y = 0.0000000000E 00

?

|' nq il: g'L
1 CONTINUE CHAIN
| S T T T T

2. All blank or labeled COMMON areas used for
communication between segments of the chain
must be declared with a COMMON statement at

the beginning of each segment. The declaration

BX32

order and size of each area must be identical in
each chain segment.

3. When the program is ready to enter the next
segment in the program chain, a CALL CHAIN
statement is executed. This subroutine causes the
next segment to be loaded into memory and auto-
matically started. (Several CALL CHAIN state-
ments may be present in one program segment for
convenience.)

Figure 7—2 is an example of a three segment pro-
gram CHAIN.

COMPILING THE SOURCE STATEMENTS

Each segment of the chain is compiled separately,
resulting in three-object tapes.

PREPARING THE BINARY CHAIN TAPE

1. Mount the object tape for segment one and
load it into memory using the standard loader and
standard loading procedures.

2. When the object tape is loaded, the loader
types “MORE” (DDP-24/-124/-224) or “MR”
(DDP-116/-516) if subroutines are required. Mount
the library tape and press the START button to
load the needed subroutines.

3. When all needed subroutines are loaded, the
loader types “DONE” (DDP-24/-124/-224) or
“LC” (DDP-116/-516).

4. Punch out segment one using the chain dump
program. (See appropriate program documentation
for details.)

5. Repeat steps 1, 2, 3, and 4 for each additional
segment in the chain program. One long binary
tape representing the entire chain program will be
generated.

RUNNING THE CHAIN PROGRAM

1. Mount the special binary tape. After the first
segment has been loaded it will be executed auto-
matically.

2. When the first segment transfers to the CALL
CHAIN subroutine, the subroutine causes the next
segment to be read from the special binary tape
and executed. This operation is automatic and no
operator action is required.

74

3. Step 2 is repeated automatically until the last
segment is loaded and executed.

INTERCOMMUNICATION BETWEEN SECMENTS

All intercommunication between segments is done
through variables or arrays in blank or labeled
COMMON. Because of the way FORTRAN allo-
cates storage, all blank and labeled COMMON
areas that are defined at the beginning of each
segment are allocated space at the beginning of
that program area.

Note that blank COMMON overwrites the loader
as much as posssible since variables of array ele-
ments in blank COMMON cannot be initialized
with data. Because variables or array elements in
labeled COMMON may be initialized, labeled
COMMON cannot overwrite the loader on the
24-bit computers. On the 16-bit computers it is
possible to overwrite the loader with labeled COM-
MON. This can be avoided by protecting the
loader with a dummy blank COMMON block.

Because the programmer is required to define the
size and order of common variables or arrays
identical in each chain segment, a reference to a
common element in one segment refers to the same
memory cells as a reference to the same common
element in a different segment. Therefore, com-
munication between segments of a chain program
is effected.

OPERATION DETAILS

FORTRAN operating procedures are not given in
this manual because the procedures are different
for each DDP computer. The operating procedures
are provided separately for each computer and
include:

Loading Procedure

Sense Switch Settings

Input Formats

Output formats

Listing Formats

Preparing Source Statements
Loading the Object Program
Running the Object Program Data
Error Code Definitions
Estimating Memory Requirements
Memory Maps

Ete.

BX32

CHAIN J@B,

SE'GMEN‘T NG .

1

ng

COMMON

" A,B, c/c¢M2/x Y i, ARRAY

DIMETNSUZ)N ARRAY(IOO)

N\

READ(3 20) ARRAY 1, DELTA

T

p—

—V

X = QI-Q2/Q3

CALL CHAIN

END |

END @F J@B

CHA'lN J¢18,

SEGMENT Ng.

2

T

C¢NTINUE CHAIN

T

c¢MM¢N

A,B C/c¢M2/x Y,Z, ARRAY

DIMENS|¢N ARRAY(!OO),

TABLE(30)

LPHA =

(x DEL TA)/(X+DELTA)*3 1457

—

T

IF(TE|ST)10,J3,10 Y

T

T

CAL L' CHAI'N

T

T

X = TABLE(J) + X

v =‘TABLE'(I) + Y

CALL CHAIN

END

END OF JgB

N JNNNA] L

CHAIN J@B,SEGMENT N@.

'3

v

CONTINUE CHAIN

T

COMMPD N

A, B, t/c¢M'2/x Y,Z,ARRAY

D|ME‘NSI¢N'

ARRAY(IOO),XLIST(4 4)

T= (X+0 5)/(Y+0 5)

NI

g~

T T T T
WRITE(S 14) ARRAY,XLI?T

F¢RMAT(IH , 2E10. 3)

T

ST¢P

T T T

END

T

END OF JOB

AN

FIGURE 7—2. THREE SEGMENT CHAIN PROGRAM

BX32

APPENDIX A
SAMPLE PROGRAMS

EXAMPLE 1

The equation for determining the current flowing
through an alternating current circuit is:

E
— /R ~ 1
I \/R + (21th MC) 2

The current is to be determined for a number of
equally-spaced values of the capacitance (which lie
between specified limits) for voltages of 1.0, 1.5, 2.0,
2.5, and 3.0 volts.

. siefr 17 9y to)) ¥o; »ey 0, s o s o, - —
C'---------EXAMPLE 1 ' ' - t v + 1 } o1 /l
C‘l T T T T T T - T T T - \
10 | [READ(3,5) @HM,FREQ, HENRY ' ' T - - T T >
11| |READ(3,5) FRD1,FRDFIN ' ' ‘ ' T ' ' ' ; (
5 |[r@RMAT(3EI2.6) ' ’ ' ' ' ' [: - . :)
12 WRITE(I 7) @HM, FREQ PENRY ' T - , T : . (
7 F¢RMAT(1H 3E17. a) ' ' ' " B y T T)
13 v¢|.r = 1.0 ' ' ' ' T T ‘ T T C
14| WRITE(1,7) voLT ' T ' ' ' v - - . : >
"15 | |[FARAD = FRDI ' ‘ T T ; ' ' . + —1
16 | AMP = VPLT/SQRI(@HM**2 + ((6.2832*FREQ ' ' ' T - N
. ‘HENRY‘ /(6. 2832'FREQ'FARAD))“2) ‘ : . T — . 4
17 | WRITE (1,7) FARAD, AMP ' ' ' ' T ' ' ¢
F(FA}AD - FRDFIN)I? 21, ' . ‘ - , ——)
19 | [FARAD = FARAD + 0. ooo ooo ol T ' , r —1(
20 |lco ‘r¢ 16 ‘ . T - T T T . . :
“21 lr(vm.r - 3.0) 22 10, 1o ' ' ' ! ! T T T T P
22 | V@LT = vgLT + 0.5 ‘ ' ' T - r : \
23 |iGQ ,TQ 14' ' . ' ' ‘ (
Eg | __END OF JPB ' ' . ' ' " ' ‘ ‘ ‘)

A1l

BX32

EXAMPLE 2

Given values a, b, ¢, and d punched on cards fol-
lowed by a set of values for the variable x punched
ong per card, evaluate the function defined by

ax?+ bx + cifx < d
f(x) = ifx=d
—ax> 4+ bx—cifx >d

for each value of x, and type x and f(x).

- EXAMPLE 2 ' ' "/
c ' ' ’ ' A\
10 READ(3,5) A,B,C,D ")
V1 TREAD'(3 5) 'x o ' "\
5 FORMAT(6EI2.6) ' ' "]
12 IF(X-D) 13,15,17 ' T\
13 F¢Fx'-A'-x-‘-2+'n'x'+c')
14 Gp 18 18 ' ' ' N
15 FOFX = 0.0 L ' 4
16 G@ 18 18 T ' LS
17 FQFX = A * X**2 + B * X - C_)
18 WRITE(1,6) X, F@PFX ' S
6 FORMAT(IH 2E17.8) ’ LS
19 Go 19 11 ' i "/
' END ' ' ‘ \
ST T —
EXAMPLE 3
Given:
X,Y,Z;fori=1,....10,andj=1,....20
Compute: i=10 i=20
PROD =(Y 4,) * >
i=1 i=1
Where:
Ai=x24+ Y if X < 1Y
Ai=xi +Y: if X =Y
A:=0 if X > Y

S e—
g

e '°: - "'.7
c EXAMPLE 3
c ' ' ' \
"3 lDIME'NSI¢N' X(IO),Y(IO) 3(20) i,
_a |lr RMAT (6F12. 6) "\
5 | [READ(3, 4) X, v, a ' "/
6 ||suMA - 0.0 I "\
7 g i2 |l||o' ' ' ")
8| hF(as(x())- -ABS(Y(1))) 9,11, 12 A
9 |lsuma - SUMA_+ (1) '
:IO GP 19 12 -
11| lsuMA = suma LX)+))
12 | Jc@NTINUE ' S
13 [|sumz = 0.0) ' ' LS
14 |lpg 15 a=1,207 ' ' "/
a5 |lsumz = sumz + a(J) \
6 |[rrgD - suma * sumE N
7 | WRITE(1, 18] SUMA, sumz, gD (
18| [FARMAT(IH 3E17.8) ')
19 |lcg 19 5 ' "\
' lEno ' i ' ' ")
$ 0 | END gF Jgs ‘ ’ "\
EXAMPLE 4

The following example of matrix multiplication il-
lustrates DO nests and multiple subscripts. (A DO
nest is a set of two or more DO statements, the
range of one of which includes the ranges of the
others.)

c EXAMPLE 4 ' ' /7
c ' ' “\
DlME'NsmN' A(2,5), B(5,2), €(2,2))
‘2 F¢RMAT(5EH 5) i ' LN
3 READ(3,2) A,B ' ' "/
4 D@ 30 I=1,2 ' "\
s D@ 30 J'-l,z ' " ")
6 c(1,4) = 0.0 ' LY
o [|og 20 K=1,5 ' ' "/
20 c1, d)=C(1,))+A(, K)*B(K, J) LS
30 wurm 50) 1J, €0,d) ")
50 FORMAT(TH 215, El16. 7 ' 8§
60 g 1@ 3 ’ ' ' Q
: END | ' ' ' J/
TR T T T ——
w

BX32

EXAMFPLE &

Problem:
Compute the following quantities:

EXAMPLE 5

19 " 0 ny 0,
T 1 1 T +

T T

4

A(10),8(10),€(10),

DIMENSIBN

?
_ s 2 P(IO) Q(IO) AN
P = Vsin® (AiB1 + C1) + cos (A:B1~C1) ' TRIGF(X,Y)=SIN(X+Y)**2 + C@S(X-Y)**2
Q =sin?(Ai+Ci) + cos*(A,—C:) READ(3,4) A, B, C -
F¢RMAT(3F12 8) ' ' W,
: bg 7 1-1 10 ' N O
P(1)= SQRT(TRIGF(A(I)'B(I) C(l))) V4
' Q(I)-TRIGF(A(l) c)) ‘S
' WRITE(1,9) (A(1),801), €{1),P(1), ")
K ' am, 1=, 7§
' FmMAr(lH 5F17.4) LY
' ST¢P ' ') "/
EXAMPLE 6 : ENO - © ' \
Problem: E? . END QF J@B . . >
Find and print two product matrices. T
A S S P 2} oy s o "
c EXAMPLE 6 i ' , ' ' ' '
& : : .
' DIMENSI@N X(IO 15), Y(ls 12), Z(10,12), ’ ' ' ' '
' 2 ' ' D(IO 15), E(15, 12):, F(H"J,IZ) ' ' ' ' '
' READ(3,4) ((X(1,J), J=1,3), 1=1,3), ,]
. 1 ' (Y(,4), J=1,3), 1=1,3) ' ' r . ‘ ‘
4 | FPRMAT(6EI2.6) i . ' , , . , , '
r CALL MATMPY(X, 3,3,Y, 3,%) , ' ') , . _ i
READ(3,4) ((D(1,J),J=1,3), I=1,3),
‘ X T WEL,D),I=1,3), =13 ' ' ' ' ' '
T CALL" MATMPY(D 3 3,E, 3 F) T ' ' " T ! i '
: DO '13 J"l 3 ’ l v l ' ' K ! '
13 | WRITE(4,15) (Z(1,4d), 1=1,3) ' | ' ' ' ' ' '
' DB 14 J=1,3 ' ' ' ' ' " ' ' '
14 wmréu 15)' (F(1, 'J), 1=1, 3) ’ ' ' ' ’ ' ' '
15 FQ)RMAT(]H 6E17. 6) T ' ' ' ' ' ' ' r '
B T S A
[7 ST¢P' R T T —T T T T T T T T
END i
c SUBRGUTINE MATMPY F@R EXAMPLE 6 ' ' ' ' ' '
c, -—
' SUBRGUTINE _ MATMPY(A,N,M,B,L,C) ' ' ' '
DIMENSIN A(IO 15), B(15,12), €(10,72) ' : ’
| DY 5 1=1,N ' ' ' ') ' ' ‘ . '
§ g 5 .AVJ:' L , v ' . T .
C(1,4) = 0.0
i DG 5 K=1,M ' ' ' ' ' ' ' ' ' '
5 c,J) = c(1,J) + A(I,K)*B(K,J)) i ’ ' i ' N
' RETURN j ' N ' ' ' ' ' ' '
— e~ -0 0 O
A-3

BX32

[T 2 r |9§ I'{ u% ll% IC‘L)'J' Q'% I LT ‘.0= ||€ l'= l!_e '!‘ rivy ;’
Cl T T T T A T Ll T T T T T T
c SUBRGUTINE EXIT FOR EXAMPLE AN
T T T T T T T T T T T T
c ’ ' ¢
T T T T T T T T T T T T T
SUBRGUTINE EXIT A\
1 T T T T T T T T T T T
WRITE(1,5) ! ' 7/
T T T T T T T T T T T T T Al
5 | FORMAT(12H END_@F J@B. /) i \
T T T T T T T T T T T
ETURN) P,
T T T T T T T T T T L T
END |
T T T T T T T T T T T T T T ’
cf T T T T T T T T T T T T
$0 END @F J@B \
T T T T T T T T T T T T T T J

A4

BX32

APPENDIX B

MODIFICATION OF INPUT/OUTPUT
DEVICE ASSIGNMENTS

The device numbers referred to by input or output
statements have been tentatively set to the most
common devices. Each statement generates a CALL
to library subroutine FRn, FWn, or F$Cn, where
n is the device number 0 through 9. The de-
vices referred to can be easily changed by writing
different subroutines with the same name, and sub-
stituting the new subroutine for the existing sub-
routine on the library tape. For example, assume
F$R2 is used to read paper tape and no paper tape
reader is available, but six magnetic tape units are
available. A magnetic tape subroutine (similar to
F$R5) can be written, named F$R2, and put on
the library tape in place of the original F$R2 sub-
routine. All references to device 2 will now refer to
magnetic tape 6 instead of the paper tape reader.

If the unit number is referred to symbolically in-
stead of as an integer constant, a different sub-
routine calling sequence is generated.

CALL F$RN

PZE n

F$RN has a 10-place table which interprets n
as one of the standard device assignments (0

B-1

through 9) and transfers to the proper sub-
routine. If desired, the F$RN subroutine can be
modified to rearrange the device assignment table
or to expand it for additional devices. The table
can be expanded to any size less than 15000. There-
fore, by expanding the table in F$RN, device 10
could be magnetic tape 6, device 11 might be type-
writer 2, etc. Only symbolic device numbers can
exceed 9 in value. Constant device number call-
ing sequences do not use the F$RN subroutine
and do not, therefore, use the device assignment
table.

Finally, if a symbolic device number reference is
made, but the number (such as n=0 or n=13) is
not in F$RN’s device assignment table, a message
is typed and followed by a halt. The operator can,
at that time, set an acceptable device number into
the accumulator (right-justified) and press the
computer’s START button. If the new number is
acceptable, input or output is generated using the
new device number. However, each time the un-
acceptable device number is referred to by another
READ, WRITE, or Control statement, the typed
message followed by a halt occurs again.

BX32

APPENDIX C
DYNAMIC STORAGE ALLOCATION

A special version of the FORTRAN compiler and
FORTRAN library is provided (only for a DDP-
224 computer with 8K of memory, 3 index regis-
ters, and hardware floating-point options) when
dynamic allocation of storage is desirable. Pro-
grams compiled by this version of the compiler, or
subroutines on this version of the library are writ-
ten in a format that causes all variables or tem-
porary storages to be made into a COMMON area
and thereby shared where possible with other sub-
routine temporary storages. This procedure permits
(1) shared variable or temporary storages among
subroutines, (2) recursive calling of subroutines,
and (3) real-time interrupt capability.

SHARED STORAGE

The variable storage required by a subroutine is
not defined as part of the subroutine, but as rela-
tive to an address in index register 2. Since this
index register address is not assigned until the sub-
routine is actually entered, the storage area needed
by the subroutine is shared by all other subroutines
that are not called on by this subroutine (sub-
routines on the same level). Since the address
allocation is done at run time and only as needed,
dynamic allocation of variable storage is effected
by all subroutines written in the dynamic format.

RECURSIVE CALLS

The F$DA subroutine that is called on by all sub-
routines in the Dynamic Allocation Library, has
the current value of index register 2 in a push-

down list and assigns a variable storage area in-
dependent of the subroutine itself. Therefore, a
subroutine written in dynamic format can call it-
self to any reasonable depth since each depth car-
ries its own return address and variable (temporary
storage) list.

REAL TIME INTERRUPT CAPABILITY

A subroutine written in this format may be in-
terrupted by a real-time external interrupt signal.
The processor for the interrupt can call upon the
same subroutine interrupted, and, upon completion
of the interrupt processing, can return to the in-
terrupt point in the subroutine and continue. In
fact, if the interrupt processor program is written
in this format, it can be interrupted itself (after
doing a few set-up instructions) by the same or a
different interrupt. This interruption can continue
to a depth limited only by the memory size. All the
interrupts would be processed eventually on a
last-in/first-out basis.

DYNAMIC CONTROL SUBROUTINE

The F$DA subroutine generates a list that consists
of three control parameters plus the cells needed
for variables by the calling subprogram. The three
parameters stored in this list consist of the calling
subprogram’s return address, the number of cells

‘needed for variable storage by the calling subpro-

gram, and the previous contents of index register
2. (Index register 2 is initially set to L..) The
format of this table is shown in Figure C-1.

BX32

12(P.) —

P—V\M
OBJECT PROGRAM

JUMP [P1 EXIT] |)

NOP [I2 (PO)],2

X1 (P1)

12 (P1)

12 (P2)__,

12 (PJ)

X2 (P1))
JUMP [P2 EXIT]

NOP {12 (P1)],2

NOP [P2 NJ,2

X2 (P2)

X3 (P2)

I\,

JUMP [P3EXIT]

NOP [12 (P2)],2

X1 (P3)

NOP [PINI,2 | (

) ,

NOP [P3NJ,2 | (

/]

END OF MEMORY

NOP 0,2 *———————— Set into memory by loader

Entry made into table
when main program (Pg)
calls on subroutine Pj.

Entry made into table when
subroutine P1 calls on sub-
routine P2.

Entry made into table when
subroutine P2 calls on sub-
routine P3.

LEGEND

EXIT

12

X1, X2

Return addr. of calling
subroutine.

Value of index no. 2 at
entry to calling subroutine.

No. of variable cells

needed by calling subroutine.

Cells used for variable

storage by calling subroutine.

FIGURE C—1. LIST GENERATED BY F$DA SUBROUTINE

C-2

BX32

STATEMENT SUMMARY

General Form
of Statement

Example

CONTROL STATEMENTS

GRPIPn

ASSIGN K T@ |

GRIB 1, &y kye.. k)
GP TP X, kg, k) |
IF (o} kl,kz,ka

tF(e) S

D@ ni= my,mg,my
D@ani= mmy
CONTINUE

PAUSE n

PAUSE

ST@P n

SToP

END

$0

31

GO TP 314

ASSIGN 220 1@ |

G 1@ 1, (100, 310, 320, 409)
GP T (100, 310, 320, 409), |
IF (1 + 46) 30, 30, R

IF(LI. @R L2) G@ TP 20

DY 201=1,14,2

D@1 i=1,10

CONTINUE

PAUSE 3

PAUSE

STpP 3

SToP

END

$0 END OF JOB

$1 CONTINUE CHAIN

SPECIFICATION STATEMENTS

INTEGER 9),89s- -+ 08,
REAL 9),99,--- /9,

DOUBLE PRECISION ay.ay,...,8,

COMPLEX a;,0,,. .. oy
LOGICAL LITLPYRRRVL
DIMENSIBN o) (y),...,0,G.)
EXTERNAL 9),99,--,0,
EQUIVALENCE (), (ky),. . . , (k)

COMMBN oy ,ay,...,9,
COMMDN /xl/o‘ /12/02 ..
. /x“/on

COMMODN //a,,oz,. BPLN

DATA k; /4, /,-hz/dz/,. . .kn/dn/

TRACE xy, %y, . - - X,
TRACE n

INTEGER A, B, X(10)
REAL 1,J,K (4,3)

D@UBLE PRECISI®N X, Y, D(10)
CPMPLEX TEST, C2 (3,7)

LOGICAL L1,L2 800U, L (4,4,4)

APPENDIX D

STATEMENT, LIBRARY FUNCTION, AND
INPUT/OUTPUT SUMMARIES

Page

31
3
3
3
32
32
33
33

34

35
35
3-5
-2
1-2

4-)
4
4
41
4l

DIMENSI@N LIST (400), TABLE (10,10,4) 4-2

EXTERNAL TESTI, TEST2, TEST3

EQUIVALENCE (X,D1,C3),
(A4, 1), D23), C1)

COMMDN A, B,C(10)

PURLARAR

COMMDN //J, G, F, H(4, 3)
DATA Al{4), X, 1/0.107, 1. 0E5,
y.r/0./

s

TRACE Y, A, B
TRACE 62

INPUT/OUTPUT STATEMENTS

READ (v, list
READ (u) list
WRITE (u,f) list
WRITE (u) list
REWIND
BACKSPACE u
END AILE v

FORMATY ('l"Z"" .)

READ (3,20)A, B, C(4), ARRAY
READ (3) A, B, C(4), ARRAY
WRITE (4, 30) (A(1), B(1), 1=1,10)
WRITE (7) A, 8,C

REWIND 7

BACKSPACE 7

END FILE 7

FORMAT (1H, 13,2€10.4)

4-2
4-3

43
43

43
4t

48
48

5-1
5-1
541
5-1
5-1
5-1
5-3

General Form

of Statement

CALL Nome (ay,05,. . a,)

CALL Nome

FUNCTI®N Nome (ay,0g,. .+ ,9,)
SUBRDUTINE Nome (ay,05, . - .a)
SUBRDUTINE Nome

Example Page
SUBPROGRAM STATEMENTS

CALL MATMPY (X, |, TABLE) 6-5
CALL EXIT 66
FUNCTI@N SUM (LIST, SIGMA) 6-3
SUBRGUTINE MATMPY (A, N, ARRAY) 6-5
SUBRGUTINE EXIT 6-5
RETURN 6-4

RETURN

SUMMARY OF INPUT/OUTPUT

List Items
VARIABLES AB
SUBSCRIPTED X(3), Y(1+3,0)
VARIABLES

ARRAY NAMES
IMPLIED DO-LOOP

CONTROL

XY
(X(),Y(1,9),1-1,8),3-1,4)

Device Assignments (u)

0 = space 5 = Magnetic tape no. 1
1 = Typewriter 6 = Magnetic tape no. 2
2 = Paper tape 7 = Magnetic tape no. 3
3 = Cards 8 = Magnetic tape no. 4

5

4 = Line printer

9 = Magnetic tape no.

Format Descriptors

nP
nX
nFw.d
nEw.d
nGw.d

nDw.d
niw
nlw

nH
/1...n

Scale factor

Skip n characters

REAL value in mixed number format
REAL value in scaled number format
REAL value in mixed or scaled format (by
range)

DOUBLE PRECISION value in scaled format
INTEGER value in integer format

LOGICAL value as a T or F (TRUE or
FALSE)

REAL value in alphanumeric packed format
Hollerith data for headings or labels
Record delimiters for multiple records

BX32

Line Spacing Control for Typewriter and Printer

FUNCTION ARGUMENT RESULT FUNCTION
Blank One line NAME MODE MODE DEFINITION
0 Two lines ABS REAL REAL
1 Skip to fist line of next page 1ABS INTEGER INTEGER |al
+ No advance (line printer only) DABS DOUBLE DOUBLE
Others One line (and output first character) CABS COMPLEX REAL ,/?'Z'.ﬁa‘—
AMOD REAL (2) REAL
SUMMARY OF LIBRARY FUNCTIONS MOD INTEGER (2) INTEGER a; (mod ay)
DMOD DOUBLE (2) DOUBLE
AINT REAL REAL
Truncate to
FUNCTION ARGUMENT RESULT FUNCTION INT REAL INTEGER _ an integer
NAME MODE MODE DEFINITION IDINT DOUBLE INTEGER
o REAL REAL AMAXO INTEGER (>1) REAL
DSIN DOUBLE DOUBLE (Sr'ﬁar(':; AMAX1 _ REAL (>1) REAL Choose
SIN COMPLEX COMPLEX MAXO INTEGER (>>1) INTEGER largest
oS AL EAL MAX1 REAL (>1) INTEGER _ argument
5C0S DOUBLE DOUBLE — COSINE (a) DMAX1 DOUBLE (>1) DOUBLE
(radians) AMINO INTEGER (>1) REAL
CCos COMPLEX COMPLEX
AMINI REAL (>1) REAL ch
ATAN REAL REAL ARCTANGENT oose
DATAN _ DOUBLE DOUBLE _ (a) MINO __ INTEGER (>1) INTEGER smallest
ATAN2 REAL (2) REAL ARCTANGENT MIN1 REAL (>1) INTEGER _ argument
DMIN DOUBLE (>1) DOUBLE
DATAN2 DOUBLE (2) DOUBLE (al/a2) Y — ~m
HYPERBOLIC
TANH REAL REAL TANGENT (a) IFIX REAL INTEGER
SQRT REAL REAL SNGL DOUBLE REAL Convert
DSQRT DOUBLE DOUBLE \/-a_ REAL COMPLEX REAL argument
CSQRT COMPLEX COMPLEX AIMAG COMPLEX REAL mode
EXP REAL REAL DBLE REAL DOUBLE
DEXP DOUBLE SOUBLE . CMPLX __ REAL (2) COMPLEX
CEXP COMPLEX COMPLEX SIGN REAL (2) REAL _
ALOG REAL REAL ISIGN INTEGER (2) INTEGER Transfer sign
DLOG DOUBLE DOUBLE LOG_ (a) DSGN DOUBLE (2) DOUBLE
CLOG COMPLEX COMPLEX ° DiM REAL (2) REAL Positive
ALOGIO REAL EAL IDIM INTEGER (2) INTEGER difference
- LOG a
DLOGIO DOUBLE DOUBLE 10@ CONJG COMPLEX COMPLEX Sg,:?f;’;e

D-2

BX32

APPENDIX E
COMPILER ERROR MESSAGES

DDP-116/-516
e conormion e conmion
AE Arithmetic statement function has over 10 IE Impossible equivalence grouping
arguments IF Iltlegal IF statement type
AG Subroutine or array name not in an IN Integer required at this position
AR lte?r:g:::e:z array name T ltem not an integer
BD Cc>deb generated within a block data mg‘ :)A:f: pr:::moie‘:;lr::v
m
BL Bloi:l:(z:aotgranot first statement MS Multiply defined statement number
CE Constant's exponent exceeds 8 bits (over NC Constant must be present
255) ND Wrong number of dimensions
CG Compiter or computer error caused a jump NF No reference to format statement
to 00000 NR Item not a relative variable
CH Improper terminating character (punctu- NS Subprogram name not allowed
ation) NT Logical NOT, not an unary operator
CM Comma outside parenthesis, not in a DO NU Name already being used
statement NZ Non-zero string test failed
CN Improper constant (data initialization) OP More than one operator in a row
CR Iegal common reference PA Operation must be within parenthesis
DA llegal use of a dummy argument PH No path leading to this statement
DD Dummy item appears in an equivalence - PR Parenthesis missing in a DO statement.
or data list PW *Preceded by operator other than another*
DM Data and data "af"e .mOde do not agree RL More than 1 relational operator in a rela-
DT Improper DO termination tional example
EC Equivalence group not followed by comma RN Reference to a specification statement's
or CR (carriage return) . number) i
EQ Expression to left of equals, or multiple RT Return not allowed in main program
equals sC Statement number on a continuation card
EX Specification statement appears after cleanup SP Statement name misspelled
FA Function has no arguments ST lllegal statement number format
D Function name not defined by an arith- su Subscript incrementer not a constant
metic statement TF “Type’ not followed by ‘‘Function’” or list
FR Format statement error TO Assign statement has word TO missing
F3 Function/subroutine not the first statement uo Multiple + or — signs, not as unary
HF Hollerith character count equals zero operators
HS Hollerith data string extends past end of us Undefined statement number
statement vD Symbolic subscript no dummy in dummy
) . . array or symbolic subscript appears on
ic Impossible common equivalencing a non-dummy array
ID Unrecognizable statement VN Variable name required at this position

E-1

BX32

DDP-24/-124/-224

ERROR ERROR
MESSAGE CONDITION MESSAGE CONDITION
ADJD lllegal adjustable dimension ODL lllegal implied DO loop within 1/0 state-
ASOV Assignment table overflow JUSE | ment:t .]
ASTO Word TO incorrect in assign statement LDOP lncorre :emd.usage t
BLKD Instruction or data generated by block- mpropel.' .ea INg operator
MODE Mode mixing error
date subprogram N -
MULT Multiply defined statement
CICD Cannot initialize COMMON data NARR Item is not an array
COMM llegal common reference NCBD Non-common variable in block-data
CONS Illegal constant NCBS Negative COMMON base
CRET Carriage return within Hollerith string NEST DOP loop error improper nesting or termi-
DDST Doubly defined statement number nation
DPFL Data pool full NINT Mode is wrong
DUMM lllegal dummy appearance No (Subroutine or array name not followed by
EQCN lllegal equivalence construction an open parenthesis or comma missing
. . NPTH Format statement without number
EQIV Impossible equivalence
. . OPER Unacceptable operator or character
EQMS Equal (=) sign missing R -,
. OPOS Operator at illegal position
ERDO lllegal statement looks like a DO X
. X L PATH Statement without path or unexecutable
ERR. Decimal point missing statement
ERTN RETURN n,°t n 5”""'°‘_3“"“ . RLOP Two relational operators in a row
EXS= No:igtnhe first equal sign or illegal (=) SBSC Incorrect number of subscripts
FNUM Numeric value in format statement mis- SPEC Sp‘ecmcatlon statement within program
sing, zero or negative SPEL Mlssp.elled FORTRAN statement
FOPN Parenthesis nest in format statement STNO Error in statement number
greater than two TMDT Too much data for names given
FRST Function or subroutine that is not first TYPE Hiegal name in type statement
statement UNRF Unreferenced item
FUNV Either subroutine name used as variable V/SP Variable that is a subprogram
or function not used XARG More than ten arithmetic statement func-
FWAR Function without arguments tions
IFER lllegal IF statement Y (O Illegal parenthesis in a common statement
ILBD lllegal block-data usage) ERR Right parenthesis error
ILEG lllegal FORTRAN statement (ERR Left parenthesis error
ILSN lllegal statement number / ERR Slash error
INDT Insufficient data for names given , ERR Comma error
INTG Noninteger subscript variable (CR) Carriage return error

E-2

APPENDIX F
PROPOSED USASI FORTRAN 1V

The following Proposed American Standard
of the FORTRAN language was developed by
X3.4.3-FORTRAN Group under the American
Standards Association Sectional Committee X3,
Computers and Information Processing. The
committee was established under the sponsor-
ship of the Business Equipment Manufacturers
Association. Here is presented the most recent
issue of the proposed standard available at this
printing. Any further issues are not expected to
alter the technical content.

Inquiries regarding copies of the Proposed
Standard should be addressed to the X3 Secre-
K’zr%, BEMA, 235 E. 42nd Street, New York,

F-1 BX32

TABLE OF CONTENTS

SECTION
1. INTRODUCTION
2. BASIC TERMINOLOGY

3. PROGRAM FORM
3.1 The FORTRAN character set
3.2 Lines
3.3 Statements
3.4 Statement label
3.5 Symbolic names
3.6 Ordering of characters

4. DATA TYPES . R
4.1 Data type association .
4.2 Data type properties

5. DATA AND PROCEDURE IDENTIFICATION
5.1 Data and procedure names
5.1.1 Constants
5.1.2 Variable
5.1.3 Array
5.1.4 Procedures
5.2 Function reference . . o
5.3 Type rules for data and procedure identifiers
5.4 Dummy arguments
6. EXPRESSIONS
6.1 Arithmetic expressions
6.2 Relational expressions
6.3 Logical expressions
6.4 Evaluation of expressions
7. STATEMENTS .
7.1 Executable statements
7.1.1 Assignment statements
7.1.2 Control statements .
7.1.2.1 GO TO statements
7.1.2.2 Arithmetic IF statement

E-4
E-5

E-6

E-6

E-7

E-7

E-8

F-2

SECTION PAGE
7.1.2.3 Logical IF statement
7.1.2.4 CALL statement
7.1.2.5 RETURN statement
7.1.2.6 CONTINUE statement
7.1.2.7 Program contro! statements E-9
7.1.2.8 DO statement
7.1.3 Input/Output statements . = . E-10
7.1.3.1 READ and WRITE statements
7.1.3.2 Auxiliary Input/Output
7.1.3.3 Printing of formatted records
7.2 Nonexecutable statements E-11
7.2.1 Specification statements
7.2.1.1 Array declarator
7.2.1.2 DIMENSION statement E-12
7.2.1.3 COMMON statement
7.2.1.4 EQUIVALENCE statement
7.2.1.5 EXTERNAL statement
7.2.1.6 Type statement
7.2.2 Data initialization statement F-13
7.2.3 FORMAT statement
8. PROCEDURES AND SUBPROGRAMS E-15
8.1 Statement functions
8.2 Intrinsic functions and their reference
8.3 External functions E-16
8.4 Subroutine . E-17
8.5 Block data subprogram E-18
9. PROGRAMS E-18
9.1 Program components
9.2 Normal execution sequence
10. INTRA- AND INTERPROGRAM RELATIONSHIPS . E-18
10.1 Symbolic names
10.2 Definition o L . . E-20
10.3 Definition requirements for use of entities . E-21
BX32

PROPOSED USASI FORTRAN 1V

1. INTRODUCTION

1.1 Purrose. This standard establishes the form for
and the interpretation of programs expressed in the FORTRAN
language for the purpose of promoting a high degree of
interchangeability of such programs for use on a variety of
automatic data processing systems. A processor shall con-
form to this standard provided it accepts, and interprets
as specified, at least those forms and relationships described
herein.

Insofar as the interpretation of the form and relation-
ships described are not affected, any statement of require-
ment could be replaced by a statement expressing that the
standard does not provide an interpretation unless the
requirement is met. Further, any statement of prohibition
could be replaced by a statement expressing that the
standard does not provide an interpretation when the pro-
hibition is violated.

1.2 Score. This standard establishes:

(1) The form of a program written in the FORTRAN
language.

(2) The form of writing input data to be processed
by such a program operating on automatic data processing
systems.

(3) Rules for interpreting the meaning of such a
program.

(4) The form of the output data resulting from the
use of such a program on automatic data processing systems,
provided that the rules of interpretation establish an inter-
pretation.

This standard does not prescribe:

(1) The mechanism by which programs are trans-
formed for use on a data processing system (the combination
of this mechanism and data processing system is called a
processor).

(2) The method of transcription of such programs or
their input or output data to or from a data processing
medium.

(3) The manual operations required for set-up and
control of the use of such programs on- data processing
equipment.

(4) The results when the rules for interpretation fail
to establish an interpretation of such a program.

(5) The size or complexity of a program that will
exceed the capacity of any specific data processing system
or the capability of a particular processor.

(6) The range or precision of numerical quantities.

2. BASIC TERMINOLOGY

This section introduces some basic terminology and
some concepts. A rigorous treatment of these is given in
later sections. Certain assumptions concerning the meaning
of grammatical forms and particular words are presented.

A program that can be used as a self-contained com-
puting procedure is called an executadble program (9.1.8).

An executable program consists of precisely one main
*program and possibly one or more subprograms (9.1.6).

A main program is a set of statements and comments
not containing a FUNCTION, SUBROUTINE, or BLOCK
DATA statement (9.1.5).

A subprogram is similar to a main program but is
headed by a BLOCK DATA, FUNCTION, or SUB-
ROUTINE statement. A subprogram headed by a BLOCK
DATA statement is called a specification subprogram. A
subprogram headed by a FUNCTION or SUBROUTINE
statement is called a procedure subprogram (9.1.3, 9.1.4).

The term program unit will refer to either a main pro-
gram or subprogram (9.1.7).

Any program unit except a specification subprogram
may reference an external procedure (Section 9).

An external procedure that is defined by FORTRAN
statements is called a procedure subprogram. External pro-
cedures also may be defined by other means. An external
procedure may be an external function or an external
subroutine. An external function defined by FORTRAN
statements headed by a FUNCTION statement is called
a function subprogram. An external subroutine defined by
FORTRAN statements headed by a SUBROUTINE state-
ment is called a subroutine subprogram (Sections 8 and 9).

Any program unit consists of statements and comments.
A statement is divided into physical sections called lines,
the first of which is called an initial line and the rest of which
are called continuation lines (3.2).

There is a type of line called a comment that is not a
statement and merely provides information for documentary
purposes (3.2).

The statements in FORTRAN fall into two broad classes—
executable and nonexecutable. The executable statements
specify the action of the program while the nonexecutable
statements describe the use of the program, the character-
istics of the operands, editing information, statement func-
tions, or data arrangement (7.1, 7.2).

The syntactic elements of a statement are names and
operators. Names are used to reference objects such as data
or procedures. Operators, including the imperative verbs,
specify action upon named objects.

One class of name, the array name, deserves special
mention. An array name must have the size of the identi-
fied array defined in an array declarator (7.2.1.1). An array
name qualified only by a subscript is used to identify a
particular element of the array (5.1.3).

Data names and the arithmetic (or logical) operations
may be connected into expressions. Evaluation of such an
expression develops a value. This value is derived by per-
forming the specified operations on the named data.

The identifiers used in FORTRAN are names and num-
bers, Data are named. Procedures are named. Statements
are labeled with numbers. Input/output units are numbered
(Sections 3, 6, 7).

BX32

At various places in this document there are statements
with associated lists of entries. In all cases the list is assumed
to contain at lease one entry unless an explicit exception
is stated. As an example, in the statement

SUBROUTINE s (ai, az, * - - ap)

it is assumed that at least one symbolic name is included
in the list within parentheses. A list is a set of identifiable
elements each of which is separated from its successor by
a comma. Further, in a sentence a plural form of a noun
will be assumed to also specify the singular form of that
noun as a special case when the context of the sentence does
not prohibit this interpretation.

The term reference is used as a verb with special meaning
as defined in Section 5.

3. PROGRAM FORM

Every program unit is constructed of characters grouped
into lines and statements.

3.1 THE FORTRAN CHARACTER SET. A program unit
is written using the following characters: A, B, C, D, E,
F,G,H, 1,J,K,L, M,N,0,P,QR,S, T, U, V, W, X,
Y,72,0,1,2,3,4,5,6,7,8,9, and:

Character Name of Character
Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

. Decimal Point

3 Currency Symbol

R I S

The order in which the characters are listed does not
imply a collating sequence.

3.1.1 Digits. A digit is one of the ten characters:
0,1,2, 3,4,5,6,17,8, 9. Unless specified otherwise, a string
of digits will be interpreted in the decimal base number
system when a number system base interpretation is ap-
propriate.

An octal digit is one of the eight characters: 0, 1, 2, 3,
4, 5, 6, 7. These are only used in the STOP (7.1.2,7.1) and
PAUSE (7.1.2.7.2) statements.

3.1.2 Letters. A letter is one of the twenty-six char-
acters: A, B, C, D, E, F, G, H, 1, J, K, L, M, N, O, P,
QR,ST,U,V, W X, Y, Z

3.1.3 Alphanumeric Characters.
character is a letter or a digit.

3.1.4 Special Characters. A special character is one
of the eleven characters blank, equals, plus, minus, asterisk,
slash, left parenthesis, right parenthesis, comma, decimal
point, and currency symbol.

3.1.4.1 Blank Character. With the exception of the
uses specified (3.2.2, 3.2.3, 3.2.4, 4.2.6, 5.1.1.6, 7.2.3.6, and
7.2.3.8), a blank character has no meaning and may be
used freely to improve the appearance of the program subject
to the restriction on continuation lines in 3.3.

3.2 LINES. A line is a string of 72 characters. All
characters must be from the FORTRAN character set except
as described in 5.1.1.6 and 7.2.3.8.

The character positions in a line are called columns
and are consecutively numbered 1, 2, 3, - - -, 72. The number
indicates the sequential position of a character in the line
starting at the left and proceeding to the right.

An alphanumeric

F4

3.2.1 Comment Line. The letter C in column 1 of a
line designates that line as a comment line. A comment
line must be immediately followed by an initial line, another
comment line, or an end line.

A comment line does not affect the program in any
way and is available as a convenience for the programmer.

3.2.2 End Line. An end line is a line with the char-
acter blank in columns 1 through 6, the .characters E, N,
and D, once each and in that order, in columns 7 through
72, preceded by, interspersed with, or followed by the
character blank. The end line indicates to the processor,
the end of the written description of a program unit (9.1.7).
Every program unit must physically terminate with an
end line.

38.2.3 Initial Line. An initial line is a line .that is
neither a comment line nor an end line and that contains
the digit 0 or the character blank in column 6. Columns 1
through 5 contain the statement label or each contains the
character blank.

3.2.4 Continuation Line, A continuation line is a line
that contains any character other than the digit 0 or the
character blank in column 6, and does not contain the
character C in column 1.

A continuation line may only follow an initial line or
another continuation line.

3.3 STATEMENTS. A statement consists of an initial
line optionally followed by up to nineteen ordered con-
tinuation lines. The statement is written in columns 7
through 72 of the lines. The order of the characters in the
statement is columns 7 through 72 of the initial line followed,
as applicable, by columns 7 through 72 of the first continu-
ation line, columns 7 through 72 of the next continuation
line, etc.

3.4 STATEMENT LLABEL. Optionally, a statement may
be labeled so that it may be referred to in other statements.
A statement label consists of from one to five digits. The
value of the integer represented is not significant but must
be greater than zero. The statement label may be placed
anywhere in columns 1 through 5 of the initial line of the
statement. The same statement label may not be given to
more than one statement in a program unit. L.eading zeros
are not significant in differentiating statement labels.

3.5 SvymBoric NaMES. A symbolic name consists of
from one to six alphanumeric characters, the first of which
must be alphabetic. See 10.1 through 10.1.10 for a discus-
sion of classification of symbolic names and restrictions on
their use.

3.6 ORDERING OF CHARACTERS. An ordering of char-
acters is assumed within a program unit. Thus, any meaning-
ful collection of characters that constitutes names, lines,
and statements exists as a totally ordered set. This ordering
is imposed by the character position rule of 3.2 (which
orders characters within lines) and the order in which lines
are presented for processing.

4. DATA TYPES

Six different types of data are defined. These are integer,
real, double precision, complex, logical, and Hollerith. Each
type has a different mathematical significance and may have
different internal representation. Thus the data type has a
significance in the interpretation of the associated opera-
tions with which a datum is involved., The data type of a
function defines the type of the datum it supplies to the
expression in which it appears.

BX32

4.1 DATA TYPE AssocIATION. The name employed
to identify a datum or function carries the data type asso-
¢ ciation. The form of the string representing a constant
defines both the value and the data type.

A symbolic name representing a function, variable, or
array must have only a single data type association for
each program unit. Once associated with a particular data
type, a specific name implies that type for any differing
usage of that symbolic name that requires a data type
association throughout the program unit in which it is
defined.

Data type may be established for a symbolic name by
declaration in a type-statement (7.2.1.6) for the integer,
real, double precision, complex, and logical types. This
specific declaration overrides the implied association avail-
able for integer and real (5.3).

There exists no mechanism to associate a symbolic
name with the Hollerith data type. Thus data of this type,
other than constants, are identified under the guise of a
name of one of the other types.

4.2 Data TyYPE ProrerTIES, The mathematical and
the representation properties for each of the data types are
defined in the following sections. For real, double precision,
and integer data, the value zero is considered neither positive
nor negative.

4.2.1 Integer Type. An integer datum is always an
exact representation of an integer value. It may assume
positive, negative, and zero values. It may only assume
integral values.

4.2,2 Real Type. A real datum is a processor ap-
proximation to the value of a real number. It may assume
positive, negative, and zero values.

4.2.3 Double Precision Type. A double precision
datum is a processor approximation to the value of a real
number. It may assume positive, negative, and zero values.
The degree of approximation, though undefined, must be
greater than that of type real.

4.2.4 Complex Type. A complex datum is a processor
approximation to the value of a complex number. The
representation of the approximation is in the form of an
ordered pair of real data. The first of the pair represents the
real part and the second, the imaginary part. Each part has,
accordingly, the same degree of approximation as for a
real datum.

4.2.5 Logical Type. A logical datum may assume
only the truth values of true or false.

4.2.6 Hollerith Type. A Hollerith datum is a string
of characters. This string may consist of any characters
capable of representation in the processor. The blank char-
acter is a valid and significant character in a Hollerith
datum.

5. DATA AND PROCEDURE IDENTIFICATION

Names are employed to reference or otherwise identify
data and procedures.

The term reference is used to indicate an identification
of a datum implying that the current value of the datum
will be made available during the execution of the statement
containing the reference. If the datum is identified but not
necessarily made available, the datum is said to be named.
One case of special interest in which the datum is named is
that of assigning a value to a datum, thus defining or re-
defining the datum.

The term, reference, is used to indicate an identification
of a procedure implying that the actions specified by the
procedure will be made available.

F-5

A complete and rigorous discussion of reference and
definition, including redefinition, is contained in Section 10.

5.1 DATA AND PrROCEDURE Names. A data name
identifies a constant, a variable, an array or array element,
or a block (7.2.1.3). A procedure name identifies a function
or a subroutine.

5.1.1 Constants. A constant is a datum that is always
defined during execution and may not be redefined. Rules
for writing constants are given for each data type.

An integer, real, or double precision constant is said to
be signed when it is written immediately following a plus
or minus. Also, for these types, an optionally signed con-
stant is either a constant or a signed constant.

5.1.1.1 Integer constant. An integer constant is
written as a nonempty string of digits. The constant is the
digit string interpreted as a decimal numeral. ’

5.1.1.2 Real Constant. A basic real constant is written
as an integer part, a decimal point, and a decimal fraction
part in that order. Both the integer part and the decimal
part are strings of digits; either one of these strings may be
empty but not both. The constant is an approximation to
the digit string interpreted as a decimal numeral.

A decimal exponent is written as the letter, E, followed
by an optionally signed integer constant. A decimal ex-
ponent is a multiplier (applied to the constant written
immediately preceding it) that is an approximation to the
exponential form ten raised to the power indicated by the
integer written following the E,

A real constant is indicated by writing a basic real
constant, a basic real constant followed by a decimal ex-
ponent, or an integer constant followed by a decimal
exponent,

5.1.1.3 Double Precision Constant. A double precision
exponent is written and interpreted identically to a decimal
exponent except that the letter, D, is used instead of the
letter, E.

A double precision constant is indicated by writing a
basic real constant followed by a double precision exponent
or an integer constant followed by a double precision ex-
ponent.

5.1.1.4 Complex Constant. A complex constant is
written as an ordered pair of optionally signed real con-
stants, separated by a comma, and enclosed within paren-
theses. The datum is an approximation to the complex
number represented by the pair.

5.1.1.5 Logical Constant. The logical constants, true
and false, are written .TRUE. and .FALSE. respectively.

5.1.1.6 Hollerith Constant. A Hollerith constant is
written as an integer constant (whose value n is greater
than zero) followed by the letter H, followed by exactly n
characters which comprise the Hollerith datum proper.
Any n characters capable of representation by the processor
may follow the H. The character blank is significant in the
Hollerith datum string. This type of constant may be
written only in the argument list of a CALIL statement and
in the data initialization statement.

5.1.2 Variable. A variable is a datum that is identi-
fied by a symbolic name (3.5). Such a datum may be
referenced and defined.

5.1.3 Array. An array is an ordered set of data of
one, two, or three dimensions. An array is identified by a
symbolic name. Identification of the entire ordered set is
achieved via use of the array name.

5.1.3.1 Array Element. An array element is one of
the members of the set of data of an array. An array element

BX32

is identified by immediately following the array name with
a qualifier, called a subscript, which points to the particular
element of the array.

An array element may be referenced and defined.

5.1.3.2 Subscript. A subscript is written as a paren-
thesized list of subscript expressions. Each subscript ex-
pression is separated by a comma from its successor, if
there is a successor. The number of subscript expressions
must correspond to the declared dimensionality (7.2.1.1),
except in an EQUIVALENCE statement (7.2.1.4). Follow-
ing evaluation of all of the subscript expressions, the array
element successor function (7.2.1.1) determines the identi-
fied array element.

5.1.3.3 Subscript Expressions. A subscript expression
is written as one of the following constructs:

Hu + k

c*xv — k

c*y

v+ k

v —k

v

k
where ¢ and % are integer constants and v is an integer
variable reference. See Section 6 for a discussion of evalua-
tion of expressions and 10.2.8 and 10.3 for requirements
that apply to the use of a variable in a subscript.

5.1.4 Procedures. A procedure (Section 8) is identi-
fied by a symbolic name. A procedure is a statement
function, an intrinsic function, a basic external function,
an external function, or an external subroutine. Statement
functions, intrinsic functions, basic external functions, and
external functions are referred to as functions or function
procedures; external subroutines as subroutines or sub-
routine procedures,

A function supplies a result to be used at the point of
reference; a subroutine does not. Functions are referenced
in a manner different from subroutines.

5.2 FuncTioN REFERENCE. A function reference con-
sists of the function name followed by an actual argument
list enclosed in parentheses. If the list contains more than
one argument, the arguments are separated by commas.
The allowable forms of function arguments are given in
Section 8.

See 10.2.1 for a discussion of requirements that apply
to function references.

5.3 TyreE RuLEs FOR DATA AND PROCEDURE IDENTI-
FIERS. The type of a constant is implicit in its name.

There is no type associated with a symbolic name that
identifies a subroutine or a block.

A symbolic name that identifies a variable, an array,
or a statement function may have its type specified in a
type-statement. In the absence of an explicit declaration,
the type is implied by the first character of the name: I,
J, K, L, M, and N imply type integer; any other letter
implies type real.

A symbolic name that identifies an intrinsic function
or a basic external function when it is used to identify this
designated procedure, has a type associated with it as
specified in Tables 3 and 4.

In the program unit in which an external function is
referenced, its type definition is defined in the same manner
as for a variable and an array. For a function subprogram,
type is specified either implicitly by its name or explicitly
n the FUNCTION statement.

t he same type is associated with an array element as
is associated with the array name.

F-6

5.4 DuMMY ARGUMENTS. A dummy argument of an
external procedure identifies a variable, array, subroutine,
or external function.

When the use of an external function name is specified,
the use of a dummy argument is permissible if an external
function name will be associated with that dummy argu-
ment. (Section 8.)

When the use of an external subroutine name is speci-
fied, the use of a dummy argument is permissible if an
external subroutine name will be associated with that
dummy argument.

When the use of a variable or array element reference
is specified, the use of a dummy argument is permissible if
a value of the same type will be made available through
argument association.

Unless specified otherwise, when the use of a variable,
array, or array element name is specified, the use of a
dummy argument is permissible provided that a proper
association with an actual argument is made.

The process of argument association is discussed in
Sections 8 and 10.

6. EXPRESSIONS

This section gives the formation and evaluation rules
for arithmetic, relational, and logical expressions. A rela-
tional expression appears only within the context of logical
expressions. An expression is formed from elements and
operators. See 10.3 for a discussion of requirements that
apply to the use of certain entities in expressions.

6.1 ARITHMETIC KXPRESSIONS. An arithmetic expres-
stion is formed with arithmetic operators and arithmetic
elements. Both the expression and its constituent elements
identify values of one of the types integer, real, double
precision, or complex. The arithmetic operators are:

Operator Representing
4 Addition, positive value (zero + element)
- Subtraction, negative value (zero — element)
* Multiplication
, Division
** Exponentiation

The arithmetic elements are primary, factor, term,
signed term, simple arithmetic expression, and arithmetic
expression.

A primary is an arithmetic expression enclosed in
parentheses, a constant, a variable reference, an array
element reference, or a function reference.

A factor is a primary or a construct of the form

primary**primary

A term is a factor or a construct of one of the forms

term/factor
or
term*term

A signed term is a term immediately preceded by
+ or —.

A simple arithmetic expression is a term or two simple
arithmetic expressions separated by a + or —.

An arithmetic expression is a simple arithmetic expres-
sion or a signed term or either of the preceding forms
immediately followed by a + or — immediately followed
by a simple arithmetic expression.

A primary of any type may be exponentiated by an
integer primary, and the resultant factor is of the same,
type as that of the element being exponentiated. A real or
double precision primary may be exponentiated by a real
or double precision primary, and the resultant factor is of
type real if both primaries are of type real and otherwise

BX32

of type double precision. These are the only cases for which
use of the exponentiation operator is defined.

By use of the arithmetic operators other than ex-
ponentiation, any admissible element may be combined
with another admissible element of the same type, and the
resultant element is of the same type. Further, an admissible
real element may be combined with an admissible double
precision or complex clement; the resultant element is of
type double precision or complex, respectively.

6.2 RELATIONAL IXPRESSIONS. A relational expres-
sion consists of two arithmetic expressions separated by a
relational operator and will have the value true or false as
the relation is true or false, respectively. One arithmetic
expression may be of type real or double precision and the
other of type real or double precision, or both arithmetic
expressions may be of type integer, If a real expression and
a double precision expression appear in a relational expres-
sion, the effect is the same as a similar relational expression.
This similar expression contains a double precision zero as
the right hand arithmetic expression and the difference of
the twe original expressions (in their original order) as the
left. The relational operator is unchanged. The relational
operators are:

Operator Representing

.LT. T.ess than
R 910N Less than or equal to
EQ. Fqual to
NE. Not equal to
.G, Gireater than
GE. Greater than or equal to

6.3 Locical KxprEssIONs. A logical expression is

formed with logical operators and logical elements and has
the value true or false. The logical operators are:

Operator Representing
OR. Logical disjunction
AND. Logical conjunction
NOT. Logical negation

The logical elements are logical primary, logical factor,
logical term, and logical expression,

A logical primary is a logical expression enclosed in
parentheses, a relational expression, a logical constant, a
logical variable reference, a logical array element reference,
or a logical function reference.

A logical factor is a logical primary or .NOT. followed
by a logical primary.

A logical term is a logical factor or a construct of the
form:

logical term . AND. logical term

A logical expression is a logical term or a construct of

the form:
logical expression .OR. logical expression

6.4 KEvaLuAaTION OF EXPRESSIONS. A part of an ex-
pression need be evaluated only if such action is necessary
to establish the value of the expression. The rules for
formation of expressions imply the binding strength of
operators. 1t should be noted that the range of the sub-
traction operator is the term that immediately succeeds it.
The evaluation may proceed according to any valid forma-
tion sequence {except as modified in the following para-
graph).

When two elements are combined by an operator, the
order of evaluation of the elements is optional. If mathe-
matical use of operators is associative, commutative, or
both, full use of these facts may be made to revise orders
of combination, provided only that integrity of parenthe-
sized expressions is not violated. The results of different
permissible orders of combination even though math-
ematically identical need not be computationally identical.

The value of an integer factor or term is the nearest integer
whose magnitude does not exceed the magnitude of the
mathematical value represented by that factor or term. The
associative and commutative laws do not apply in the
evaluation of integer terms containing division, hence the
evaluation of such terms must effectively proceed from
left to right.

Any use of an array element name requires the evalua-
tion of its subscript. The evaluation of functions appearing
in an expression may not validly alter the value of any
other element within the expressions, assignment statement,
or CALL statement in which the function reference appears.
The type of the expression in which a function reference or
subscript appears does not affect, nor is it affected by, the
evaluation of the actual arguments or subscript.

No factor may be evaluated that requires a negative
valued primary to be raised to a real or double precision
exponent, No factor may be evaluated that requires raising
a zero valued primary to a zero valued exponent.

No element may be evaluated whose value is not
mathematically defined.

7. STATEMENTS

A statement may be classified as executable or non-
executable. Lxecutable statements specify actions; non-
executable statements de. cribe the characteristics and
arrangement of data, editing information, statement
functions, and classification of program units.

7.1 EXECUTABLE STATEMENTS, There are three types
of executable statements:

(1) Assignment statements.

(2) Control statementsy

(3) Input output statements.

7.1.1 Assignment Statements.
of assignment statements:

(1) Arithmetic assignment statement.

(2) Logical assignment statement.

(3) GO TO assignment statement,

7.1.1.1 Arithmetic Assignment Statement.
metic assignment statement is of the form:

v=e

where v is a variable name or array element name of type
other than logical and ¢ is an arithmetic expression. Execu-
tion of this statement causes the evaluation of the expression
¢ and the altering of v according to Table 1.

7.1.1.2 Logical Assignment Statement.
signment statement is of the form

v=e

where v is a logical variable name or a logical array element
name and ¢ is a logical expression. Execution of this state-
ment causes the logical expression to be evaluated and its
value to be assigned to the logical entity.

7.1.1.3 GO TO Assignment Statement.
assignment statement is of the form:

ASSIGN £ TO ¢

where . is a statement label and i is an integer variable
name. After execution of such a statement, subsequent
execution of any assigned GO TO statement (Section
7.1.2.1.2) using that integer variable will cause the statement
identified by the assigned statement label to be executed
next, provided there has been no intervening redefinition
(9.2) of the variable. The statement label must refer to an
executable statement in the same program unit in which
the ASSIGN statement appears.

Once having been mentioned in an ASSIGN statement,
an integer variable may not be referenced in any statement
other than an assigned GO TO statement until it has been
redefined (Section 10.2.3).

There are three types

An arith-

A logical as-

A GO TO

BX32

TABLE 1. RULES FOR ASSIGNMENT OF e TO v

If v Type Is And e Type Is The Assignment Rule Is*
Integer Integer Assign
Integer Real Fix & Assign
Integer Double Precision Fix & Assign
Integer Complex P
Real Integer Float & Assign
Real Real Assign
Real Double Precision DP Evaluate & Real Assign
Real Complex P
Double Precision Integer DP Float & Assign
Double Precision Real DP Evaluate & Assign
Double Precision Double Precision Assign
Double Precision Complex P
Complex Integer P
Complex Real P
Complex Double Precision P
Complex Complex Assign -
*NOTES.

(1) P means prohibited combination.

(2) Assign means transmit the resulting value, without
change, to the entity.

(3) Real Assign means transmit to the entity as much
precision of the most significant part of the resulting value
as a real datum can contain.

(4) DP Evaluate means evaluate the expression ac-
cording to the rules of 6.1 (or any more precise rules) then
DP Float.

(5) Fix means truncate any fractional part of the result
and transform that value to the form of an integer datum.

(6) Float means transform the value to the form of a
real datum.

(7) DP Float means transform the value to the form
of a double precision datum, retaining in the process as
much of the precision of the value as a double precision
datum can contain.

7.1.2 Control Statements.
control statements:

(1) GO TO statements.

(2) arithmetic IF statement.

(3) logical IF statement.

(4) CALL statement.

(5) RETURN statement.

(6) CONTINUE statement.

(7) program control statements.

(8) DO statement.

The statement labels used in a control statement must
be associated with executable statements within the same
program unit in which the control statement appears.

7.1.2.1 GO TO Statements. There are three types of
GO TO statements:

(1) Unconditional GO TO statement.

(2) Assigned GO TO statement.

(3) Computed GO TO statement.

7.1.2.1.1 Unconditional GO TO Statement.
conditional GO TO statement is of the form:

GO TO &
where % is a statement label.

Execution of this statement causes the statement
identified by the statement label to be executed next.

7.1.2.1.2 Assigned GO TO Statement, An assigned GO
TO statement is of the form:

GO TO &, (ki, k2, -+, ky)
where i is an integer variable reference, and the %’s are
statement labels.

There are eight types of

An un-

F-8

At the time of execution of an assigned GO TO state-
ment, the current value of { must have been assigned by the
previous execution of an ASSIGN statement to be one of
the statement labels in the parenthesized list, and such an
execution causes the statement identified by that statement
label to be executed next.

7.1.2.1.3 Computed GO TO Statement.
GO TO statement is of the form:

GO TO (ky, k2, -+ , k), &
where the £’s are statement labels and i is an integer variable
reference. See 10.2.8 and 10.3 for a discussion of require-
ments that apply to the use of a variable in a computed
GO TO statement.

Execution of this statement causes the statement identi-
fied by the statement label k; to be executed next, where j
is the value of i at the time of the execution. This statement
is defined only for values such that 1 < j < n.

7.1.2.2 Arithmetic IF Statement. An arithmetic IF
statement is of the form:

IF (e) ki, ko, ks
where ¢ is any arithmetic expression of type integer, real,
or double precision, and the %’s are statement labels.

The arithmetic IF is a three-way branch. Execution of
this statement causes evaluation of the expression e following
which the statement identified by the statement label %,
ka, or ky is executed next as the value of e is less than zero,
zero, or greater than zero, respectively.

7.1.2.3 Logical IF Statement. A logical IF statement
is of the form:

A computed

IF (¢) S
where e is a logical expression and S is any executable
statement except a DO statement or another logical IF
statement. Upon execution of this statement, the logical
expression e is evaluated. If the value of ¢ is false, statement
S is executed as though it were a CONTINUE statement.
If the value of e is true, statement S is executed.

7.1.2.4 CALL Statement. A CALL statement is of
one of the forms:

CALL s (ai, az, - -
or
CALL s
where s is the name of a subroutine and the a’s are actual
arguments (8.4.2).

The inception of execution of a CALL statement
references the designated subroutine. Return of control
from the designated subroutine completes execution of the
CALL statement.

7.1.2.5 RETURN Statement.
is of the form:

» @n)

A RETURN statement

RETURN

A RETURN statement marks the logical end of a
procedure subprogram and, thus, may only appear in a
procedure subprogram.

Execution of this statement when it appears in a sub-
routine subprogram causes return of control to the current
calling program unit.

Execution of this statement when it appears in a func-
tion subprogram causes return of control to the current
calling program unit. At this time the value of the function
(8.3.1) is made available.

7.1.2.6 CONTINUE Statement.
statement ‘is of the form:

A CONTINUE

CONTINUE
Execution of this statement causes continuation of
normal execution sequence.

BX32

7.1.2.7 Program Control Statements. There are two
types of program control statements:

(1) STOP statement.

(2) PAUSE statement.

7.1.2.7.1 STOP Statement.
one of the forms:

A STOP statement is of

STOP n
or
STOP
where n is an octal digit string of length from one to five.

Execution of this statement causes termination of
execution of the executable program.

7.1.2.7.2 PAUSE Statement. A PAUSE statement is
of one of the forms:

PAUSE n
or
PAUSE
where n is an octal digit string of length from one to five.

The inception of execution of this statement causes a
cessation of execution of this executable program. Execution
must be resumable. At the time of cessation of execution
the octal digit string is accessible. The decision to resume
execution is not under control of the program, but if exe-
cution is resumed without otherwise changing the state of
the processor, the completion of the PAUSEL statement
causes continuation of normal execution sequence.

7.1.2.8 DO Statement. A DO statement is of one of
the forms:

DOn: = my, mo, My
or
DO ni = my me
where:

(1) n is the statement label of an executable statement.
This statement, called the terminal statement of the asso-
ciated DO, must physically follow and be in the same
program unit as that DO statement. The terminal state-
ment may not be a GO TO of any form, arithmetic IF,
RETURN, STOP, PAUSE, or DO statement, nor a logical
IF containing any of these forms.

(2) i is an integer variable name;
called the control variable.

(3) m,, called the initial parameter; ma, called the
terminal parameter; and ms, called the incrementation
parameter, are each either an integer constant or integer
variable reference. If the second form of the DO statement
is used so that ms is not explicitly stated, a value of one is
implied for the incrementation parameter. At time of exe-
cution of the DO statement, mi, mz, and ms must be greater
than zero.

Associated with each DO statement is a range that is
defined to be those executable statements from and in-
cluding the first executable statement following the DO,
to and including the terminal statement associated with
the DO. A special situation occurs when the range of a DO
contains another DO statement. In this case, the range of
the contained DO must be a subset of the range of the
containing DO.

A completely nested nest is a set of DO statements and
their ranges, and any DO statements contained within
their ranges, such that the first occurring terminal statement
of any of those DO statements physically follows the last
occurring DO statement and the first occurring DO state-
ment of the set is not in the range of any DO statement.

A DO statement is used to define a loop. The action
succeeding execution of a DO statement is described by the
following five steps:

this variable is

F-9

1. The control variable is assigned the value repre-
sented by the initial parameter. This value must be less
than or equal to the value represented by the terminal
parameter.

2. The range of the DO is executed.

3. If control reaches the terminal statement, and after
execution of the terminal statement, the control variable of
the most recently executed DO statement associated with
the terminal statement is incremented by the value repre-
sented by the associated incrementation parameter.

4| If the value of the control variable after incre-
mentation is less than or equal to the value represented by
the associated terminal parameter, the action as described
starting at step 2 is repeated with the understanding that
the range in question is that of the DO, the control variable
of which was most recently incremented. If the value of the
control variable is greater than the value represented by
its associated terminal parameter, the DO is said to have
been satisfied and the control variable becomes undefined.

5. At this point, if there were one or more other DO
statements referring to the terminal statement in question,
the control variable of the next most recently executed DO
statement is incremented by the value represented by its
associated incrementation parameter and the action as
described in step 4 is repeated until all DO statements
referring to the particular termination statement are satis-
fied, at which time the first executable statement following
the terminal statement is executed. In the remainder of
this section (7.1.2.8) a logical IF statement containing a
GO TO or arithmetic IF statement form is regarded as a
GO TO or arithmetic IF statement respectively.

Upon exiting from the range of a DO by execution of a
GO TO statement or an arithmetic IF statement, that is,
other than by satisfying the DO, the control variable of
the DO is defined and is equal to the most recent value
attained as defined in the foregoing.

A DO is said to have an extended range if both of the
following conditions apply:

(1) There exists a GO TO statement or arithmetic IF
statement within the range of the innermost DO of a com-
pletely nested nest that can cause control to pass out of
that nest.

(2) There exists a GO TO statement or arithmetic IF
statement not within the nest that, in the collection of all
possible sequences of execution in the particular program
unit could be executed after a statement of the type de-
seribed in (1), and the execution of which could cause
control to return into the range of the innermost DO of
the completely nested nest.

If both of these conditions apply, the extended range
is defined to be the set of all executable statements that
may be executed between all pairs of control statements,
the first of which satisfies the condition of (1) and the
second of (2). The first of the pair is not included in the
extended range; the second is. A GO TO statement or an
arithmetic IF statement may not cause control to pass
into the range of a DO unless it is_being executed as part
.of the extended range of that particular DO. Further, the
extended range of a DO may not contain a DO of the same
program unit that has an extended range. When a pro-
¢ edure reference occurs in the range of a DO the actions of
t hat procedure are considered to be temporarily within
t.hat range, i.e., during the execution of that reference.

The control variable, initial parameter, terminal para-
mieter, and incrementation parameter of a DO may not be

BX32

redefined during the execution of the range or extended
range of that DO.

If a statement is the terminal statement of more than
one DO statement, the statement label of that terminal
statement may not be used in any GO TO or arithmetic
IF statement that occurs anywhere but in the range of the
most deeply contained DO with that terminal statement.

7.1.3 Input/Output Statements. There are two types
of input/output statements:

(1) READ and WRITE statements.

(2) Auxiliary Input/Output statements.

The first type consists of the statements that cause
transfer of records of sequential files to and from internal
storage, respectively. The second type consists of the
BACKSPACE and REWIND statements that provide for
positioning of such an external file, and ENDFILE, which
provides for demarcation of such an external file.

In the following descriptions, u and f identify input/out-
put units and format specifications, respectively. An in-
put/output unit is identified by an integer value and u may
be either an integer constant or an integer variable reference
whose value then identifies the unit. The format specifica-
tion is described in Section 7.2.3. Either the statement label
of a FORMAT statement or an array name may be repre-
sented by /. If a statement label, the identified statement
must appear in the same program unit as the input,output
statement. If an array name, it must conform to the speci-
fications in 7.2.3.10.

A particular unit has a single sequential file associated
with it. The most general case of such a unit has the fol-
lowing properties:

(1) If the unit contains one or more records, those
records exist as a totally ordered set.

(2) There exists a unique position of the unit called
its initial point. If a unit contains no records, that unit is
positioned at its initial point. If the unit is at its initial
point and contains records, the first record of the unit is
defined as the next record.

t3) If a unit is not positioned at its initial point, there
exists a unique preceding record associated with that posi-
tion. The least of any records in the ordering described by
(1) following this preceding record is defined as the next
record of that position.

t4) Upon completion of execution of a WRITE or
ENDFILE statement, there exist no records following the
records created by that statement.

(5) When the next record is transmitted, the position
of the unit is changed so that this next record becomes the
preceding record.

If a unit does not provide for some of the properties
given in the foregoing, certain statements that will be
defined may not refer to that unit. The use of such a state-
ment is not defined for that unit.

7.1.3.1 READ and WRITE Statements. The READ
and WRITE statements specify transfer of information.
Each such statement may include a list of the names of
variables, arrays, and array elements. The named elements
are assigned values on input and have their values trans-
ferred on output.

Records may be formatted or unformatted. A formatted
record consists of a string of the characters that are permis-
sible in Hollerith constants (5.1.1.6). The transfer of such
a record requires that a format specification be referenced
to supply the necessary positioning and conversion specifi-
cations (7.2.3). The number of records transferred by the

F-10

execution of a formatted READ or WRITE is dependent
upon the list and referenced format specification (7.2.3.4).
An unformatted record consists of a string of values. When
an unformatted or formatted READ statement is executed,
the required records on the identified unit must be, re-
spectively, unformatted or formatted records.

7.1.3.1.1 Input/Output Lists. The input list specifies
the names of the variables and array elements to which
values are assigned on input. The output list specifies the
references to variables and array elements whose values
are transmitted. The input and output lists are of the
same form.

Lists are formed in the following manner. A simple list
is a variable name, an array element name, or an array
name, or two simple lists separated by a comma.

A list is a simple list, a simple list enclosed in paren-
theses, a DO-implied list, or two lists separated by a comma.

A DO-implied list is a list followed by a comma and a
DO-implied specification, all enclosed in parentheses.

A DO-implied specification is of one of the forms:

= my, mg, ms
or
1= mg, mz

The elements i, m,, m2, and ms are as defined for the
DO statement (7.1.2.8). The range of DO-implied speci-
fication is the list of the DO-implied list and, for input
lists, i, m;, m2, and m, may appear, within that range, only
in subscripts.

A variable name or array element name specifies itself.
An array name specifies all of the array element names
defined by the array declarator, and they are specified in
the order given by the array element successor function
(7.2.1.1.1).

The elements of a list are specified in the order of their
occurrence from left to right. The elements of a list in a
DO-implied list are specified for each cycle of the implied
DO.

7.1.3.1.2 Formatted READ. A formatted READ
statement is of one of the forms:
READ (u, f) #
or
READ (u, f)
where £ is a list.

Execution of this statement causes the input of the
next records from the unit identified by u. The information
is scanned and converted as specified by the format speci-
fication identified by f. The resulting values are assigned to
the elements specified by the list. See however 7.2.3.4.

7.1.3.1.3 Formatted WRITE. A formatted WRITE
statement is of one of the forms:
WRITE (@, f) %
or
WRITE (u, f)
where £ is a list.

Execution of this statement creates the next records
on the unit identified by u. The list specifies a sequence of
values. These are converted and positioned as specified by
the format specification identified by f. See however 7.2.3 4.

7.1.3.1.4 Unformatted READ. An unformatted
READ statement is of one of the forms:
READ (u) »
or
READ (u)
where £k is a list.

BX32

Execution of this statement causes the input of the
next record from the unit identified by u, and, if there is a
list, these values are assigned to the sequence of elements
specified by the list. The sequence of values required by
the list may not excced the sequence of values from the
unformatted record.

7.1.3.1.5 Unformatted WRITE. An
WRITE statement is of the form:

WRITE (u) %

unformatted

where £ is a list.

Execution of this statement creates the next record on
the unit identified by u of the sequence of values specified
by the list.

7.1.3.2 Auxiliary Input'Output Statements.
are three types of auxiliary input/output statements:

(1) REWIND statement.

(2) BACKSPACE statement.

(3) ENDFILE statement.

7.1.3.2.1 REWIND Statement.
ment is of the form:

There

A REWIND state-

REWIND u

Execution of this statement causes the unit identified
by u to be positioned at its initial point.

7.1.3.2.2 BACKSPACE Statement.
statement is of the form:

BACKSPACE u

If the unit identitied by u is positioned at its initial
point, execution of this statement has no effect. Otherwise,
the execution of this statement results in the positioning
of the unit identified by u so that what had been the pre-
ceding record prior to that execution becomes the next
record.

7.1.3.2.3 ENDFILE
statement is of the form:

ENDFILE u

Execution of this statement causes the recording of an
endfile record on the unit identitied by «. The endfile record
is an unique record signifying a demarcation of a sequential
file. Action is undefined when an endfile record is encoun-
tered during execution of a READ statement.

7.1.3.3 Printing of Formatted Record. When for-
matted records are prepared for printing, the first character
of the record is not printed.

The first character of such a record determines vertical
spacing as follows:

Character

A BACKSPACE

Statement. An ENDFILE

Vertical Spacing Before Printing

Blank One line
0 Two lines
1 To first line of next page
+ No advance

7.2 NONEXECUTABLE STATEMENTS. There are five
types of nonexecutable statements:

(1) Specification statements.

(2) Data initialization statement.

(3) FORMAT statement.

(4) Function defining statements.

(5) Subprogram statements.

See 10.1.2 for a discussion of restrictions on appearances
of symbolic names in such statements.

The function defining statements and subprogram state-
ments are discussed in Section 8.

7.2.1 Specification Statements.
of specification statements:

(1) DIMENSION statement.

(2) COMMON statement.

There are five types

(3) EQUIVALENCE statement.
(4) EXTERNAL statement.
(5) Type-statements.

7.2.1.1 Array-Declarator. An array declarator speci-
fies an array used in a program unit.

The array declarator indicates the symbolic name, the
number of dimensions (one, two, or three), and the size of
each of the dimensions. The array declarator statement
may be a type-statement, DIMENSION, or COMMON
statement.

An array declarator has the form:

v (i)
where:

(1) v, called the declarator name, is a symbolic name,

(2) (i), called the declarator subscript, is composed of
1, 2, or 3 expressions, each of which may be an integer
constant or an integer variable name. Each expression is
separated by a comma from its successor if there are more
than one of them. In the case where / contains no integer
variable, { is called the constant declarator subscript.

The appearance of a declarator subscript in a declarator
statement serves to inform the processor that the declarator
name is an array name. The number of subscript expressions
specified for the array indicates its dimensionality. The
magnitude of the values given for the subscript expressions
indicates the maximum value that the subscript may attain
in any array element name, '

No array element name may contain a subscript that,
during execution of the executable program, assumes a
value less than one or larger than the maximum length
specified in the array declarator.

7.2.1.1.1 Array Element Successor Function and Value
of a Subscript. For a given dimensionality, subscript
declarator, and subscript, the value of a subscript pointing
to an array element and the maximum value a subscript
may attain is indicated in Table 2. A subscript expression
must be greater than zero.

The value of the array element successor function is
obtained by adding one to the entry in the subscript value
column. Any array element whose subscript has this value
is the successor to the original element. The last element
of the array is the one whose subscript value is the maximum
subscript value and has no successor element.

TABLE 2. VALUE OF A SUBSCRIPT
. . Maximum
D - Sub. t — . . N
sialr:.';?l"'ty D:clicr’;Zr Subscript Subscript Value Subscript
Value
1 (A) (a) a A-
2 (A, B) (a, b) a+ A-(b-1) A-B
3 (A, B, C) (a, b, ¢) a+A-(b~1)+ A:B-C
A-B-(c —1)
Notes. (1) a, b, and c are subscript expressions.

(2) A, B, and C are dimensions.

7.2.1.1.2 Adjustable Dimension. If any of the entires
in a declarator subscript is an integer variable name, the
array is called an adjustable array, and the variable names
are called adjustable dimensions. Such an array may only
appear in a procedure subprogram. The dummy argument
list of the subprograms must contain the array name and
the integer variable names that represent the adjustable
dimensions. The values of the actual arguments that repre-
sent array dimensions in the argument list of the reference

BX32

must be defined (10.2) prior to calling the subprogram and
may not be redefined or undefined during execution of the
subprogram. The maximum size of the actual array may
not be exceeded. For every array appearing in an executable
program (9.1.6), there must be at least one constant array
declarator associated through subprogram.

In a subprogram, a symbolic name that appears in a
COMMON statement may not identify an adjustable array.

7.2.1.2 DIMENSION Statement. A DIMENSION
statement is of the form:
DIMENSION v, (i), v2(iz), -+ , vp(in)
where each v(i) is an array declarator.

7.2.1.3 COMMON Statement. A COMMON state-

ment is of the form:

COMMON /xi /a1 / -/ xn / an

where each a is a nonempty list of variable names, array
names, or array declarators (no dummy arguments are per-
mitted) and each x is a symbolic name or is empty. If x;
is empty, the first two slashes are optional. Each x is a
block name, a name that bears no relationship to any
variable or array having the same name. This holds true
for any such variable or array in the same or any other
program unit. See 10.1.1 for a discussion of restrictions on
uses of block names.

In any given COMMON statement, the entities occur-
ring between block name x and the next block name (or
the end of the statement if no block name follows) are
declared to be in common block x. All entities from the
beginning of the statement until the appearance of a block
name, or all entities in the statement if no block name
appears, are declared to be in blank or unlabeled common.
Alternatively, the appearance of two slashes with no block
name between them declares the entities that follow to be
in blank common.

A given common block name may occur more than
once in a COMMON statement or in a program unit. The
processor will string together in a given common block all
entities so assigned in the order of their appearance (10.1.2).
The first element of an array will follow the immediately
preceding entity, if one exists, and the last element of an
array will immediately precede the next entity, if one
exists.

The size of a common block in a program unit is the
sum of the storage required for the elements introduced
through COMMON and EQUIVALENCE statements. The
sizes of labeled common blocks with the same label in the
program units that comprise an executable program must
be the same. The sizes of blank common in the various
program units that are to be executed together need not be
the same. Size is measured in terms of storage units
(7.2.1.3.1).

7.2.1.3.1 Correspondence of Common Blocks. If all of
the program units of an executable program that contain
any definition of a common block of a particular name
define that block such that:

(1) There is identity in type for all entities defined in
the corresponding position from the beginning of that block,

(2) If the block is labeled and the same number of
entities is defined for the block.

Then the values in the corresponding positions (counted
by the number of preceding storage units) are the same
quantity in the executable program.

A double precision or a complex entity is counted as
two logically consecutive storage units; a logical, real, or
integer entity, as one storage unit.

F-12

Then for common blocks with the same number of
storage units or blank common:

(1) In all program units which have defined the identi-
cal type to a given position (counted by the number of
preceding storage units) references to that position refer to
the same quantity.

(2) A correct reference is made to a particular position
assuming a given type if the most recent value assignment
to that position was of the same type.

7.2.1.4 EQUIVALENCE Statement. An EQUIVA-
LENCE statement is of the form:

EQUIVALENCE (&), (k2), -+, (kn)
in which each £ is a list of the form:
a, az, *** , am.

Each a is either a variable name or an array element
name (not a dummy argument), the subscript of which
contains only constants, and m is greater than or equal to
two. The number of subscript expressions of an array
element name must correspond in number to the dimen-
sionality of the array declarator or must be one (the array
element successor function defines a relation by which an
array can be made equivalent to a one dimensional array
of the same length).

The EQUIVALENCE statement is used to permit the
sharing of storage by two or more entities. Each element
in a given list is assigned the same storage (or part of the
same storage) by the processor. The EQUIVALENCE
statement should not be used to equate mathematically
two' or more entities. If a two storage unit entity is equiva-
lenced to a one storage unit entity, the latter will share
gpace with the first storage unit of the former.

The assignment of storage to variables and arrays
declared directly in a COMMON statement is determined
solely by consideration of their type and the COMMON
and array declarator statements. Entities so declared are
always assigned unique storage, contiguous in the order
declared in the COMMON statement.

The effect of an EQUIVALENCE statement upon
common assignment may be the lengthening of a common
block; the only such lengthening permitted is that which
extends a common block beyond the last assignment for
that block made directly by a COMMON statement.

When two variables or array elements share storage
because of the effects of EQUIVALENCE statements, the
symbolic names of the variables or arrays in question may
not both appear in COMMON statements in the same
program unit.

Information contained in 7.2.1.1.1, 7.2,1.3.1, and the
present section suffices to describe the possibilities of addi-
tional cases of sharing of storage between array elements
and entities of common blocks. It is incorrect to cause either
directly or indirectly a single storage unit to contain more
than one element of the same array.

7.2.1.5 EXTERNAL Siatement. An EXTERNAL
statement is of the form:

EXTERNAL vy, vz, -+ , v,
where each v is an external procedure name,

Appearance of a name in an EXTERNAL statement
declares that name to be an external procedure name, If
an external procedure name is used as an argument to
another external procedure, it must appear in an EXTER-
NAL statement in the program unit in which it is so used.

7.2.1.6 Type-statements. A type-statement is of the
form:

tv, vz, 0, Up

where ¢ is INTEGER, REAL, DOUBLE PRECISION,

BX32

COMPLEX, or LOGICAL, and each v is a variable name,
an array name, a function name, or an array declarator.

A type-statement is used to override or confirm the
implicit typing, to declare entities to be of type double
precision, complex, or logical, and may supply dimension
information.

The appearance of a symbolic name in a type-statement
serves to inform the processor that it is of the specified
data type for all appearances in the program unit. See,
however, the restriction in 8.3.1 second paragraph.

7.2.2 Data Initialization Statement. A data initial-
ization statement is of the form:

DATA b/ di/ ka/da/, o kn/dn/
where:

(1) Each k is a list containing names of variables and
array elements,

(2) Each d is a list of constants and optionally signed
constants, any of which may be preceded by j*,

(3) j is an integer constant.

If a list contains more than one entry, the entries are
separated by commas.

Dummy arguments may not appear in the list 2. Any
subscript expression must be an integer constant.

When the form j* appears before a constant it indicates
that the constant is to be specified j times. A Hollerith con-
stant may appear in the list d.

A data initialization statement is used to define initial
values of variables or array elements. There must be a
one-to-one correspondence between the list-specified items
and the constants. By this correspondence, the initial value
is established.

An initially defined variable or array element may not
be in blank common. A variable or array element in a
labeled common block may be initially defined only in a
block data subprogram.

7.2.3 FORMAT Statement. FORMAT statements
are used in conjunction with the input/output of formatted
records to provide conversion and editing information be-
tween the internal representation and the external character
strings.

A FORMAT statement is of the form:

FORMAT (qitiz1t222 -+ 2p-1tnq2)
where:
(1) (qitizitzzz -+ 2p—1t,q2) is the format specification.
(2) Each q is a series of slashes or is empty.
(3) Each t is a field descriptor or group of field de-
scriptors.
(4) FEach z is a field separator.
(6) n may be zero.
A FORMAT statement must be labeled.
7.2.3.1 Field Descriptors. The format field descriptors
are of the forms:
srFw.d
srEw.d
srGuw.d
srDw.d
rlw
rLw
rAw
thjhz e hn
nX

where:

(1) Theletters F, E, G, D, I, L, A, H, and X indicate
the manner of conversion and editing between the internal
and external representations and are called the conversion
codes.

(2) w and n are nonzero integer constants representing
the width of the field in the external character string.

(8) d is an integer constant representing the number
of digits in the fractional part of the external character
string (except for G conversion code).

(4) r, the repeat count, is an optional nonzero integer
constant indicating the number of times to repeat the suc-
ceeding basic field descriptor.

(5) s is optional and represents a scale factor desig-
nator.

(6) Each h is one of the characters capable of repre-
sentation by the processor.

¥or all descriptors, the field width must be specified.
For descriptors of the form w.d , the d must be specified,
even if it is zero. Further, w must be greater than or equal
to d. :

The phrase basic field descriptor will be used to signify
the field descriptor unmodified by s or r.

The internal representation of external fields will cor-
respond to the internal representation of the corresponding
type constants (4.2 and 5.1.1).

7.2.3.2 Field Separators. The format field separators
are the slash and the comma. A series of slashes is also a
field separator. The field descriptors or groups of field
descriptors are separated by a field separator.

The slash is used not only to separate field descriptors,
but to specify demarcation of formatted records. A for-
matted record is a string of characters. The lengths of the
strings for a given external medium are dependent upon
both the processor and the external medium.

The processing of the number of characters that can
be contained in a record by an external medium does not
of itself cause the introduction or inception of processing of
the next record.

7.2.3.3 Repeat Specifications. Repetition of the field
descriptors (except nH and nX) is accomplished by using
the repeat count. If the input,/output list warrants, the
specified conversion will be interpreted repetitively up to
the specified number of times.

Repetition of a group of field descriptors or field
separators is accomplished by enclosing them within paren-
theses and optionally preceding the left parenthesis with an
integer constant called the group repeat count indicating
the number of times to interpret the enclosed grouping. If
no group repeat count is specified, a group repeat count of
one is assumed. This form of grouping is called a basic group.

A further grouping may be formed by enclosing field
descriptors, field separators, or basic groups within paren-
theses. Again, a group repeat count may be specified. The
parentheses enclosing the format specification are not con-
sidered as group delineating parentheses.

7.2.3.4 Format Control Interaction with an Input/Out-
put List. The inception of execution of a formatted READ
or formatted WRITE statement initiates format control.
Each action of format control depends on information
jointly provided respectively by the next element of the
input/output list, if one exists, and the next field descriptor
obtained from the format specification. If there is an in-
put/output list, at least one field descriptor other than nH
or nX must exist.

When a READ statement is executed under format
control, one record is read when the format control is
initiated, and thereafter additional records are read only
as the format specification demands. Such action may not
require more characters of a record than it contains.

BX32

When a WRITE statement is executed under format
control, writing of a record occurs each time the format
specification demands that a new record be started. Ter-
mination of format control causes writing of the current
record.

Except for the effects of repeat counts, the format
specification is interpreted from left to right.

To each 1, F, E, G, D, A, or L basic descriptor inter-
preted in a format specification, there corresponds one
element specified by the input/output list, except that a
complex element requires the interpretation of two F, E,
or G basic descriptors. To each H or X basic descriptor
there is no corresponding element specified by the input/out-
put list, and the format control communicates information
directly with the record. Whenever a slash is encountered,
the format specification demands that a new record start
or the preceding record terminate. During a READ oper-
ation, any unprocessed characters of the current record
will be skipped at the time of termination of format control
or when a slash is encountered.

Whenever the format control encounters an I, F, E,
G, D, A, or L basic descriptor in a format specification, it
determines if there is a corresponding element specified by
the input/output list. If there is such an element, it trans-
mits appropriately converted information between ihe
element and the record and proceeds. If there is no cor-
responding element, the format control terminates.

If, however, the format control procceds to the last
outer right parenthesis of the format specification, a test is
made to determine if another list element is specified. If
not, control terminates. However, if another list element is
specified, the format control demands a new record start
and control reverts to that group repeat specification ter-
minated by the last preceding right parenthesis, or if none
exists, then to the first left parenthesis of the format speci-
fication. Note, this action of itself has no effect on the
scale factor.

7.2.3.5 Scale Factor. A scale factor designator is
defined for use with the F, E, G, and D conversions and is
of the form:

nP
where n, the scale factor, is an integer constant or minus
followed by an integer constant.

When the format control is initiated, a scale factor of
zero is established. Once a scale factor has been established,
it applies to all subsequently interpreted F, E, G, and D
field descriptors, until another scale factor is encountered,
and then that scale factor is established.

7.2.3.5.1 Scale Factor Effects. The scale factor n
affects the appropriate conversions in the following manner:

(1) For F, E, G, and D input conversions (provided
no exponent exists in the external field) and F output con-
versions, the scale factor effect is as follows:

externally represented number equals internally
represented number times the quantity ten raised
to the nth power.

(2) For F, E, G, and D input, the scale factor has no
effect if there is an exponent in the external field.

(3) For E and D output, the basic real constant part
of the output quantity is multiplied by 10" and the exponent
is reduced by n.

(4) For G output, the effect of the scale factor is
suspended unless the magnitude of the datum to be con-
verted is outside the range that permits the effective use of
F conversion. If the effective use of E conversion is required,
the scale factor has the same effect as with E output.

F-14

7.2.3.6 Numeric Conversions. The numeric field de-
scriptors I, F, E, G, and D are used to specify input/output
of integer real, double precision, and complex data.

(1) With all numeric input conversions, leading blanks
are not significant and other blanks are zero. Plus signs
may be omitted. A field of all blanks is considered to be
zero.

(2) With the F, E, G, and D input conversions, a
decimal point appe.ring in the input field overrides the
decimal point specification supplied ‘by the field descriptor.

(3) With all output conversions, the output field is
right justified. If the number of characters produced by
the conversion is smaller than the field width, leading
blanks will be inserted in the output field.

(4) With all output conversions, the external repre-
sentation of a negative value must be signed; a positive
value may be signed.

(5) The number of characters produced by an output
conversion must not exceed the field width.

7.2.3.6.1 Integer Conversion. The numeric field de-
scriptor Tw indicates that the external field occupies w
positions as an integer. The value of the list item appears,
or is to appear, internally as an integer datum.

In the external input field, the character string must be
in the form of an integer constant or signed integer constant
(5.1.1.1), except for the interpretation of blanks (7.2.3.6).

The external output field consists of blanks, if necessary,
followed by a minus if the value of the internal datum is
negative, or an optional plus otherwise, followed by the
magnitude of the internal value converted to an integer
constant.

7.2.3.6.2 Real Conversions. There are three conver-
sions available for use with real data: F, E, and G.

The numeric field descriptor Fuw.d in(}icates that the
external field occupies w positions, the fractional part of
which consists of d digits. The value of the list item appears,
or is to appear, internally as a real datum.

The basic form of the external input field consists of an
optional sign, followed by a string of digits optionally con-
taining a decimal point. The basic form may be followed
by an exponent of one of the following forms:

(1) Signed integer constant.

(2) E followed by an integer constant.

(3) E followed by a signed integer constant.

(4) D followed by an integer constant.

(5) D followed by a signed integer constant.

An exponent containing D is equivalent to an ex-
ponent containing E.

The external output field consists of blanks, if necessary,
followed by a minus if the internal value is negative, or an
optional plus otherwise, followed by string of digits con-
taining a decimal point representing the magnitude of the
internal value, as modified by the established scale factor,
rounded to d fractional digits.

The numeric field descriptor Ew.d indicates that the
external field occupies w positions, the fractional part of
which consists of d digits. The value of the list item appears,
or is to appear, internally as a real datum.

The form of the external input field is the same as for
the F conversion.

The standard form of the external output field for a
scale factor of zero is!

£80.x1 -+ xgY

'¢ signifies no character position or minus in that position.

BX32

where:
(1) x; --- xq are the d most significant rounded digits
of the value of the data to be output.

(2) Y is of one of the forms:
E £ yiy2 or =* »y2ys
and has the significance of a decimal exponent (an alter-
native for the plus in the first of these forms is the character
blank).

(8) The digit 0 in the aforementioned standard form
may optionally be replaced by no character position.

(4) Each y is a digit.

The scale factor n controls the decimal normalization
between the number part and the exponent part such that:

(1) If n = 0, there will be exactly — n leading zeros
and d + n significant digits after the decimal point.

(2) If n > 0, there will be exactly n significant digits
to the left of the decimal point and d — n + 1 to the right
of the decimal point.

The numeric field descriptor Guw.d indicates that the
external field occupies w positions with d significant digits.
The value of the list item appears, or is to appear, internally
as a real datum.

Input processing is the same as for the F -aversion.

The method of representation in the external output
string is a function of the magnitude of the real datum being
converted. L.et N be the magnitude of the internal datum.
The following tabulation exhibits a correspondence between
N and the equivalent method of conversion that will be
effected:

Magnitude of Datum Equivalent Conversion Effected

0.1 £ N< 1 Fw — 4).d, 4X

1 <N< 10 Fw — 4).d — 1), 4X
109 < N < 10%! Fw — 4).1,4X

10%! = N < 10¢ Fw — 4).0,4X
Otherwise sEw.d

Note that the effect of the scale factor is suspended unless
the magnitude of the datum to be converted is outside of
the range that permits effective use of F conversion.

7.2.3.6.3 Double Precision Conversion. The numeric
field descriptor Dw.d indicates that the external field
occupies w positions, the fractional part of which consists
of d digits. The value of the list item appears, or is to appear,
internally as a double precision datum.

The basic form of the external input field is the same
as for real conversions.

The external output field is the same as for the E
conversion, except that the character D may replace the
character E in the exponent.

7.2.3.6.4 Complex Conversion. Since a complex da-
tum consists of a pair of separate real data, the conversion
is specified by two successively interpreted real field de-
scriptors. The first of these supplies the real part. The
second supplies the imaginary part.

7.2.3.7 Logical Conversion. The logical field descrip-
tor Lw indicates that the external field occupies w positions
as a string of information as defined below. The list item
appears, or is to appear, internally as a logical datum.

The external input field must consist of optional blanks
followed by a T or F followed by optional characters, for
true and false, respectively.

The external output field consists of w — 1 blanks
followed by a T or F as the value of the internal datum is
true or false, respectively.

F-15

7.2.3.8 Hollerith Field Descriptor. Hollerith informa-
tion may be transmitted by means of two field descriptors,
nH and Aw:

(1) The nH descriptor causes Hollerith information to
be read into, or written from, the n characters (including
blanks) following the nH descriptor in the format specifi-
cation itself.

(2) The Aw descriptor causes w Hollerith characters
to be read into, or written from, a specified list element.

Let g be the number of characters representable in a
single storage unit (7.2.1,3.1). If the field width specified
for A input is greater than or equal to g, the rightmost g
characters will be taken from the external input field. If
the field width is less than g, the w characters will appear
left justified with w — g trailing blanks in the internal
representation. '

If the field width specified for A output is greater than
g, the external output field will consist of w — g blanks,
followed by the g characters from the internal representa-
tion. If the field width is less than or equal to g, the external
output field will consist of the leftmost w characters from
the internal representation.

7.2.3.9 Blank Field Descriptor. The field descriptor
for blanks is nX . On in,ut, n characters of the external
input record are skipped. (_n output, n blanks are inserted
in the external output record.

7.2.3.10 Format Specification in Arrays. Any of the
formatted input,output statements may contain an array
name in place of the reference to a FORMAT statement
label. At the time an array is referenced in such a manner,
the first part of the information contained in the array,
taken in the natural order, must constitute a valid format
specification. There is no requirement on the information
contained in the array following the right parenthesis that
ends the format specification.

The format specification which is to be inserted in the
array has the same form as that defined for a FORMAT
statement; that is, begins with a left parenthesis and ends
with a right parenthesis. An nH field descriptor may not
be part of a format specification within an array.

The format specification may be inserted in the array
by use of a data initialization statement, or by use of a
READ statement together with an A format.

8. PROCEDURES AND SUBPROGRAMS

There are four categories of procedures: statement
functions, intrinsic functions, external functions, and ex-
ternal subroutines. The first three categories are referred to
collectively as functions or function procedures; the last as
subroutines or subroutine procedures. There are two cate-
gories of subprograms: procedure subprograms and speci-
fication subprograms. Function subprograms and subroutine
subprograms are classified as procedure subprograms. Block
data subprograms are classified as specification subprograms.
Type rules for function procedures are given in 5.3.

8.1 STATEMENT FUNCTIONS. A statement function is
defined internally to the program unit in which it is refer-
enced. It is defined by a single statement similar in form to
an arithmetic or logical assignment statement.

In a given program unit, all statement function defini-
tions must precede the first executable statement of the
program unit and must follow the specification statements,
if any. The name of a statement function must not appear
in an EXTERNAL statement, nor as a variable name or
an array name in the same program unit.

BX32

8.1.1 Defining Statement Functions. A statement

function is defined by a statement of the form:

fla, as, -+ ,a,) =e

where f is the function name, e is an expression, and the
relationship between f and e must conform to the assign-
ment rulesin 7.1.1.1 and 7.1.1.2. The a’s are distinct variable
names, called the dummy arguments of the function. Since
these are dummy arguments, their names, which serve only
to indicate type, number, and order of arguments, may be
the same as variable names of the same type appearing
elsewhere in the program unit.

Aside from the dummy arguments, the expression e
may only contain:

(1) Non-Hollerith constants.

(2) Variable references.

(3) Intrinsic function references.

(4) References to previously defined statement func-
tions.

(5) External function references.

8.1.2 Referencing Statement Functions. A statement
function is referenced by using its reference (5.2) as a
primary in an arithmetic or logical expression. The actual
arguments, which constitute the argument list, must agree
in order, number, and type with the corresponding dummy
arguments. An actual argument in a statement function
reference may be any expression of the same type as the
corresponding dummy argument.

Execution of a statement function reference results in
an association (10.2.2) of actual argument values with the
corresponding dummy arguments in the expression of the
function definition, and an evaluation of the expression.
Following this, the resultant value is made available to the
expression that contained the function reference.

8.2 INTRINSIC FUNCTIONS .AND THEIR REFERENCE.
The symbolic names of the intrinsic functions (see Table 3)
are predefined to the processor and have a special meaning
and type if the name satisfies the conditions of 10.1.7.

An intrinsic function is referenced by using its reference
as a primary in an arithmetic or logical expression. The
actual arguments, which constitute the argument list, must
agree in type, number, and order with the specification in
Table 3 and may be any expression of the specified type.
The intrinsic functions AMOD, MOD, SIGN, ISIGN, and
DSIGN are not defined when the value of the second
argument is zero.

Execution of an intrinsic function reference results in
the actions specified in Table 3 based on the values of the
actual arguments. Following this, the resultant value is
made available to the expression that contained the function
reference.

8.3 EXTERNAL FUNCTIONS. An external function is
defined externally to the program unit that references it.
An external function defined by FORTRAN statements headed
by a FUNCTION statement is called a function sub-
program.

8.3.1 Defining Function Subprograms. A FUNCTION
statement is of the form:
t FUNCTION f (ai,az - -, ay)

where:

(1) t is either INTEGER, REAL, DOUBLE PRE-
CISION, COMPLEX, or LOGICAL, or is empty.

(2) fis the symbolic name of the function to be defined.

(3) The a’s, called the dummy arguments, are each
either a variable name, an array name, or an external
procedure name.

EF-16

TABLE 3. INTRINSIC FUNCTIONS
Number Type of:
Intrinsic . of Symbolic
Function Definition Argu- Name Argu- Functi
ments ment unction
Absolute Value la| 1 ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times 1 AINT Real Real
largest integer INT Real Integer
< la IDINT Double Integer
Remaindering* a: (mod a1) 2 AMOD Real Real
(see note MOD Integer Integer
below)
Choosing Max (a1, az, -+) =2 AMAXO Integer Real
Largest Value AMAX1 Real Real
MAXO0 Integer Integer
MAX1 Real Integer
DMAX1 Double Double
Choosing Min (ai, az,***) =2 AMINO Integer Real
Smallest AMIN1 Real Real
Value MINO Integer Integer
MIN1 Real Integer
DMINL Double Double
Float Conversion from 1 FLOAT Integer Real
integer to real
Fix Conversion from 1 IFIX Real Integer
real to integer
‘Transfer of Sign Sign of a; times 2 SIGN Real Real
lar] ISIGN Integer Integer
DSIGN Double Double
Positive Differ- a, —Min (a1, a2} 2 DIM Real Real
ence IDIM Integer Integer
Obtain Most 1 SNGL Double Real
Significant
Part of
Double Preci-
sion Argument
Obtain Real 1 REAL Complex Real
Part of Com-
plex Argu-
ment
Obtain Imagi- 1 AIMAG Complex Real
nary Part of
Complex
Argument
Express Single 1 DBLE Real Double
Precision Ar-
gument in
Double Pre-
cision Form
Express Two ar + az\//_-——_l 2 CMPLX Real Complex
Real Argu-
ments in
Complex
Form
Obtain Conju- 1 CONJG Complex Complex
gate of a
Complex
Argument

*The function MOD or AMOD (ay, a:) is defined as a1 ~ [a1/az]as, where [x
is the integer whose magnitude does not exceed the magnitude of x and
whose sign is the same as x.

Function subprograms are constructed as specified in
9.1.3 with the following restrictions:

(1) The symbolic name of the function must also
appear as a variable name in the defining subprogram.
During every execution of the subprogram, this variable
must be defined and, once defined, may be referenced or
redefined. The value of the variable at the time of execution
of any RETURN statement in this subprogram is called
the value of the function.

BX32

(2) The symbolic name of the function must not appear
in any nonexecutable statement in this program unit, except
as the symbolic name of the function in the FUNCTION
statement.

(3) The symbolic names of the dummy arguments may
not appear in an EQUIVALENCE, COMMON, or DATA
statement in the function subprogram.

(4) The function subprogram may define or redefine
one or more of its arguments so as to effectively return
results in addition to the value of the function.

(5) The function subprogram may contain any state-
ments except BLOCK DATA, SUBROUTINE, another
FUNCTION statement, or any statement that directly or
indirectly references the function being defined.

(6) The function subprogram must contain at least
one RETURN statement.

8.3.2 Referencing External Functions. An external
function is referenced by using its reference (5.2) as a
primary in an arithmetic or logical expression. The actual
arguments, which constitute the argument list, must agree
in order, number, and type with the corresponding dummy
arguments in the defining program unit. An actual argument
in an external function reference may be one of the following:

(1) A variable name.

(2) An array element name.

(3) An array name.

(4) Any other expression.

(5) The name of an external procedure.

If an actual argument is an external function name or
a subroutine name, then the corresponding dummy argu-
ment must be used as an external function name or a
subroutine name, respectively.

If an actual argument corresponds to a dummy argu-
ment that is defined or redefined in the referenced sub-
program, the actual argument must be a variable name, an
array element name, or an array name., Execution of an
external function reference as described in the foregoing,
results in an association (10.2.2) of actual arguments with
all appearances of dummy arguments in executable state-
ments, function dcfinition staternents, and as adjustable
dimensions in the defining subprogram. If the actual argu-
ment is as specified in item (4) in the foregoing, this associa-
tion is by value rather than by name. Following these
associations, execution of the first executable statement of
the defining subprogram is undertaken. An actual argument
which is an array element name containing variables in the
subscript could in every case be replaced by the same
argument with a constant subscript containing the same
values ‘as would be derived by computing the variable
subscript just before the association of arguments takes
place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must be
an array name or array element name (10.1.3).

If a function reference causes a dummy argument in
the referenced function to become associated with another
dummy argument in the same function or with an entity
in common, a definition of either within the function is
prohibited.

Unless it is a dummy argument, an external function is
also referenced (in that it must be defined) by the appear-
ance of its symbolic name in an EXTERNAL statement.

8.3.3 Basic External Functions. FORTRAN processors
must supply the external functions listed in Table 4.
Referencing of these functions is accomplished as described
in (8.3.2). Arguments for which the result of these functions

is not mathematically defined or is of type other than that
specified are improper.

8.4 SUBROUTINE. An external subroutine is defined
externally to the program unit that references it. An external
subroutine defined by FORTRAN statements headed by a
SUBROUTINE statement is called a subroutine subpro-
gram.

TABLE 4. Basic EXTERNAL FUNCTIONS
Number Type of:
Basic External . of Symbolic
Function Definition Argu- Name Argu- P .
unction
ments ment
Exponential es 1 EXP Real Real
1 DEXP Double Double
1 CEXP Complex Complex
Natural Loga- loge (a} 1 ALOG Real Real
rithm 1 DLOG Double Double
1 CLOG Complex Complex
Common Loga- logw (a) 1 ALOG10 Real Real
rithm DLOG10 Double Double
Trigonometric sin (a) 1 SIN Real Real
Sine 1 DSIN Double Double
1 CSIN Complex Complex
Trigonometric cos (a) 1 CcoSs Real Real
Cosine 1 DCOS Double Double
1 CCOSs Complex Complex
Hyperbolic tanh (a) 1 TANH Real Real
Tangent
Square Root (ah/? 1 SQRT Real Real
1 DSQRT Double Double
1 CSQRT Complex Complex
Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double
arctan (ai/az) 2 ATAN2 Real Real
2 DATAN2 Double Double
Remaindering* ai (mod a2) 2 DMOD Double Double
Modulus 1 CABS Complex Real

*Phe function DMOD (a1, a2) is defined as a1 — lai/a2]a:, where [x] is the
integer whose magnitude does not exceed the magnitude of x and whose
sign is the same as the sign of x.

8.4.1 Defining Subroutine Subprograms. A SUBROU-
TINE statement is of one of the forms:
SUBROUTINE s (a1, az, -+ -, an)

or
SUBROUTINE s
where:

(1) s is the symbolic name of the subroutine to be
defined.

(2) The a’s, called the dummy arguments, are each
either a variable name, an array name, or an external pro-
cedure name.

Subroutine subprograms are constructed as specified
in 9.1.3 with the following restrictions:

(1) The symbolic name of the subroutine must not
appear in any statement in this subprogram except as the
symbolic name of the subroutine in the SUBROUTINE
statement itself.

(2) The symbolic names of the dummy arguments may
not appear in an EQUIVALENCE, COMMON, or DATA
statement in the subprogram.

(3) The subroutine subprogram may define or redefine
one or more of its arguments so as to effectively return
results.

(4) The subroutine subprogram may contain any state-
ments except BLOCK DATA, FUNCTION, another SUB-

BX32

ROUTINE statement, or any statement that directly or
indirectly references the subroutine being defined.

(5) The subroutine subprogram must contain at least
one RETURN statement.

8.4.2 Referencing Subroutines. A subroutine is refer-
enced by a CALL statement (7.1.2.4). The actual arguments,
which constitute the argument list, must agree in order,
number, and type with the corresponding dummy argu-
ments in the defining program. The use of a Hollerith
constant as an actual argument is an exception to the rule
requiring agreement of type. An actual argument in a
subroutine reference may be one of the following:

(1) A Hollerith constant.

(2) A variable name.

(3) An array element name.

(4) An array name.

(5) Any other expression.

(6) The name of an external procedure.

If an actual argument is an external function name or
a subroutine name, the corresponding dummy argument
must be used as an external function name or a subroutine
name, respectively.

If an actual argument corresponds to a dummy argu-
ment that is defined or redefined in the referenced sub-
program, the actual argument must be a variable name, an
array element name, or an array name,

Execution of a subroutine reference as described in the
foregoing results in an association of actual arguments with
all appearances of dummy arguments in executable state-
ments, function definition statements, and as adjustable
dimensions in the defining subprogram. If the actual argu-
ment is as specified in item (5) in the foregoing, this associa-
tion is by value rather than by name. Following these
associations, execution of the first executable statement of
the defining subprogram is undertaken.

An actual argument which is an array element name
containing variables in the subscript could in every case be
replaced by the same argument with a constant subscript
containing the same values as would be derived by com-
puting the variable subscript just before the association of
arguments takes place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must be
an array name or array element name (10.1.3).

If a subroutine reference causes a dummy argument in
the referenced subroutine to become associated with another
dummy argument in the same subroutine or with an entity
in common, a definition of either entity within the sub-
routine is prohibited.

Unless it is a dummy argument, a subroutine is also
referenced (in that it must be defined) by the appearance
of its symbolic name in an EXTERNAL statement.

8.6 Brock Dara SuBPrRoGRAM. A BLOCK DATA
statement is of the form:

BLOCK DATA

This statement may only appear as the first statement of
specification subprograms that are called block data sub-
programs, and that are used to enter initial values into
elements of labeled common blocks. This special subprogram
contains only type-statements, EQUIVALENCE, DATA,
DIMENSION, and COMMON statements.

If any entity of a given common block is being given an
initial value in such a subprogram, a complete set of specifi-
cation statements for the entire block must be included,
even though some of the elements of the block do not appear

in DATA statements. Initial values may be entered into
more than one block in a single subprogram.

9. PROGRAMS

An executable program is a collection of statements,
comment lines, and end lines that completely (except for
input data values and their effects) describe a computing
procedure.

9.1 ProGRAM COMPONENTS. Programs consist of
program parts, program bodies, and subprogram statements.

9.1.1 Program Part. A program part must contain
at least one executable statement and may contain FOR-
MAT statements, and data initialization statements. It
need not contain any statements from either of the latter
two classes of statement. This collection of statements may
optionally be preceded by statement function definitions,
data initialization statements, and FORMAT statements.
As before only some or none of these need be present.

9.1.2 Program Body. A program body is a collec-
tion of specification statements, FORMAT statements or
both, or neither, followed by a program part, followed by
an end line.

9.1.3 Subprogram. A subprogram consists of a
SUBROUTINE or FUNCTION statement followed by a
program body, or is a block data subprogram.

9.1.4 Block Data Subprogram. A block data sub-
program consists of a BLOCK DATA statement, followed
by the appropriate (8.5) specification statements, followed
by data initialization statements, followed by an end line.

9.1.5 Main Program. A main program consists of
a program body.

9.1.6 FExccutable Program. An executable program
consists of a main program plus any number of subpro-
grams, external procedures, or both.

9.1.7 Program Unit. A program unit is a main
program or a subprogram.

9.2 NorMmaL EXECUTION SEQUENCE. When an ex-
ecutable program begins operation, execution commences
with the execution of the first executable statement of the
main program. A subprogram, when referenced, starts ex-
ecution with execution of the first executable statement of
that subprogram. Unless a statement is a GO TO, arithmetic
IF, RETURN, or STOP statement or the terminal state-
ment of a DO, completion of ‘execution of that statement
causes execution of the next following executable statement.
The sequence of execution following execution of any of
these statements is described in Section 7. A program part
may not (in the sense of 1.1) contain an executable state-
ment that can never be executed.

A program part must contain a first executable state-
ment.

10. INTRA- AND INTERPROGRAM
RELATIONSHIPS®

10.1 SvymsorLic NAMES. A symbolic pame has been
defined to consist of from one to six alphanumeric characters,
the first of which must be alphabetic. Sequences of characters
that are format field descriptors or uniquely identify certain
statement types, e.g., GO TO, READ, FORMAT, etc. are
not symbolic names in such occurrences nor do they form
the first characters of symbolic names in these cases. In a
program unit, a symbolic name (perhaps qualified by a
subscript) must identify an element of one (and usually only
one) of the following classes:

BX32

Class I An array and the elements of that array.
Class I1 A variable.

Class II1 A statement function.

Class IV An intrinsic function.

Class V An external function.

Class VI A subroutine.

Class VI An external procedure which cannot be
classified as either a subroutine or an external function in
the program unit in question.

Class VIIT A block name.

10.1.1 Restrictions on Class. A symbolic name in
Class VIII in a program unit may also be in any one of the
Classes I, 11, or IIl in that program unit.

Tn the program unit in which a symbolic name in Class
V appears immediately following the word FUNCTION in
a FUNCTION statement, that name must also be in
Class 11.

Once a symbolic name is used in Class V, VI, VII, or
VIII in any unit of an executable program, no other pro-
gram unit of that executable program may use that name
to identify an entity of these classes other than the one
originally identified. In the totality of the program units
that make up an executable program, a Class VII name
must be associated with a Class V or VI name, Class VII
can onlv exist Jocally in program units.

In a program unit, no symbolic name can be in more
thdan one class except as noted in the foregoing. There are
no restrictions on uses of symbolic names in different pro-
gram units of an executable prograin other than those noted
in the foregoing.

10.1.2 Implications of Mentions in Specification and
DATA Statements. A symbolic name is in Class I if and
only if it appears as a declarator name, Only one such ap-
pearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in a COMMON state-
ment (other than as a block name) is either in Class I, or
in Class 11 but not Class V. (8.3.1) Only one such appearance
for a symbolic name in a program unit is permitted.

A symbolic name that appears in an EQUIVALENCE
statement is either in Class I, or in Class II but not Class V.
(8.3.1).)

A symbolic name that appears in a type-statement
cannot be in Class VI or Class VII. Only one such ap-
pearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in an EXTERNAL
statement is in either Class V, Class VI, or Class VII. Only
one such appearance for a symbolic name in a program unit
is permitted.

A symbolic name that appears in a DATA statement is
in either Class I, or in Class I1 but not Class V. (8.3.1) In an
executable program, a storage unit (7.2.1.3.1) may have its
value initialized one time at the most.

10.1.3 Array and Array Element. In a program unit,
any appearance of a symbolic name that identifies an array
must be immediately followed by a subscript, except for
the following cases:

(1) In the list of an input/output statement.

(2) In alist of dummy arguments. :

(3) In the list of actual arguments in a reference to an
external procedure. :

(4) In a COMMON statement.

(5) In a type-statement.

Only when an actual argument of an external procedure
reference is an array name or an array element name may
sthe corresponding dummy argument be an array name. If

"the actual argument is an array name, the length of the

F-19

dummy argument array must be no greater than the length
of the actual argument array. If the actual argument is an
array element name, the length of the dummy argument
array must be less than or equal to the length of the actual
argument array plus one minus the value of the subscript
of the array element.

10.1.4 External Procedures. The only case when a
symbolic name is in Class VII occurs when that name ap-
pears only in an EXTERNAL statement and as an actual
argument to an external procedure in a program unit.

Only when an actual argument of an external procedure
reference is an external procedure name may the correspond-
ing dummy argument be an external procedure name.

In the execution of an executable program, a procedure
subprogram may not be referenced twice without the ex-
ecution of a RETURN statement in that procedure having
intervened.

10.1.5 Subroutine.
if it appears:

{1y Immediately following the word SUBROUTINE
in a SUBROUTINE statement.

(2) Immediately following the word CALL in a CALL
statement.

10.1.6 Statement Function. A symbolic name is in
Class 11T in a program unit if and only if it meets all three
of the following conditions:

(1) It does not appear in an EXTERNAL statement
nor is it in Class I.

(2) Every appearance of the name, except in a type-
statement, is immediately followed by a left parenthesis.

(3) A function defining statement (8.1.1) is present for
that symbolic name.

10.1.7 Intrinsic Function. A symbolic name is in
Class 1V in a program unit if and only if it meets all four
of the following conditions:

(1) It does not appear in an EXTERNAL statement
nor is it in Class I or Class II1.

(2) The symbolic name appears in the name column of
the table in Section 8.2.

(3) The symbolic name does not appear in a type-state-
ment of type different from the intrinsic type specified in
the table.)

(4) Every appearance of the symbolic name (except in
a type-statement as described in the foregoing) is im-
mediately followed by an actual argument list enclosed in
parentheses.

The use of an intrinsic function in a program unit of an
executable program does not preclude the use of the same
symbolic name to identify some other entity in a different
program unit of that executable program.

10.1.8 External Function. A symbolic name is in
Class V if it:

(1) Appears immediately following the word FUNC-
TION in a FUNCTION statement

(2) Is not in Class I, Class I1I, Class 1V, or Class VI
and appears immediately followed by a left parenthesis on
every occurrence except in a type-statement, in an EX-
TERNAL statement, or as an actual argument. There
must be at least one such appearance in the program unit in
which it is so used.

10.1.9 Variable. In a program unit, a symbolic name
is in Class II if it meets all three of the following conditions:

(1) It is not in Class VI or Class VII.

(2) It is never immediately followed by a left paren-
thesis unless it is immediately preceded by the word FUNC-
TION in a FUNCTION statement.

A symbolic name is in Class VI

BX32

(3} It occurs other than in a Class VIII appearance.

10.1.10 Block Name. A symbolic name is in Class
VIII if and only if it is used as a block name in a COMMON
statement.

10.2 DerFINITION. There are two levels of defini-
tion of numeric values, first level definition and second level
definition. The concept of definition on the first level applies
to array elements and variables; that of second level defini-
tion to integer variables only. These concepts are defined in
terms of progression of execution; and thus, an executable
program, complete and in execution, is assumed in what
follows.

There are two other varieties of definition that should
be noted. The first, effected by GO TO assignment and
referring to an integer variable being defined with other than
an integer value, is discussed in 7.1.1.3 and 7.1.2.1.2; the
second, which refers to when an external procedure may be
referenced, will be discussed in the next section.

In what follows, otherwise unqualified use of the terms
definition and undefinition (or their alternate forms) as
applied to variables and array elements will imply modifica-
tion by the phrase on the first level.

10.2.1 Definition of Procedures. If an executable pro-
gram contains information describing an external procedure,
such an external procedure with the applicable symbolic
name is defined for use in that executable program. An ex-
ternal function reference or subroutine reference (as the
case may be) to that symbolic name may then appear in the
executable program, provided that number of arguments
agrees between detinition and reference. In addition, for an
external function, the type of function must agree between
definition and reference. Other restrictions on agreements
are contained in 8.3.1., 8.3.2, 8.4.1., 8.4.2., 10.1.3, and 10.1.4.

The basic external functions listed in (8.3.3) are always
defined and may be referenced subject to the restrictions
alluded to in the foregoing.

A symbolic name in Class 111 or Class IV is defined for
such use.

10.2.2 Associations That Effect Definition. Entities
may become associated by:

(1) COMMON association.

(2) EQUIVALENCE association.

(3) Argument substitution.

Multiple association to one or more entities can be the
result of combinations of the foregoing. Any definition or
undefinition of one of a set of associated entities effects the
definition or undefinition of each entity of the entire set.

For purposes of definition, in a program unit there is no
association between any two entities both of which appear
in COMMON statements. Further, there is no other as-
sociation for common and equivalenced entities other than
those stated in 7.2.1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference
is an array name, an array element name, or a variable
name, then the discussions in 10.1.3 and 10.2.1 allow an
association of dummy arguments with the actual arguments
only between the time of execution of the first executable
statement of the procedure and the inception of execution
of the next encountered RETURN statement of that pro-
cedure. Note specifically that this association can be carried
through more than one level of external procedure reference.

In what follows, variables or array elements associated
by the information in 7.2.1.3.1 and 7.2.1.4 will be equivalent
if and only if they are of the same type.

If an entity of a given type becomes defined, then all
associated entities of different type become undefined at the

F-20

same time, while all associated entities of the same type
become defined unless otherwise noted.

Association by argument substitution is only valid in
the case of identity of type, so the rule in this case is that
an entity created by argument substitution is defined at
time of entry if and only if the actual argument was defined.
If an entity created by argument substitution becomes
defined or undefined (while the association exists) during
execution of a subprogram, then the corresponding actual
entities in all calling program units becomes defined or un-
defined accordingly.

10.2.3 Events That Effect Definition. Variables and
array elements become initially defined if and only if their
names are associated in a data initialization statement with
a constant of the same type as the variable or array in
question. Any entity not initially defined is undefined at
the time of the first execution of the first executable state-
ment of the main program. Redefinition of a defined entity
is always permissible except for certain integer variables
(7.1.2.8, 7.1.3.1.1, and 7.2.1.1.2) or certain entities in sub-
programs (6.4, 8.3.2, and 8.4.2).

Variables and array elements become defined or rede-
fined as follows:

(1) Completion of execution of an arithmetic or logical
assignment statement causes definition of the entity that
precedes the equals.

(2) As execution of an input statement proceeds, each
entity, which is assigned a value of its corresponding type
from the input medium, is defined at the time of such as-
sociation. Only at the completion of execution of the state-
ment do associated entities of the same type become defined.

(3) Completion of execution of a DO statement causes
definition of the control variable.

(4) Inception of execution of action specified by a DO-
implied list causes definition of the control variable.

Variables and array elements become undefined as
follows:

(1) At the time a DO is satisfied, the control variable
becomes undefined.

(2) Completion of execution of an ASSIGN statement
causes undefinition of the integer variable in the statement.

(8) Certain entities in function subprograms (10.2.9)
become undefined. .

(4) Completion of execution of action specitied by a
DO-implied list causes undefinition of the control variable.

(5) When an associated entity of different type be-
comes defined.

(6) When an associated entity of the same type be-
comes undefined.

10.2.4 Entities in Blank Common. Entities in blank
common and those entities associated with them may not
be initially defined.

Such entities, once defined by any of the rules previously
mentioned, remain defined until they become undefined.

10.2.5 Entities in Labeled Common. Entities in la-
beled common or any associates of those entities may be
initially defined.

A program unit contains a labeled common block name
if the name appears as a block name in the program unit.
If a main program or referenced subprogram contains a
labeled common block name, any entity in the block (and its
associates) once defined remain defined until they become
undefined.

It should be noted that redefinition of an initially de-
fined entity will allow later undefinition of that entity.

BX32

Specifically, if a subprogram contains a labeled common
block name that is not contained in any program unit
currently referencing the subprogram directly or indirectly,
the execution of a RETURN statement in the subprogram
causes undefinition of all entities in the block (and their
associates) except for initially defined entities that have
maintained their initial definitions.

10.2.6 Entities Not in Common. An entity not in
common except for a dummy argument or the value of a
function may be initially defined.

Such entities once defined by any of the rules previously |
mentioned, remain defined until they become undefined.

If such an entity is in a subprogram, the completion of
exccution of a RETURN statement in that subprogram
causes all such entities and their associates at that time
(except for initially defined entities that have not been
redefined or become undefined) to become undefined. In
this respect, it should be noted that the association between
dummy arguments and actual arguments is terminated at
the inception of execution of the RETURN statement.

Again, it should be emphasized, the redefinition of an
initially defined entity can result in a subsequent undef-
inition of that entity.

10.2.7 Basic Block. In a program unit, a basic block
is a group of one or more executable statements defined as
follows.

The following statements are block terminal statements:

(1} DO statement,

(2) CALL statement.

(3) GO TO statement of all types.

(4) Arithmetic 1T statement.

(5) STOP statement.

(6) RETURN statement.

(7) The first executable statement, if it exists, preceding
a statement whose label is mentioned in a GO TO or arith-
metic IF statement.

(8) An arithmetic statement in which an integer var-
iable precedes the equals.

9) A READ statement with an integer variable in the
list.

(10) A logical IF containing any of the admissible forms
given in the foregoing.

The following statements are block initial statements:

(1) The first executable statement of a program unit.

(2) The first executable statement, if it exists, follow-
ing a block terminal statement.

Every block initial statement defines a basic block. If
that initial statement is also a block terminal statement, the
basic block consists of that one statement. Otherwise, the
basic block consists of the initial statement and all ex-
ecutable statements that follow until a block terminal state-
ment is encountered. The terminal statement is included in
the basic block.

10.2.7.1 Last Executable Statement. Ina program unit
the last executable statement (which cannot be part of a
logical IF) must be one of the following statements: GO TO
statement, arithmetic IF statement, STOP statement, or
RETURN statement.

10.2.8 Second Level Definition. Integer variables
must be defined on the second level when used in subscripts
and computed GO TO statements.

Redefinition of an integer entity causes all associated
variables to be undefined for use on the second level during
this execution of this program unit until the associated
integer variable is explicitly redefined.

Except as just noted, an integer variable is defined on
the second level upon execution of the initial statement of

F-21

a basic block only if both of the following conditions apply:

(1) The variable is used in a subscript or in a computed
GO TO in the basic block in question.

(2) The variable is defined on the first level at the time
of execution of the initial statement in question.

This definition persists until one of the following
happens:

(1) Completion of execution of the terminal statement
of the basic block in question.

(2) The variable in quesiion becomes undefined or re-
ceives a new definition on the first level.

At this time, the variable becomes undefined on the
second level.

In addition, the occurrence of an integer variable in the
list of an input statement in which that integer variable
appears following in a subscript causes that variable to be
defined on the second level. This definition persists until one
of the following happens:

(1) Completion of execution of the terminal statement’
of the basic block containing the input statement.

(2) The variable becomes undefined or receives a new
definition on the first level.

An integer variable defined as the control variable of a
DO-implied list is defined on the second level over the range
of that DO-implied list and only over that range.

10.2.9 Certain Entitics in Function Subprograms. If
a function subprogram is referenced more than once with an
identical argument list in a single statement, the execution
of that subprogram must yield identical results for those
cases mentioned, no matter what the order of evaluation
of the statement,

If a statement contains a factor that may not be
evaluated (6.4), and if this factor contains a function ref-
erence, then all entities that might be defined in that ref-
erence become undefined at the completion of evaluation of
the expression containing the factor.

10.3 DEFINITION REQUIREMENTS FOR Usg OF EN-
TITIES. Any variable referenced in a subscript or a com-
puted GO TO must be defined on the second level at the
time of this use.

Any variable, array element, or function referenced as a
primary in an expression and any subroutine referenced by a
CALL statement must be defined at the time of this use.
In the case where an actual argument in the argument list
of an external procedure reference is a variable name or
an array element name, this in itself is not a requirement
that the entity be defined at the time of the procedure
reference; however, when such an argument is an external
procedure name, it must be defined.

Any variable used as an initial valye, terminal value, or
incrementation value of a DO statement or a DO-implied
list must be defined at the time of this use.

Any variable used to identify an input/output unit
must be defined at the time of this use.

At the time of execution of a RETURN statement in a
function subprogram, the value (8.3.1) of that function must
be defined.

At the time of execution of an output statement, every
entity whose value is to be transferred to the output medium
must be defined unless the output is under control of a for-
mat specification and the corresponding conversion code is
A. If the output is under control of a format specification, a
correct association of conversion code with type of entity
is required unless the conversion code is A The following
are the correct associations: I with integer; D with double
precision; E, F, and G with real and complex; and L with
logical.

BX32

INDEX

A
Alphanumeric Data, 2-2, 5-8
Alphanumeric Input, 5-8
Alphanumeric Output, 5-8
Area Trace, 4-8, 7-2
Arguments, 2-2, 4-2, 5-2, 6-5, 6-6
Arithmetic 1F Statement, 3-2
Arithmetic Operators, D-1
Arithmetic Statement Function, 2-1, 6-1, 6-2
Arrays, 1-6, 4-2, 4-3, 4-7, 5-3, 5--11
Assigned GO TO Statement, 3-1
ASSIGN Statement, 3-1

B
Backspace Tape, 5-1
Batch, 3-5
BCD Records, 5-9
Binary Chain Tape, 7-4
Blank Common, 4-3, 4-7, 6-17, 7-4
Block Data, 4-7, 6-1, 6-7

C
Call, 6-1, 6-6
Carriage Control, 5-9
Chaining Facility, 4-3, 5-9, 7-2
Character Set, 1-1
Comment Lines, 1-2
COMMON, 4-3, 4-5, 6-7, 7-4
Complex Numbers, 1-3, 1-4, 1-5, 5-7, 6-4
COMPLEX Statement, 4-1
Computed GO TO Statement, 3-1
Computer Test IF Statement, 3-2
CONTINUE, 3-4
Control Statements, 1-2, 3-1, 5-1, D-1
Constants, 1-1, 1-3, 1-4, 4-5, 4-7
Control Characters, 5-4
Conversion, 5-4

D
D-Type Conversion, 5-5, 5-7
DATA Statement, 4-5, 4-7
Decimal Exponent, 1-4

i-1

Device Numbers, 5-1, 5-11, D-2
Dimensions, 4-2, 4-7, 6-5, 66, 6-8
DO-Loops, 5-2

DO Statement, 1-5, 3-3, 5-2

Dollar Sign Character, 1-2

Double Precision, 1-3, 1-4, 1-5, 4-1, 5-5, 6-4
Dummy Arguments, 4-3

Dummy Names, 4-2

Dummy Variables, 6-3, 6-4, 6-5, 6-6
Dynamic Control Subrouti'e, C-1
Dynamic Storage Allocation, C-1

E
E-Input, 5-5, 5-7
E-Output, 5-4, 5-6
Equals Operator, 2-2
Equivalence, 4-3, 4-5, 6-1
END, 3-5
End of Job, 3-5
ENDFILE, 5-1
Entry Address, 7-2
Error Flag, 5-6, 5-7
Error Messages, 7-1, E-1
Executable Statements, 6-3
Exponentiation, 2-2
Expression, 2-1, D-1
External Records, 5-2
EXTERNAL Statement, 4-2, 6-5

F
F-Input, 5-5, 5-7
F-Output, 5-5, 5-7
Floating Point Number, 5-4, 5-5, 56
Format Descriptors, 5-3, 5-10, D-2
Format Externally Entered, 5-11
Format List Exhausted, 5-9
FORMAT Statement, 5-1, 5-3, 5-11
Formatted READ, 5-1
Formatted WRITE, 5-1
FORTRAN Library, 6-1, 6-2
FORTRAN Functions, 6-1, 6-3
FORTRAN System Description, 7-1
Function, 4-7, 6-1, 6-3, 6—4, 6-5, D-1

BX32

G M

G-Input, 5-5, 5-7 Magnetic Tape, 5-2
G-Output, 5-5, 5-7 Mapping, 7-2
GO TO Statements, 3-1 Matrix Order, 5-3

Mixed Expressions, 2-2
Mode, 2-2, 4-1, 4-2, 4-3

H Multiple Record Definitions, 5-10
H-TField Descriptors, 5-8 N
Heading, 5-8

Nest of DO’s, 3-3

ith, 1- -4
Hollerith, 1-3, 1 Non-Executable Statements, 4—1

Hollerith Constant, 4-7

Hollerith dnput, 5-8 (o)
Hollerith Field, 5-8 Operation Details, 7-6
Hollerith OQutput, 5-8 Operator, 2-1
Operator Hierarchy, 2-1
P
I . P Scale Factor, 5-6

I-Type Conversion, 5-4 Parentheses, 2 1, 2.2
Identification Field, 1-2 PAUSE, 3-4

IF ACCUMULATOR OVERFLOW, 3-2
IF DIVIDE CHECK, 3-2

1IF QUOTIENT OVERFLOW, 3-2

IF (SENSE LIGHT m), 3-2

IF (SENSE SWITCH m), 3-2

IF STATEMENT, 3-2

Implied Decimal Point, 5-6

Implied DO Loops, 5-2

Implied Scale Factor, 5-6

Initialization, 4--5

Input Data, 5-6

Input;/Output Device Assignments, B—1
Input ‘Output Statements, 5-1, 5-2, 5-3, 5-10, D-1, D-2
Integers, 1-4, 1-5, 2-2, 6-4

Integer Input, 5-4

R
Range of a DO, 3-3
READ Statement, 5-1
Real, 1-4, 1--5, 6-4
REAL Statement, 4-1
Real Time Interrupt Capability, C-1
Record, 5-1, 5-2, 5-3, 5-9, 5-10
Recursive Calls, C-1
Relational Operators, 2-2
Repeating Format Descriptors, 5-9
Restrictions, 4-7
RETURN Statement, 6-4, 6-5, 6-6
REWIND Tape, 5-1

Integer Output, 5-4 S
INTEGER Statement, 4-1 Sample Programs, A-1
Item Trace, 4-8, 7-2 Scale Factor, 5-6, 5-7

Sense Light, 3-2
Sequence Identification, 1-2

L Shared Storage, 4-3, C~-1
L-Type Conversion, 5-7 Simple Arguments, 5-2
Labled COMMON, 4-3, 4-7, 6-7, 7-4 Single Precision Floating Point, 4-1
Library Function, 6~1, 6-2, 6-4, D-1 Source Statement, 7-4
Library Tape, 6-1 Special Control Lines, 1-2
Line Advance Control, 5-10 Specification of Matrix Order, 5-3
Line Continuation Field, 1-1 Specification Statement, 4-1, 4-7, D-1
Line Format, 1-1 Statement Number Field, 1-1, 1-2
List, 5-2 STOP, 3-4
Listings, 7-1 Stop Code, 5-1
Logical Expression, 1-4, 1-5, 2-2, 2-3, 6-4 Subprogram, 4-2, 4-3, 6-1
Logical IF Statement, 3-2 Subprogram Name, 4-3, 4-5
Logical Input, 5-7 SUBROUTINE, 4-7, 6-1, 6-3, 6-6
Logical Operator, 2-3, D~1 Subscripts, 1-3, 2-2, 4-2
Logical Output, 5-7 Subscripted Variables, 1-5, 2-2
Logical Quantity, 5-7 Symbolic Instruction Statement, 7-1
LOGICAL Statement, 4-1 Symbolic Listings, 7-1

i-2 BX32

T
Trace Listing Format, 7-3
TRACE Statement, 4-8
Tracing, 7-2, 7-3

U
Unconditional GO TO Statement, 3—1
Unconditional Trace, 6-3
Unformatted READ, 5-1
Unformatted WRITE, 5-1
Unit, 5-1, 5-2

iv3

v

Variables, 1-1, 1-3, 1-5
Vertical Spacing, 5-9

w
WRITE Statement, 5-1

X
X-Field Descriptor, 5-8

BX32

ONGLINE =====-=------=ssccecmccomcc-==--

w

HONEYWELL INFORMATION SYSTEMS
Publications Remarks Form*

M

ORDER No.;

TITLE:| SERIES 16 FORTRAN IV 0l BX32, REV, 0 !
DATED: | APRIL, 1967
ERRORS IN PUBLICATION:
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:
(Please Print)

FROM: NAME DATE:

COMPANY

TITLE

*your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. |f you do not require a written reply, please check here.D

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

Teeeeee-c---..-..-.-CUTALONG

i

	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	C-1
	C-2
	D-1
	D-2
	E-1
	E-2
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	I-1
	I-2
	I-3
	replyA
	replyB

