Honeywell BASIC LANGUAGE

SERIES 16

SUBJECT:
Description and Use of BASIC Language for Models 316 and 516, Including Stand-Alone
and OP-16 Versions of BASIC Interpreter.

SPECIAL INSTRUCTIONS:

This manual, Order Number AB85, Rev. 1, supersedes the previous edition, Order
Number AB85, Rev. 0 (Formerly M-449), Document Number 70130072543A, dated
May 1971. Technical changes have been made in accordance with ECO-20051. Bars
in the margins indicate revisions; asterisks indicate deletions,

DATE:
March 1972

ORDER NUMBER:
AB85, Rev. 1

DOCUMENT NUMBER:
70130072543B

PREFACE

This manual describes the structure and use of BASIC (Beginner's All-Purpose
Symbolic Instruction Code), an engineering- and science-oriented programming language
for Series 16 computers having as little as 4,096 words of memory. The manual has been
designed for the computer novice. No actual experience in computer programming is
assumed. If the new BASIC user has mastered elementary algebra, he can begin program-

ming simple problems immediately.

After an introduction to the BASIC language, including a summary of its major con-
stituents and the system commands available to the interactive user, the manual deals in
succeeding sections with the syntax of the language, its five statement groups, and the
programrnatic interface between programs written in BASIC and programs written in the
DAP-16 assembly language or in Fortran., A concluding section on general operational
procedures associated with the BASIC Interpreter shows that it can be used as a stand-

alone interactive program or as a subsystem of the OP-16 Operating System.

Applicable documents include OP-16 Operating System, Order Number BY06; DAP- 16
and DAP-16 Mod 2 Assembly Language, Order Number BY09; and Series 16 Fortran IV,
Order Number BX32,

© 1971, 1972, Honeywell Information Systems Inc. File No. 1A23

ABS85

CONTENTS

_ '
e
"
'—.(D

Section I Introduction e ettt ettt et
Language SUMIMATY it titeeeoeeesosossnnsoneeesssaasass
System Command SUMIMATY +.vveeriereneennsenosnneens
Required Hardware ...ueeesseessssenoacennennesnnenns
Required Software ...uveieiiecenresoeneeereennnnnnens
Performance Specifications +....eveeeeeeeerenncnnneens

— e
1
AR R W

no
1

[SSEN oSSR WS (SR N}
1
QI N N

Section II LN g UAEE v it ets et ereoasoeononoonenosnsoeossnesssennseses
Introduction ..ueiseeeeeeeeeeeeeoeenoeeosnnsonnennnnens

L
Statement Line ...uviiuiiorvrnererosonoenneasesensas
Line Numberiitiissesornceasonaneoeosonoenas
Statement Operator ..vuveeeeeeeseeesesoerosseennnns
Use of Statement Delimiter (:)vverervreseennnnn.
REMarKkS iiteietnnversensesseasstosensosnnnnssss

Elements of BASIC ... uiisoreereosennnonononsoennnans
Constants .. uiiiuerrreretererransnanenonnnnronenans

Description tiieiieeessnenscroereoerrnnnseneens
Integer Numbersieeetererivenenncnnrenensas
Floating~Point Numbersviveeeeereenneneennns
Exponential Numbersveeeeeeesenneeeseennnns
Variables ...uiiiiosesostonnnenoonnornceoeososennan
Expressions D T I T
Arithmetic Operatorsvveeeeerorennonesceanns
Relational Operators ..iiuisieeeeceenonevonsoneeas
Forming ExXpressions ...iieeeeeeeresoeeeesconsas
Evaluating ExXpressions suuieeeeeeeeeeesoennnnness

NS I oS WV]
[N A T |

1
=0 0N 0000 00NN~ 0

—_ O

Section III Language Statementsieieetitenceneennoseonnenaenns
Arithmetic Assignment Statementeeveeerveneeesenes
Control Statements tuiveeeeeeeeeeseesenonsoeosoensonns

Unconditional GO TO Statementoeeeeeseececceen
Two-Branch IF Statement ..vueeeeeereoeesensocesnas
Three-Branch IF Statement ...u.eeeeesevenconoeenss
FOR-NEXT Statements ...eeeeceeososoronsesoessncns
Examples of Use ... iienrearnrosnrososnaconsones
Negative Step Size ...t vtirrirrerivoceeeserennns
Nesting LLoOPS +vievvrenevcornconnnnnns
ON Statement Conditional Controlceeeeeoenes.
END Statementuieeeeneeereensececescsosassenss 3=15
STOP Statement . ..ceeeeeeeeeresooeoneenonsseasneaes 3-16
Input/Output Statementsveevuveveeennnoernsnseess 3-17
READ and DATA Statements Cesesesesesrtsesessarces 3-18
RESTORE Statement ..uveeeveeeesereossenonssnness 3-19
INPUT Statementcieveeveneeerooesnsnsnseeene 3-21
PRINT Statement ...iviveeieerenneeeeesnnosnssanses 3-23
Items of PRINT LiSt +tiuieeeeeroeennereooeeneases 3-23
Separating PRINT List Items With Comma 3-24
Separating PRINT List Items With Semicolon 3-24

t
= o= 00 000N W W

1
—
BN

1 t]
o

WWWWwWwwwWwWwWww NDNNNNNDNNNNINIDN
1

iii ABS85

CONTENTS (cont)

Page

Section III (cont) Numerical Output Format in Lists00000.. 3-26

: Tabbing ..iiveeeveeesosesersssstsssessosssonnses 3-26

Specification Statements ..., i 0iiviiviiiiirieiii.. 3227

Statement Typesveevevnscnsassssnsssensssesess 327

DIMension Statementciieerrtevrssoeccscceseees 3-28

Applicationieeevvveesseresessorsassssanessnss 3-28

Singly Subscripted ATrayscceeiescnssscnanas 3-29

Doubly Subscripted Arrays suuiuveeeessecosoceseeas 3=31

Rules for DIMensioning Variables0000000... 3-35

Subroutine and Functionsessssetsesscsascscecennes 3-36

Subroutines Within Main Programeeeeeeeoesees 3-37
DAP-16 and FORTRAN IV Subroutine CALL

Statement0c00000000000 st 00ncsscrsaanas 3-39

Built-In Functionseevevveersecrsosssssscsnssss 3-40

Programmer-Defined Functionseevevevesecneoss. 3-43

Section IV Interface Conventionseecesevvesesssecsossoosncnseans
Introductioniveeesessossroossossssessssnsosnasns

Argument Transfer Subroutine FSATcvveereeneenns

Calling a Subroutineicivveeetesncccnoscoreenns

Calling FEAT ...t ieueeonvennsesncscssesssoassnnns

Examples of Subroutine Linkage and Use ...veveeeeesnnns

LI R |
DN DN N = =

Section V Operating Procedureseoveeeseeecsccsssosssonoacecs
Introductioniiiiiiiiiinneeertroennennsnonnnnns
Stand-Alone Versioncceeoveesvocesssssoscasnecs
Loading Interpreterciveetnveennsocsoneonncas
Executing Interpreterccciieieteceeceieiveniinns
OP-16 Version of BASIC iivrunennnnnenncennns
Configuring BASIC Interpreter Under OP-16
Ioading OP-16 Version of BASICc.vivtennnennns
I.oading DAP and FORTRAN Subroutinesve000..
Loading and Running BASIC Interpreter Under

[GINC T I, EET B, BT, T, WY, BT NG N N N N
1 1
W W N DN = e e b e

Input/Output and Control ...ieierereornnroseesoncoonns
Data Formatsiiceersesossestsssososascnsoansons
Input Formatscieiiiniinieeeerrnsvsssosesnns
Output Formatsieeietereeeerenaneeenonnnenans
Error Message Formats0veeerinenrronnconennns
Detailed Description of BASIC System Commands ...,....
JOB Commandueeeeressessosocensoassnnossenes
CLEAR Command . .uieesoeetoesrosscsasosoansnsens
RUN Command .. .eeesoeooneesosossooecoensnsneonen
CONTINUE Command ...eeeeteeeeseoseeseocsnenean .
IIST Command . ..iseieesrcocoessossesoronsannocnes
QUIT Commandceeeererereeononnososssoceenes
LOAD Commandeeeeoetseosessosseensonnenes

Ul U Ut o1 Ut Ol Ot Ot U0l Ul o n
i 1 1 1 1+
00 00 ~1 ~l ~1 ~J ~ =] OO0 O v i

iv ABS85

COGNTENTS (cont)

Page
Appendix A Diagnostics . ..iuuiiuisuereoeossssonesncnsensacnssesneeoees Al
Appendix B Syntactic Structure of BASIC |,t eeoeoesescessesesenes B-1

ILLUSTRATIONS
Figure 2-1. BASIC Programming Example ...veeeeeeesoossnsossasesas 2=1
Figure 2-2. Statement Format Exampleiveeieeriestnscnnrssesonsese 2-5
Figure 2-3. Use of Statement Delimiter ...ieveeeeessoceosceencoonssss 2=5
Figure 2-4. Use of REMark Statements ...v.eceeveesscessnscesosneseees 2-6
Figure 3-1, Example of Arithmetic Assignment Statement0000... 3-2
Figure 3-2. Example of Unconditional Control Statement (GO TO) 3-4
Figure 3-3. IF Statement ..uieveeeseeeosssosossssssscssososesssssanees 3-6
Figure 3-4, FOR-NEXT Statement Usage ...vvsvessesssessosscecsacees 3=10
Figure 3-5, Legal and Illegal Nested LoOPS sevseeeenressessseesrsecsaees 3-12
Figure 3-6 Nested FOR-NEXT LiOOPS tvvveeossesoossrosssssssossssaas 312
Figure 3-7. Results of Nested FOR-NEXT Loops Example0000000. 3-14
Figure 3-8 Example of ON Control Statementvceevevenceceeesess 3-15
Figure 3-9. STOP and END Statements ..evsesessecsssecsessvososeeees 3=17
Figure 3-10. READ and DATA Statementsc0ceesveessscssscassoses 3=-20
Figure 3-11. Use of INPUT Statement ...ieseeesasssscsoroonsoscsnsens 3-22
Figure 3-12. PRINT Statementveveeeeesessssersosocessssssanses 3-25
Figure 3-13. Semicolon in PRINT Statement ...eueeveesevcceosesocssess 3-25
Figure 3-14. Uses of PRINT Statementceeeeceseesocassssecnssosnee 3-27
Figure 3-15. Subscripted Variablesceeveeerssesossscecsssssesses 3-30
Figure 3-16. Matrix A (IN,7) 4o eeesacneneneacnassnsosesesssonssssenss 3-31
Figure 3-17. Sales Evaluation Programecoeeeesseescveresssscassss 3-33
Figure 3-18. Sales Evaluation Program Results ...c.iveevecsecsscesses 3-34
Figure 3-19. Subroutine in File with Main Programseoeveeeo0eeees 3=39
Figure 4-1, Example of FORTRAN Subroutine for BASIC Program 4-3
Figure 4-2. Example of DAP-16 Subroutine for BASIC Program 4-4
Figure 5-1. Model 316 Control Panel ...iveeeeeeesassosscssssooncoees H-2
TABLES

Table 1-1, BASIC Language SUMMATY +veeeceescenseassensessssosases 1a2
Table 1-2., System Commands tue.seeesrecscsossssrsocssossssensacass 1=3
Table 3-1. Sales Totals .eveverveieosorocesanssssssssssssssesensas 3=32
Table 3-2. Built-In BASIC Functions ...e.eeeeecesssssoscscecocsseease 3=41

v ABS85

SECTION1I
INTRODUCTION

LANGUAGE SUMMARY

BASIC is a programming system that was developed at Dartmouth College in the
middle of the sixties. It has been implemented on numerous computers since then
because it is an easy language to learn and has a simple algebraic notation familiar to a

very large class of prospective users.

A BASIC program consists of a set of statements. Each statement in a stored pro-
gram must be numbered. Unnumbered statements are executed immediately. The pro-
gram is executed in the numerical sequence given, though the statements need not appear

in any given sequence.

Table 1-1 lists the major constituents of the BASIC language. Note that the use of
these statements is reasonably self-evident. The angular and square brackets in the

table represent variables and optional elements, respectively.

LET and GO TO are the assignment and control transfer statements, respectively.
GO SUB is a subroutine call. Functions are invoked by enclosing the parameter in paren-
theses following the function name. IF ... THEN allows a single relational operator
between expressions, and control passes to the statement number following THEN on the
true path. NEXT is used to terminate the range of the FOR statement and must use
exactly the same variable as in the FOR statement. (If the third expression or STEP in a

FOR statement is omitted, it is assumed to be one.)

The expression in the ON statement is evaluated and truncated to an integer. For
expression =1, control is transferred to the first statement number in the list; for expres-

sion =2, control is transferred to the second statement number in the list; etc.

READ assigns to the listed variables the values obtained from a DATA statement.
The latter is used to specify all the values needed for the variables. For output, the user
can specify variable names or literals; the literals are enclosed within the quotation marks.
Thus, the statement PRINT "THE SQUARE ROOT OF'" X, "IS" SQR(X) might cause the
following to be printed: THE SQUARE ROOT OF 625 IS 25. For normal printing purposes,
the output line is divided into five zones of 13 squares each. The user can change the

1-1 ABS85

width of these zones, however, through the use of commas, semicolons, and TABS.
Commas are used to advance to the beginning of a new zone. A PRINT command without

anything following it signals a new line.

Table 1-1. BASIC Language Summary

LET <v-ariable> = <3xpression> or <varia.b1e> = <expression>

GO TO ‘<statement number>

GO SUB <statement number >

RETURN

IF expression><‘e1ation> <expression> THEN <statement number>

FOR <unsubscripted variable> = <expression> TO <expression> STEP
(gxpression>

NEXT < unsubscripted variable >

ON <expression> GO TO (statement number> [<sta’cement number>]

READ <(Jariable> , variable> , ..., <variable>

PRINT <1itera1 or expression> , <1itera1 or expression> PP

STOP

END

CALL (< subroutine number> , <argument list >)
DIM <variable> (<integer> [, <integer>])
DATA <'number>) <number> y e

RESTORE

INPUT

DEF FN <1et’cer> (<unsubscripted variab1e>) = <expression>

REM < any string of characters>

The execution of an END statement terminates the program: the STOP acts like a

GO TO where the statement number represents the END command.

The CALL statement is used to invoke one of up to ten subroutines written in
FORTRAN IV and the DAP-16 assembly language. The entry points of the subroutines
are inserted in a table maintained by the Interpreter. The subroutine number tells
BASIC which table entry to use. Arguments can then be transferred to and from the
CALLing BASIC program.

1-2 ABBS85

The DIMension statement is used to specify arrays which contain more than 10 sub-
scripts. DATA specifies the input constants. RESTORE returns the DATA pointer to the
first constant of the first DATA statement. An INPUT statement causes an exclamation
point to be typed and the program waits for the user to type in the number of data items

requested in the read list.

Functions are defined by the DEF statement; the function name consists of the letters
FN followed by a letter. Any expression which fits on one line can be used to define a func-
tion, including another function. In addition to eight intrinsic functions (sine, cosine, expo-
nentiation, etc.), the INT and RND functions are provided. The former is |X|, i.e., the

greatest integer not greater than X; the latter produces a random number between 0 and 1.

REMark statements are nonexecutable and are used to enter comments and explana-

tions in the program listing.

SYSTEM COMMAND SUMMARY

The interactive user is also provided with system commands for complete control
of processing from the teletypewriter console. The use of these system command is

explained in Table 1-2,

Table 1-2. System Commands

COMMAND |RESULT

JOB Clears the program and data value array in memory.

CLEAR Clears the data value array in memory.

PUNCH Punches a paper tape.

LOAD Loads a paper tape.

RUN Begins to execute the program at the statement with the lowest line number.
A RUN command CLEARS the data value array in memory.

RUN sn Begins to execute the program at the statement number (sn) specified.

LIST Lists the program on the teletypewriter,

LIST sn Lists the program starting at the statement number (sn) specified.

LIST sn, sn List the statements between the given statement numbers.

CONTINUE Setting Sense Switch 1 (SS1) on the computer console causes the system to
type the line number being executed and the word BREAK, and to return to
the system command mode. The CONTINUE command resumes execution
where the program stopped after SS1 was set. CONTINUE cannot be used
if the program was modified following BREAK.

QUIT Terminates the BASIC Interpreter in the OP-16 version of BASIC, and
places the computer in the HALT state in the stand-alone version.

1-3 ABS85

With the system in the command mode, the user is able to perform extensive line
editing of his source program. For example, statement lines may be deleted by typing
the number and omitting the statement. Lines may be added by typing them with line
numbers which insert the statements between existing lines and, of course, lines may be

replaced by typing the previous line number followed by a new statement line.

The program is executed sequentially by line number unless a control statement

causes a transfer. A program can be saved for later use by "PUNCHing" it.

REQUIRED HARDWARE

BASIC requires a minimum of the following equipment for operation:
a. Model 316 or 516 Central Processor.

b. 4K of core memory (BASIC can expand its buffers to use up to a
maximum of 16K).

c. AST-33 or -35 teletypewriter, Types 5303 and 5503 (for Model 316)
and Types 5305 and 5505 (for Model 516).

No other processor, peripheral, or communications subsystem facilities are sup-
ported by the standard 4K BASIC Interpreter. However, input/output is handled in the
software by an IOS (Input/Output Supervisor) package which will allow expansion to
devices other than the teletypewriter in other versions of the Interpreter. - An I0S is
available which loads by using a High-Speed Paper-Tape Reader and punches by using a

High-Speed Paper-Tape Punch.

REQUIRED SOFTWARE

BASIC is a stand-alone program requiring no other programs. The self-loading
version contains its own loader, IOS package, and system command facilities. The Inter-
preter will accept and execute any program written in standard BASIC. Provision is
made in the system for linking up to 10 subroutines written in FORTRAN or DAP-16 to

the main BASIC program in core, contingent on the availability of core storage.

PERFORMANCE SPECIFICATIONS

The BASIC Interpreter provides an interactive environment in which a user can com-
pose, edit, debug, and execute programs written in BASIC. The user may enter an entire
program from the teletypewriter, call for its execution, or enter an individual language
statement(s) for immediate execution. Statements are checked for syntactic and logical
errors during execution, All errors are reported to the user when detected., All errors

return control to the command mode.

1-4 ABS85

Honeywell Series 16 BASIC represents an extension of the programming facilities
available under the Dartmouth College system. Chief among these extensions are the
ability to include multiple statements in a line, immediate execution of statements and
commands, the availability of n-dimensional arrays with unrestricted subs cript expres-

sions, and the ability to call DAP-16 and FORTRAN subroutines for the BASIC program.

The stand-alone version is loaded from self-loading paper tape at the teletypewriter

and executed starting at location 1000 All further communication is made via the

g
console.

The OP-16 version of the Interpreter can be configured to execute under the RTX-16

Executive. BASIC is called from the console by using the RTX keyboard program. All

further communication is directly with the BASIC Interpreter by use of the ASR console.

1-5 ABS85

SECTION II
LANGUAGE

INTRODUCTION

A BASIC program is a self-contained computing procedure (specified by program

statements) telling the computer what steps to perform to solve a problem and how to

present answers for the data given.

form

2
X +2X -4 =0

For example, consider a quadratic equation of the

The algebraic representation for one of the two roots of the equation can be written

The four short but complete BASIC programs shown in Figure 2-1 (a-d) were

written to solve the expression for A=1, B=2, and C=-4,

B +~ B? - 4aC

2A

ROOT =

Each was entered and run at the

console exactly as shown, with the computer supplying the responses .that are underscored.

a.

Use of READ and DATA Statements for Variables

240B

710 READ A, B, C

220 LET X=(=B+(B12=-4%A%C)10.5)/(2%A)
740 PRINT "ROOT IS",X

750 END

ZRUN

ROOT IS 1.23607

50 EXIT
?

Use of Data Constants

2J0B

710 LET Xz (=2+(212-4%1%(=4))1,5)/(2%])
720 PRINT "ROOTIS",x@

7220 PRINT "ROOT IS",X

730 END

ZRUN

ROOT IS 1.23607

30 EXIT
?

Figure 2-1. BASIC Programming Example

ABS85

c. Use of INPUT Statement

2408
710 INPUT A,B,C
720 LET Xz (-B+(312-4%A%C)1.5)/(2%A)

740 PKRINT "ROOT IS", x

750 END

ZRUN

_!l ’2’_4

ROCT 15 1.23607

20 EXIT
?

d. Use of Arithmetic Calculator Loop

2J0B

210 INPUT I: PRINT I: GO TO 10

ZRUN

1(=2+(212-4% 1% (~4))1.5)/(2%])
1.23607

- I N

Figure 2-1 (cont). BASIC Programming Example

With BASIC loaded and running in the computer, the Interpreter requests user input
by typing a "'?''. The programmer may respond by typing in either a system command or
a BASIC statement. If the statement is to be stored as part of a program, it must have a
statement number. If there is no statement number, the statement is checked for errors
and executed immediately., The Interpreter allows a user to assemble an entire program

and run it or to transfer control to a segment of a program and start execution there.

In Figure 2-la, JOB is entered to indicate that a new task is to be performed. Now
the statements of the program can be entered. Statement 10, the READ statement, is
used in conjunction with statement 30, the DATA statement. When the BASIC Interpreter
scans a READ statement it causes the variables A, B, and C listed after READ to be
given values according to the next available numbers in the DATA statement. In the

example, A is assigned a value of 1, B a value of 2, and C a value of -4.

The LET statement in line 20 directs the computer to evaluate the expression or
formula on the right side of the equals sign and set it equal to the variable X. Note that

exponentiation and multiplication operations are represented in BASIC by the ''t'"" and "

2 1/2

signs -- e.g., Bt2 for B®, X1t0.5 for X or '\/-5(-, and 4*%A*C for 4xAxC or 4AC. Line

40 tells the computer to PRINT the message "ROOT IS'", to recover the value of the

variable X (which was evaluated in line 20), and to PRINT that after the message.
2-2 ABS85

Line 50 tells the computer that the entry of the program or JOB is complete.

Typing RUN requests the computer to execute the program just entered. If the pro-
gram contains no syntactic or logical errors, the computer types out the message "ROOT
IS'" and the value of the variable X, the number of the last statement executed, and

"EXIT'".

Figure 2-laillustratesthe use of variables inanexpression (in this case A, B, and
C), but the same result can be obtained as shown in Figure 2-1b by inserting numerical
values in the statement in place of the variables. The use of variables allows one to

change his data very conveniently by merely entering a new DATA statement.

Often it is desirable to enter data during program execution. For instance, one
person may write a program for which other people wish to supply data relevant to their
own application. The INPUT statement of Figure 2-1c and d act like a READ statement

but does not draw numbers from a DATA pool as was done in Figure 2-la,

To supply values for the A, B, and C variables to the sample program, we insert
an INPUT statement before the first statement which uses any of these numbers. When the
computer encounters this statement, it types an exclamation point and awaits user entry
of data. The user then types in the three numbers (separated by commas) and presses

the carriage return key; the computer finishes executing his program.

One of the interesting aspects of using a dedicated (one-user) computer is that a
program such as we see in Figure 2-1d is possible. Here a very-high-speed calculator
capable of evaluating arithmetic expressions up to 72 characters long is implemented by
a simple, one-line multiple-statement program loop. We also see a very significant

feature of Series 16 BASIC, the multiple-statement line delimiter (:).

BASIC editing features include the ability to delete lines or characters. For
example, when inputting the statement of line 30 in Figure 2-la, a backward arrow (<) is
used to remove an improper character, the '"-" instead of a '','". In line 20 of Figure
2-1b, the "at...each' sign (@) is used to delete the entire typed line. To replace a line,

type another line with the same line number.

2-3 ABS85

SYNTAX

Statement Line

Every statement line in a BASIC program consists of (1) a line number and (2) one
allowable BASIC instruction, in that order. There are 72 printing positions across the
terminal line for these two items. Instructions may not be continued from one line to the
next. Esxcept where noted, blanks may be.us.ec.l. fr.eely; ‘More than one statement may' be

included in the line through the use of the colon, as explained later.

Line Number

Every line in a BASIC file must have a unique line number in the range of 1 to 9999,
inclusive; 0 is not a valid line number. A line number may have leading 0s (as 005), but
it may not contain any characters other than the digits 0 through 9 (no blanks and no

commas).

Legal Illegal
Numbers Numbers
007 . 0.07
3245 3, 245,

1 1X1
473 123456

Line numbers serve two purposes. First, they allow the system to order the pro-
gram automatically according to line number. In this way, lines can be entered in a pro-
gram in any order, but they are always processed in ascending numerical order. Line
numbers do not need to start with 1 or be consecutive, but they must be unique. It is a
common programming practice to number lines by using multiples of 10. Then if it is
necessary to revise or correct the program by inserting a new line, it is given an inter-

mediate number (11, 22, 34, etc.).

The second function of line numbers is to act as labels. Normally the lines in a
program are executed one after another in order of line number. However, this order
can be changed by certain instructions which transfer program control to a line number
which is out of sequence. (Program control refers to the selection of the instruction to be
executed next.) Control can be transferred forward (skipping instructions) or backward
(repeating instructions). Line numbers are used as reference points when directing the

computer to break the normal, serial execution of instructions.

2-4 ABB85

Statement Operator

Immediately following the line number is the statement operator. The rest of the
72 characters allowed for one line contain a BASIC instruction. There are several types
of statement operators. FEach instruction in a program performs a specific duty and is in
one of the general instruction forms, The statement operator is a string of characters
which tells the BASIC compiler which statement form is being used. In line 10 of the
sample program in Figure 2-2, the statement operator is the word LET. The other two
statement operators used in the program are the words PRINT and END. The word LET
informed the computer that the statement that followed would be an arithmetic calculation
to compute a value and assign it to a variable. In the example, there was no computation

necessary; the LET statement merely assigned the value 5 to the variable X,

Spaces may be used freely because the compiler ignores them except in something
called an alphanumeric literal, which will be discussed later. The user may write text

as shown in Figure 2-2, This is not as tidy as possible but good enough.

710 LETX = 5
?20PRINTX12+242%X+4
230 EN D
7RUN

40
30 EXIT

Figure 2-2. Statement Format Example

Use of Statement Delimiter (:)

BASIC statements are normally assigned one to the line. However, as shown in
Figure 2-1c, it is possible to put as many statements on a line as there are print positions
available. For example, line 104 in Figure 2-3 constitutes an entire program of five state-

ments and illustrates the legal use of the colon as a statement delimiter.

7J0B

2104 FOR X=1TO5:PRINT X;SQR(X)¢NEXT X:END

7RUN
1 1
2 le4l 421
3 1.73205
4 2
5 2.23607

104 EXIT
?

Figure 2-3. Use of Statement Delimiter

2-5 AB85

Notice that if more than one statement is to be included on a line, statement numbers
are omitted after the initial statement number for that line. The major advantages accru-
ing to the use of the delimiter are that it saves a little typing time on program entry and
allows the Interpreter to use memory locations normally assigned to statement numbers

(in their function as logical ''labels') for programs and data.

REMarks

Often a programmer may wish to include comments in his program. Many times
a few words at the beginning of a program, which explain what the program does, save
time and trouble later. Remarks (REM statement) are also helpful to anyone other than
the programmer who uses and revises the program. Remarks are treated like blanks;

that is, they are ignored by BASIC, except when LISTing the program.

A remark has the form

| In REM STRING |

where In is a line number
REM is the statement operator
STRING is any string of legal characters

The REM statement, like all other statements, has a line number and a statement
operator. Any characters which can be typed at the terminal (except < and @) may follow
the statement operator. In Figure 2-4, two remarks have been added at the beginning of

the program file to explain what the program does.

72LIST

5 KEM THIS IS A PROGRAM TO EVALUATE
10 REM THE FORMULA Xt2 +l.2x+4

15 LET X=5

20 PRINT Xt2+].2%X+4

25 END

2RUN
35

25 EXIT
?

Figure 2-4. Use of REMark Statements

2-6 AB85

The REM statement is an example of a nonexecutable specification statement. When

it is encountered during execution, it is ignored; that is, it causes no action to be taken.

ELEMENTS OF BASIC

An intuitive understanding was all that was required for the constants and variables
of the sample program. BASIC, however, does have rules for forming constants, vari-

ables, and expressions. These rules are discussed in the following paragraphs.

Constants

DESCRIPTION

A constant is simply a decimal number with an optional minus sign. The sample
program in Figure 2-1 used the constants 1, 2, and -4. The absolute value of a constant
must be greater than 10-38 and less than 10+38. The constant may have a minus (-) sign
preceding it. If the minus sign is not present, the number is assumed to be positive. The

constant may also have a decimal point.

There are three external forms a constant may take in a program or in data for the

program: integer, floating-point, or exponential.

All constants are stored internally as either one-word, fixed-point numbers or two-
word, floating-point numbers. In the internal exponential notation, every number is
expressed as a value between 0.1 and 1.0 times a power of 10, For instance, the constant
5.1 can be expressed as 0. 51x10+1. The computer stores only the mantissa (.51) and the
exponent' (+1). The value 5 would be stored asa one-word, fixed-point number no matter
how it was entered. This is a very efficient way of storing the most significant part of a
number. An integer between +32, 767 and -32, 767 is stored as one fixed-point word no

matter how it is entered.

A constant will have an accuracyof approximately six digits. For instance, the

number 123, 456, 789 would be stored internally as .123456 x10+9. The last three digits

would be lost.

INTEGER NUMBERS

An integer is a whole number which may have a sign but cannot have a decimal

point.

2-17 AB85

FLOATING-POINT NUMBERS

A floating-point number has a decimal point. It may or may not have a whole
number part, and it may or mayv not have a fractional part. Besides numeric digits, the
only characters allowed in a floating number are a plus or minus sign and a decimal

point.

EXPONENTIAL NUMBERS

The exponential format for numbers is much like the internal form the machine uses.
This form is a floating-point or integer number mantissa with a power of 10 added. A
user is not restricted to using a mantissa between 0.1 and 1.0, as is the machine. The

1, 0.5 x 10”, and 5, 000,000 x 107 are al1 equivalent,

numbers 5, 50 x 10~
The letter E is used to denote the exponent instead of the number 10 with a super-

script. The E separates the mantissa from the exponent. The numbers 5, 50E-1,

.5E+1, and 5000000E-6 are all equivalent. The exponent may have been signed (+ or -).

The sign can be omitted, in which case any missing sign is assumed to be positive. A

one- or two-digit integer number may be used as an exponent as long as the resulting ¢ton-

stant is neither greater than +38 nor less than -38.

A constant does not change its value during a run or from one run to the hext. A 1

is always 1. Values which do change are given names and called variables.

Variables

A variable is a name which represents a value. A variable name may be one letter
(A through Z) or one letter followed by one digit (0 through 9). There are thus 26 plus
26x10 = 286 variable names a BASIC programmer may use. The sample program used

the variable X. A variable may have its value changed during the run or from one run to

the next.

Legal Illegal

Names Names_
A 1A (starts with a digit)
X XY (second character not a digit)
F2 Q37 (too long)
Z0 Z0O
N

Simrple variables are not initialized in BASIC. (Arrays are always initialized to

zero.) Thus the appearance of a variable in an expression before it has been assigned a

2-8 AB85

value through a READ, INPUT, or LET statement will result in the following error mes-

sage being printed at the console:

ERROR UV LINE XXXX

A variable may be equal to any value a constant may have. All variables are stored
as standard floating-point numbers (two words per variable). Thus a variable must have

-38 +
a magnitude greater than 10 and less than 10 38 and will retain six digits of accuracy.

Expressions

An expression defines an arithmetic calculation, Expressions are composed of
variables, constants, arithmetic and relational operators, intrinsic and programmer-
defined functions, and parentheses. An expression may consist of as little as one con-

stant and one variable.

ARITHMETIC OPERATORS

The arithmetic operators are:

4 exponentiation

* multiplication
division

+ addition

- subtraction

Arithmetic operators should not be confused with statement operators (LET, PRINT, etc.).
Statement operators apply to whole statements, while arithmetic operators apply only to

constants and variables.

RELATIONAL OPERATORS

Six relational operators are used to describe the numeric relationship between two

numbers:
Operator Meaning
= Equal to
<=or=< Less than or equal to
< Less than
> Greater than
>=or=> Greater than or equal to
<>or >< Not equal to

2-9 ABS85

Relational operators are used to compare two numerical quantities which may be

expressions (containing arithmetic operators), variables, and/or constants. A relational

expression has the form

e, op e,
where el, e2 are expressions to be evaluated
op is one of the six relational operators

The relational expression is either true or false. Either the two expressions satisfy

the relation stated, or they do not.

The double relational operators (<=, >=,< >) are true if either relation is true. In
the expression Al>=A2, the relation is true either if AI1>A2 or if Al1=A2, Below are
socme further examples of relational expressions:

X>Y
A5<> 6
X424+ Y 42434X*%Y <= 5

The conditional transfer statements (see Section III, Control Statements) base the

decision of where program control will go next on the result of a relational expression.

FORMING EXPRESSIONS

An expression closely resembles an algebraic formula. The formula for the sample

program in Figure 2-1 is an expression. The right side of the equal sign in line 20 of the

same example is also an expression. There are certain rules which BASIC expressions

must follow but which algebraic formulas do not:

1. Two operators may not be adjacent. For instance, BASIC will not
acceptX?t -2, but Xt (-2) is perfectly legal.

2. Variables and constants may not be adjacent. For example, 1.2%X
must be used for 1,2X. In algebra the lack of an operator is assumed
to mean multiply, but BASIC makes no such assumptions.

3. Parentheses may enclose any legal expression. Thus, A + (B+) C is
not accepted, since B+ is not a legal expression. A parenthesized
expression is treated like a variable or constant; that is, it cannot
appear adjacent to another variable, constant, or parenthesized
expression without an operator in between. A(-B) is illegal, but

A+(-B) is legal.

As in algebra, parentheses are used to determine which operations
are performed first. In the expression (A+B)*C, the addition is
performed, then the multiplication. If the parentheses are changed
so that the expression is A+(B*C), the multiplication is performed
before the addition.

2-10 ABS85

Parentheses may be ''nested'" or placed one pair inside another, as
A¥(B+C* (D+E)). Innermost parenthesized expressions are evaluated
first. Any expression inside a pair of parentheses is evaluated
before the expression containing the parentheses pair is evaluated.

4, A minus sign may precede any expression. The expressions
A/(-B), (-A/B), and -(A/B) are equivalent. Care should be taken
to guard against a minus sign appearing adjacent to another operator.
A+-B is illegal, but A+(-B) and A-B are legal. Note also that while
-3 is a legal constant, -3%-3 is not a legal expression.

EVALUATING EXPRESSIONS

In order to have consistent evaluation of expressions, a set of rules has been estab-
lished. These rules form a hierarchy of arithmetic operations, that is, the order in
which operations are to be performed. This is necessary because of the ambiguity which

may arise in an unparenthesized expression.

For example, the formula
5 4+ 6.2 % 213
has three operations. Any one of the operations could be performed first and the result
used for the remaining operations. In total, there are six sequences in which the opera-
tions could be performed. Below, the six sequences are illustrated along with the result-
ing values. The answers range from less than 60 to over 11, 000. The numbers above the
expressions give the order of performance of the operations. Parentheses have been

added to the expressions in each case,

1 3 2

(5 + 6.2)% (213) = 89.6
1 2 3

((5 + 6.2)*% 2) 13 = 11,239,424
2 1 3

(5 + (6.2 * 2)) +3 = 5268.024
3 1 2

5+ ((6.2 * 2) t3)= 1911.624
2 3 1

(5 + 6.2) * (2 $3) = 89.6
3 2 1

5+ (6.2 * (2 13)) = 54.6

The four rules that govern the hierarchy of arithmetic operations are listed below.
When these rules are applied to the expression above, the expression is evaluated as 54. 6,
the last possibility listed. The primary use of expressions is to define the value of a

variable.

2-11 ABS85

Hierarchy: This requires that certain operations be evaluated before
others. In the absence of parentheses specifying the exact order of
evaluation, the priority of operators from high (evaluated first) to
low (evaluated last) is:

A exponentiation

% or / multiplication and division
(equal hierarchy)

For - addition and subtraction

The same hierarchy applies to expressions within parentheses. This
rule alone is enough to verify the evaluation of the above expression
as:

5+ 6.2 % 213 =

Equal Priority: When the priority of adjacent operators in an expres-
sion is the same, evaluation proceeds from left to right. For example,
in the expression

A*B / C+ Dl / D2 * D3

the * and / operators have the higher priority and so must be -
evaluated before the +. However, rule 1 does not state which is
evaluated first, the * or /. Rule 2 says that operations are performed
from left to right. So the expression is evaluated as:

((A * B) / C) + ((D1 / D2) * D3)

Notice that the addition is performed last, since rule 2 is applied only
to adjacent operators of the same priority.

Parenthesized Expressions: Expressions within parentheses are
evaluated separately, so parentheses may govern the hierarchy of
operations. The expression inside a pair of parentheses is evalu-
ated according to all the rules of expression evaluation. In the
expression above, the addition was the last operation performed.
Parentheses could alter this; for example:

A %= B / (C + Dl) / D2 * D3

Nesting: In a nest of parentheses (one pair of parentheses inside
another pair), the expression within the innermost pair of paren-
theses is evaluated first. The expression within the next inner-
most pair is evaluated next, and so on down to the outermost pair,
which is evaluated last. Note that -Al t3=-(A1 % 3).

2-12 AB85

SECTION III
LANGUAGE STATEMENTS

Series 16 BASIC provides for the following types of statement operators in defining
the function of its language statements:

a. Arithmetic Assignment
b. Control

c. Output/ Input

d. Specification

e. Subroutine/ Function

The remainder of this section will define each statement type within these groups

and illustrate their use in actual programs.

ARITHMETIC ASSIGNMENT STATEMENT

The arithmetic assignment statement, used to define a numerical calculation,
closely resembles conventional arithmetic formulations. The LET statement commands
the computer to perform the computations specified by an expression and to assign the

value of that expression to a single variable., It has the form

In LET v = e or In v =¢e
where 1n is a line number
LET is the statement operator (optional)
v is any variable name

= means '"be replaced by"

e is an arithmetic expression

When the LET statement is executed, the expression e is evaluated and the result is
substituted for the variable v. Variables and expressions must conform to the rules speci-

fied in Section II.

Notice that the equal sign (=) has the meaning '"be replaced by'" rather than '"equals, "
because the LET statement is not an assertion of equality as is 5 + 2 = 7. Instead, a
BASIC statement such as

5 LET D=D+1
causes the computer to add 1 to D and store the result in D. Each variable used in a
BASIC program has a specified memory location assigned to it. When the value of a vari-
able is changed, the new value replaces the old value, and the old value is destroyed.
Hence the arithmetic assignment statement is not an equation but a command to replace a

value.
3-1 ABS85

An optional form of the LET statement permits several variables to be assigned

a given value. It has the form

In LET Vis Yy, v3, ceee =@

where 1In is a line number
LET is the statement operator
v is any variable name

= means ''replaced by'

e is an arithmetic expression

Example: LET X, Y, Z = 10.
Result: X, Y, Z are all set to 10,

Line 20 of the sample program in Figure 3-1 contains an example of the BASIC
arithmetic assignment statement. In this example, the expression to be evaluated deter-

mines the current drawn by an a-c circuit. The expression has the form

E

2
I = \/R + ZTI'FL-]./(ZTI'FL)Z
Line 20 assigns a value to the variable I (amperes) for fixed-values of R (resistance), F

(frequency), L (inductance), and C (capacitance).

i

10 READ E,K,F,L,C
20 LET I=E/(K12+(6.2832%F*L=1)/(6,2832*%F*C)1t2)1.5
30 DATA 120,200,460441,41L-02

40 PRINT "THE CURRENT FOR THE STATIC CONDITION IS: “,1," AMPERES."
50 END

7RUN
THE CURRENT FOK TAE STATIC CONDITION IS 598073 ANMPERES.

50 EXIT
7

Figure 3-1. Example of Arithmetic Assignment Statement

Other examples of legal arithmetic assignment statements are:
" 100 LET Z=(X1-Y143) * (Z-T/(T-583))
110 LET Y = X14+3%X13-7. /44X 12+13%X-8
12081 = S
130 A9 = A9 + A

3-2 ABS85

CONTROL STATEMENTS

Normally statements are executed in sequence, starting at the lowest line number

or statement number specified in a RUN statement. Control statements alter this
sequence by changing the order of execution of a program. The function of control state-
ments is to direct the program to continue execution at a different line number rather

than at the next line number in sequence.

Control statements may be either conditional or unconditional, depending on whether
a specific condition must be met before control is switched to another part of the program.
When scanned, an unconditional control statement will immediately transfer control to the
line number specified. Conditional control statements branch only if a specified condition

is met.

Unconditional GO TO Statement

The GO TO statement is an unconditional transfer that transfers control to the

specified line number,

ln GO TO ln1

where In is the line number of the statement
GO TO is the statement operator
ln1 is the line number of the next line to be
executed

In the form shown above, In, may be greater than or less than 1n; that is, control

1
may be transferred forward or backward.

Referring to the program in Figure 2-1, it is evident that much editing would be
required to evaluate the formula for a large number of values of A, B, and C. Using the
GO TO statement, the user could rewrite the program as shown in Figure 3-2 so that a

series of incremented values would be ''plugged into'' this expression.

Rather than stopping after one evaluation of the formula's initial constants, the
program has been rewritten so that the values of A, B, and C are incremented or decre-
mented (lines 50-70) and control is transferred back to the PRINT statement of line 40,
The PRINT statement evaluates the function for each new set of values and types out the
answers at the terminal., Lines 40 through 80 form a "loop'' which will be iterated as

long as the program runs.

3-3 ABS85

7LIST

10 LET A=l

20 LET B=2

30 LET C=-4

40 PRINT A,B,C,"KUCT IS "((-B+(B12=4xA%*C)1.5))/(2%A)
50 LET AzA+]

60 LET B=B+l

70 LET C=z=C+(-1)

30 GOTO 40

S0 END

2RUN
1 2 -4 ROOT IS 1.23607
2 3 -5 ROOT 153 1
3 4 -8 ROOT IS «8396805
4 5 -7 ROOT IS « 333037
5 6 -3 ROOT IS B
6 7 -9 ROOT IS 173235
7 3 -10 ROOT IS » 753374
g S =11 ROOT IS 738041
S 13 =12 ROOT I3 « 72584
13 11 =13 ROOT I3 «715298
11 12 =14 ROOT IS « 707641

50 BREAK

N —

Figure 3-2. Example of Unconditional Control Statement (GO TO)

The PRINT statement has also been modified to print out four values, the values
A, B, and C and the formula evaluation for ROOT. Since more than one value is used
for each dependent variable, this helps in reading the output. The carriage is returned
after each execution of the PRINT statement so that four columns of numbers are printed

out.

There is only one problem with the program as it stands: there is no instruction to
stop the program from looping. A system interrupt (depressing the SS1 switch on the front
panel of the computer) must be used to halt execution of the program and return the system
to the command mode after BREAK is printed at the console. The conditional control
statements to be discussed subsequently can be used to set up and test for certain condi-

tions, instead of using the system interrupt.

Two-Branch IF Statement

The IF statement is a conditional control statement which causes a transfer of con.

trol only if the condition specified by the relational expression is met; otherwise, control

continues normally.

3-4 ABS85

When this ''conditional GO TO'" statement is executed, the two expressions are
evaluated and compared. If the relationship stated (e1 op e2) is true, control is transfer-

red to lnl; otherwise, control goes on to the next statement as it normally would,

The IF statement has the following form:

In IF e, op e, THEN ln1 In IF e, op e, GO TO ln1

In IF e, op e, THEN sn

1 2
where In is the line number of the statement
IF is the statement operator
ere, are any expressions which will be evaluated
op is any one of the six relational operators:

=’ <’>, <=’ >=’ <>

THEN are used to separate the relationship
GO TO (e1 op éz) from the line number
1n1 is the line to which control is transferred if

the stated relationship is satisfied

sn is the BASIC statement

In the program segment:
200 IF X>100 GO TO 500
210

.

the stated condition is whether X is greater than 100. If X is indeed greater than 100
(that is, equal to 100,001 or more), control passes to line number 500. If X is less than

or equal to 100, control continues normally to line 210.

Figure 3-3 shows a program that evaluates the formula X2 + 1.2 X + 4forX
values of 5, 6, 7, 8, 9, and 10. The IF statement in line 40 causes the PRINT statement
to be executed as long as X is less than or equal to 10. When X becomes 11, the IF state-

ment transfers control to line 50, where the program exits.

3-5 AB85

F 7L1IST

10 LET Xx=5

20 PHRINT XyX12+1.2%X+4
30 LET X=zXx+1

40 IF X<=10 GOTO 20

50 END

2RUN
5 35
6 47.2
7 61.4
3 77.6
9 $5e3
10 116

50 EXIT

| -

Figure 3-3. IF Statement

Some further examples of two-branch IF ‘statements are:
100 IF (X+Y) /2 = 5 THEN 80
110 IF (X14X2+X3) /3<5.6/(D*D) GO TO 500
120 IF N5 <>N6 THEN 50

In an IF statement of the form

In IF e, op e, THEN s

where s is a basic statement, two points are worth noticing:

1. Consider a line of the form

In IF e, op e, THEN sl: s2

If the condition is met, then sl and s2 are executed. If the condition is not met, sl and s2
are not executed, since control passes to the next line (as opposed to the next statement).

2. A statement of the form
in IF e1 op e2 THEN GO TO ln1

is valid.

Three-Branch IF Statement

The three-branch IF statement branches to one of three possible line numbers. The

line number which is used depends on how a specified expression compares with 0.

3-6 AB85

Iln IF e, lnl, In2, ln3
where In is the line number of the statement
IF is the statement operator
e is the expression to be evaluated
In_, lnz, are line numbers to which control may be
1n3 transferred; line In) is executed next if
e <0, ln2 if e=0, and ln3 if e >0.

Control is transferred to one of the three line numbers, depending on the arithmetic
value of the expression e. If e is negative, control is transferred to line number lnl; if
e is 0, control is transferred to line number lnz; and if e is positive, control is trans-

ferred to line number 1n3. A statement like the general form above is equivalent to

IF e<0 GO TO ln:l

IF e>0 GO TO ln3

GO TO ln2

As an example, the statement
100 IF Xt2-16, 10, 50, 600
will transfer control to line 10 if the absolute value of X is less than 4, to line 50 if X is

equal to +4 or -4, and to line 600 if the absolute value of X is greater than 4.

The three line numbers need not all be different. To test only for X equal to +4 or
-4, the above line could be rewritten
100 IF Xt2 - 16, 600, 50, 600
Control goes to line 600 unless X is equal to +4 or -4, Line 100 also shows that control

can be transferred forward (600) or backward (50).

Additionally, the three-way branch can be converted to a two-branch IF statement

by assigning the same statement number to two of the three statement numbers in the list,

e.g.,

5 IF (I+46), 30, 30, 32
9 IF (R), 4, 12, 12

3-7 ABS85

FOR-NEXT Statements

EXAMPLES OF USE

Figure 3-3 has illustrated how instructions can be repeated with different values of
the variables involved. One of the computer's most powerful features is this ability to
repeat the steps in a solution to a problem. As we have indicated, this is called iterating

or looping.

Iterating has been accomplished in Figure 3-3 by use of an IF statement. The PRINT
and LET statements are repeated a specified number of times. The general form of a loop
involves two statements (an IF statement and a LET statement) plus a variable designated
as a counter (X). The counter is used to decide when the proper number of repetitions
have been made; in Figure 3-3, when the counter becomes greater than 10, the looping is
complete. One statement (the IF statement) is used to test for completion of the number of
required iterations. The second statement involved is a LET statement used to increment

the counter.

The bases of the FOR-NEXT statements are the three elements of a loop: a counter,
an end test, and an increment. When a block of instructions is to be executed repeatedly,
the FOR statement precedes the block, and the NEXT statement is the first instruction
following the block. A variable is chosen to be a counter, and its value is increased each
time through the loop (i.e., the block of instructions is repeated). As long as the counter
does not exceed a specified value, the instructions between the FOR and NEXT statement

are re-executed.

When a FOR statement is scanned, expressions el, e2 and e3 are evaluated and
their values saved. The simple variable, v, is then given the value of the first expression

and control is transferred to the following statement line.

For example:

50 FOR I = 1 TO 10 STEP 2
60

.

100 NEXT I

is equivalent to

501 = 1
60
100 I = I+2:IF I<=10 THEN GO TO 60

3-8 ABS85

A FOR statement has the following form:

In FOR v=e-.l TO e2 STEP e3 In FOR v=e1 TO e2
where In is the line number
FOR is the statement operator
v is the simple variable (variable without a

subscript) which is used as a counter and
takes on various values

e is an expression which is evaluated and
assigned as the initial value of the variable (v)

e, is an expression which is evaluated and is the
terminal value of the variable (v)
e, is an expression which is evaluated and is the

value by which the variable (v) is increased
with each repetition of the loop; this value is
assumed to be 1 if it is omitted

STEP, TO are expression separators which may be
replaced by commas

The FOR statement says that the statements following it, up to the corresponding
NEXT statement, are to be repeated. The first time the statements are executed, the
+ -
1 e3, the
+ 2e3; and so on. The last value of the vari-

variable v will be equal to el; the second time, the variable will be equal to e

third time, the variable will be equal to e1

able is the greatest value the variable can reach without exceeding e,

Every FOR statement must have a corresponding NEXT statement. The NEXT state-

ment must be executed after FOR is encountered. This example is perfectly legal:

70 GO TO 100
80 NEXT I

90 GO TO 130
100 FOR I = 1,10
110 PRINT I

120 GO TO 80

130 ...

3-9 ABS85

A NEXT statement takes the following form:

In NEXT v
where In is the line number
NEXT is the statement operator
v is the same variable named in the corre-
sponding FOR statement

When a NEXT statement is encountered, the simple variable, v, is incremented by
the saved value of the third expression, e, (or by 1 if e, was not specified). If the new

value is within the inclusive range of the first two values saved for e, and e, control is

1
transferred to the statement following the FOR statement. If not, the following NEXT

statement is executed.

The examples in Figures 3-2 and 3-3 could have been written using the NEXT state-

ments as illustrated in Figure 3-4.

?10 LET X=5

720 PRINT"X IS™,X,"F(X) IS ", X12+1.2%X +4
230 LET X =x+1

740 IF X<=10 GO TO 20

7?50 PRINT

?60 PRINT ENe«"END OF RUN"

?70 END

?RUN

THIS PROGRAM EVALUATES THE FORNULA:
F(X)=Xt2+1.2X+4

X IS 5 F(x) IS 35

X 15 3 F(x) IS 47.2
X IS 7 F(x) IS 61.4
» 1S g F(X) IS 77.6
X 1S 9 F(x) IS 95.2
x Is 10 F(x) IS 116
END OF RUN

70 EXIT

2

Figure 3-4., FOR-NEXT Statement Usage

Since the STEP size was 1, statement 10 could have been written:
10 FOR X=5 TO 10

and a STEP size of 1 would have been assumed.

3-10 ABS85

An abbreviated form of the FOR statement may be used:

In FOR v=e1, ez, e3

or

ln FOR v=e1, e,

The words TO and STEP have been replaced by commas. Again, if e, is not specified, it

is assumed to be 1. The following statements are legal FOR stateme131t s, assuming there
is a corresponding NEXT statement:

10 FOR A9 = Yt2+3 TO 9%C+23,5 STEP .5

20 FOR C

30 FOR N

15.2,-7.8,-.2
-8 TO 23

NEGATIVE STEP SIZE

Several comments can be made about FOR-NEXT loops. The expressionse_, e_,

e, can take any value, positive or negative, whole number or fraction. As noted albovz,
when a NEXT statement is encountered, the value is incremented or decremented (depend-
ing on e3) and tested within. the inclusive range of the first two values saved for e and e
Thus the statement in the loop

FOR C=15.2,-7.8,.2

NEXT. C
would be executed once, since 15.2+.2 is out of inclusive range

-7.8< C < 15.2

When a negative step size is used, the last value the loop variable has is the least
value not less than the stopping value (ez). This is the opposite of the positive step size.
When a positive step size is used, the last value the loop variable has is the greatest

value not more than the stopping value (e,). The easiest way to picture this is that the

counter will not step past the stopping crizteria no matter in which direction (+or -) it is
moving. For example, the loop

10 FOR S = +1 TO -1 STEP -.3
would be executed for values of S=1, .7, .4, .1, -.2, -.5, -.8. The variable S would not
take the value -1.1, because this is a negative step size loop and -1.1 is less than the

stopping value of -1. In summary:

FOR C =+1, -1, -.3
1

stop

3-11 ABB85

FOR C =-1, +1, +.3 m_

-1 0 |+
stop
NESTING LOOPS

FOR-NEXT loops may be placed inside other FOR-NEXT loops. When loops are
being nested, each must appear entirely inside another. During execution, the inner loop
is fully executed each time the outer loop is executed. FOR-NEXT iterative loops may be

nested to any depth. Figure 3-5 shows legal and illegal uses of nested FOR loops.

Legal Loops Illegal Loops

IR

S T |

}:-“igure 3-5. Legal and ﬁlegal Nested Loops

The program in Figure 3-6 illustrates the result of nesting FOR-NEXT loops. The
three loops begin at lines 10, 20, and 30 and end at lines 60, 50, and 40, respectively.
The only purpose of each loop is to print out the loop counter and its current value for
each iteration of the loop. With the use of TABs, the printout graphically illustrates the
result of nesting FOR-NEXT loops. The inner loop is executed once for each iteration of
the middle loop, and the middle loop is executed once for each iteration of the outer loop.

7LIST

16 FOR X=1 T0 3
15 PRINT ™ X=";X

20 FOR Yz=844 TO 8.8 STEP .2
30 PRINT TAB(S)3;" Y=";Y

40 FOR Z=1 T0 -} STEP ~-1|

50 PRINT TABC10);" Z=";Z

60 NEXT Z
70 NEXT Y
80 NEXT x
90 STOP
100 END

Figure 3-6. Nested FOR-NEXT Loops

3-12 AB85

The outer loop calls for three iterations and is executed in its entirety once (a
total of three print lines). The middle loop also calls for three iterations but is executed

in its entirety nine times (a total of 27 print lines).

All loops illustrated are defined using constants; however, variables and expressions
may also be used as loop parameters. For example, line 10 (10 FOR X = 1 TO 3) could
be replaced with:

10 LET X1

1
13 LET X2 3
16 FOR X = X1 TO X2 STEP X2-2%X1

In the original program, the step size was omitted because it was 1.

The middle loop (line 20) illustrates a loop with fractional values., The terminal
value for a loop need not be exact, because it will not be exceeded. For example, line 20
could be written as
20 FOR Y - 8.4 TO 8.9 STEP ,2
with the results illustrated in Figure 3-7. The fourth value the counter would take in the
loop would be 9,0. The terminal value, 8.9, would stop the loop before that value was

used.

The inner loop (line 30) illustrates a negative step size and that the initial and final

loop values need not be of the same sign.

Each loop in the example has three iterations. It is not necessary for inner loops

to iterate the same number of times as outer loops.

3-13 ABS85

7RUN
z |
Y= Sed
iz 1
o= 0]
= -1
Y= 86
= i
L= 0
-c -1
Xx=
Y= Bed
= 1
= 0
=z -1
Y= 846
-~)
S 0
= -1
X= 3
Y= Sed
Z= |
Z= 0
5z -1
Y= 8.6
= 1
= 0
= -1
S0 EXIT
? .
M

Figure 3-7. Results of Nested FOR-NEXT Loops Example

ON Statement Conditional Control

The ON statement transfers control to one of a number of possible lines, depending

on the value of an expression.

InON e GO TO In,, ln_, ..., Iln
1 2 n
where 1n is the line number of the ON statement
ON is the statement operator
e is an expression to be evaluated and truncated

to an integer; this value must be greater than
or equal to 1 and less than n+1

GO TO separates the expression from the line numbers
which follow

Iny, is a list of n line numbers separated by commas
In
2) « s 0y

3-14 ABS85

When this statement is encountered, the expression e is evaluated and truncated to
the greatest integer less than or equal to the expression. If the value of this integer is 1,
control is transferred to line lnl; if the value is 2, control goes to line ln2
value of n which transfers control to lnn. If the value of the expression is less than 0 or

; and so on to a

greater than n, the error message ON ERR is typed at the terminal, and the program
returns to the command mode. The ON statement

50 ON 2+SGN (X) GO TO 100, 200, 300
is equivalent to

50 IF X, 100, 200, 300

An error, SN, also results if one of the line numbers in the list is not present in

the program.

The ON statement in the example of Figure 3-8 will transfer control to line 35, as
soon as the expression 2tN yields a value greater than one after a single iteration in the
loop. The statement detects the value 1.07177, truncates it to 1, and branches to the

PRINT statement. WE GOT THERE is printed out at the teletype and the program exits.

7

219 FOR N=ie)l T 1etd

2200 PrINT 2N

2R ON 21N GO TO S6

a6 NEXT N

P PRINT "LF GOT THRERWFI®
?AD FAND
?2TIN

17177

WEOGOT THERE!
AW KX1T

?

Figure 3-8. Example of ON Control Statement

Whenever 3 STOP or END is encountered, the line number and the word EXIT are
printed. If the program terminates by executing the highest numbered statement without

encountering either a STOP or an END statement, line number 0000 and EXIT are printed.

END Statement

When executed, the END statement returns control to the command mode. At the
same time, the line number of the statement, followed by the word EXIT, is typed at the

terminal.

3-15 AB85

In END

where in is the line number of the statement

END is the statement operator

The END statement need not necessarily be executed, but if itis, control is returned
to the command mode. If an END statement appears in the middle of a BASIC program,
BASIC stops executing the program. When executed, the statement

600 END
causes the following terminal typeout:

600 EXIT

STOP Statement

The STOP control statement, when executed, has the same effect as the END state-

ment. END and STOP are equivalent in Series 16 BASIC.

In STOP
where 1n is the line number
STOP is the statement operator

The STOP statement may appear anywhere in the program. The line
345 STOP
would cause the following typed output at the terminal:

345 EXIT

Figure 3-9 shows the STOP and END statements used in a BASIC program. In this
example, the STOP instruction appears in the middle of the program and is the instruction
which causes the program to halt execution. The END instruction is the last line of the

program although it is never executed.

The stopping criterion (X+99=0) demonstrates the often used programming technique
of '"keying' on a special value (-99 for example). The data pool in the above program

can contain any number of values as long as the last value and only the last value is -99

3-16 ABS85

(the key value). Any value could have been set aside as a "key'' to prevent a DATA exit.
Whenever the READ instruction tries to get too much data from the data pool, the pro-

gram exits to the command mode. This could be a nuisance if further processing of the
data is desired. When the amount of data that will be in a data pool is unknown, the end

of the data pool can be marked with a special value and the BASIC instructions can test

for this value.

2LIST

3 PRINT

4 PRINT “THIS PROGRAM EVALUATES THE FORMULA:"
5 PRINT "F(X)=X%2 +1.2X +4"

6 PRINT

20 READ X

30 IF X+95,50,40,50

40 SToOP

50 PRINT "X IS ";X3;"F(X) IS "3;X12+l.2%X+4

60 GOTO 20

70 END

7RUN

THIS PROGRAM EVALUATES THE FORMULA:
F(X)=X12 +1.2X +4

X IS 72 F(X) IS 5274.4
X I8 18 FX) IS 349.6
X IS 15 F(X) IS 241

40 EXIT

Figure 3-9. STOP and END Statements

INPUT/OUTPUT STATEMENTS

The input/output statements allow the user to input data to a program, output the
results of the computation, and restore the original data to its initial condition before the

program was executed. There are five I/O statements:

DATA
READ
c. RESTORE
d. INPUT
e. PRINT

Of these, DATA is more properly classified as a specification statement but is

described here because of its relevance to all the other I/0O commands.

3-17 ABS85

READ and DATA Statements

The READ statement is used in conjunction with the DATA statement to process a
list of numeric items. The DATA statement defines a list of values (called a data pool)
and the READ statement assigns values from the DATA list to specific program variables.
Numeric items in a data pool have a specific order (determined by the DATA statement)
which the READ statement uses during the execution of the program., DATA statements,

on the other hand, are ignored during execution.

The DATA statements in a program form a pool of data items (in the form of con-

stants) which may be scanned by READ statements.

In DATA Cl’ CZ’ e e ey Cn
where In is the line number
DATA is the statement operator
Cl’ c2, is a list of numeric constants; these numeric
constants may be in any of the three formats
eey C
3 allowed for constants

When executed, a READ statement causes the variables in the READ statement to
be assigned the next consecutive values from the data pool created by the DATA statement.
The scanning of the DATA statement proceeds from left to right, and if no unused data

items remain, an error message is printed and control is returned to the command mode.

In READ vl, VZ’ e e ey vn
where In is the line number
READ is the statement operator
v.,v_, is the list of variable names which are to be
1’ "2 .
assigned values; there must be at least one
P . . .
n variable in the list

Note that the list of a READ statement is composed entirely of variable names; it
has no constants or expressions. The list of a DATA statement consists only of constants.
Expressions and variables can be used in a data list. Expressions will be evaluated and

variables are replaced by the value they have at time the READ statement is executed.

3-18 : ABS85

The items in the list of a DATA statement are used as required by READ statements.
There may be more than one DATA statement in a program, with each consecutively num-
bered statement adding to the end of the data pool. The first constant in the lowest num-
bered DATA statement is the first constant in the data pool. The last constant of the

highest numbered DATA statement is the last constant in the data pool.

The DATA statements themselves are processed sequentially, as are all BASIC
statements. A DATA statement may appear anywhere in a program, before or after the
READ statements which use the elements of the data pool. During execution, a DATA

statement is ignored.

When a READ statement is encountered in a program, the next available elements
from the data pool are assigned as the values of the variables in the READ statement. The
values from the data pool are assigned as they are needed. When the end of the data pool

is reached, the message DATA is typed to indicate that the data pool is exhausted, and the

program exits,

The relevant BASIC 16 error message is
ERROR DA LINE XXXX
where XXXX is the line of the READ statement in which a read was attempted after DATA

was exhausted. As after all other errors, control is returned to the command mode.

The program in Figure 3-10 demonstrates how READ and DATA statements are used
in a BASIC program. Notice that the position of the DATA statements and the number of
elements in each statement are unrelated to the READ statement which uses the data pool
they create. Each time the READ statement is repeated, a new value of X is assigned,

and the function is evaluated.

Reading the data from the data pool does not destroy it. It is possible to reuse the

data pool during a BASIC run.

RESTORE Statement
Control over the use of the data pool is accomplished by use of the RESTORE state-

ment. When executed the RESTORE statement returns a data pointer to the first constant

in the first DATA statement. In other words, the data pool is ''restored' to its original

condition.

3-19 ABS85

7LIST

3 PRINT
4 PRINT
5 PRINT
10 DATA
22 DATA
25 DATA
27 READ

" THIS PROGRAM EVALUATES THE FORMULA:"
"F(X) =X12 +1.2X+4"
5¢T4412E06,5,849

1,234, .5E11

158,59
X

30 PRINT " X IS "4X," F(X) IS ";X12+1.2%X+4

50 GOTO
70 END

7RUN

27

THIS PROGRAM EVALUATES THE FORMULA:

F(X) =X12 +1.2X+4

X IS 5.7 F(X) Is 43.33
X Is «12E 06 F(X) 1S +144001lE 11
X IS 5 F(x) IS 35
X IS 89 F(X) 1Is 93.89
X IS 1.234 F(X) IS 7.00356
X 15 «S5E 11 F(X) IS .25E 22
x IS 1 F(Xx) IS 6l.4
X 1§ 8 F(X) 1Is 17.6
X 1Is 9 F(X) Is 95.8
ERROR DA LINE 27
?
Figure 3-10. READ and DATA Statements

where

In RESTORE

In

RESTORE

is the line number of the statement

is the statement operator

Note the following program segment:

200 READ C 1,X,Z 5

300 READ Y 4,F,C

400 RESTORE

500 FORI1I=1TOS8
501 READ A(I)
502 NEXT I

100 DATA 50,67. 3,85, -4E3

600 DATA 1.5,5E2, -40.,6.E-3

-20

w

ABS85

The data pool will contain the constants 50, 67.3, 85, -4000, 1.5, 500, -40, and .006.
At line 200, the variables will have the following values after the READ:

Cl = 50
X =67.3
Z5 = 85
At line 300, the variables will have the following values after the READ:
Y4 = -4000
F = 1.5
G = 500
A1 = 50, A2 = 67.3. . .A,7 =.40, A8 = 6,E-3

INPUT Statement

The INPUT statement requests information from the terminal user.

In INPUT v, v, «0v., V
1 2 n

where In is the line number of the instruction
INPUT is the statement operator
Vi Voreees is a list of variables or array elements
v separated by commas
n

When executed, an INPUT statement causes an exclamation point to be typed and the
program awaits the entry at the teletypewriter of those data items the user requested in
his list. If more than one data item is typed in, the items must be separated by commas.
If more items are typed than the items in the list, the extra items are lost and no error
indication is given. If fewer are typed than needed, BASIC responds with an exclamation

point until the list is completely satisfied.

The input data may be composed of constants or expressions separated by commas. An
expression input as a data item may utilize variables defined in the program. The line of

input is terminated by a carriage return. The @ and' < characters have their usual effect in
a line of input; i.e., the @ allows a line of input to be retyped, and the < allows a character

to be corrected,

3-21 AB85

Figure 3-11 demonstrates the use of the INPUT instruction; each X is input by line
10. Line 20 is an end test; when a value of 0 is input, the program terminates. Each
value is requested by an exclamation point. The second input line contains more than the
one requested value. The first value is used and the rest are ignored. The fourth input
line contains a nonnumeric character. BASIC interprets this as an error and re-executes

the INPUT statement. The fifth input line terminates the program.

LIST

3 PRINT

4 PRINT "THIS PrOGRAM EVALUATES THE FORMULA:"
5 PRINT "F(X)zXt2+]1.2X+4"

6 PRINT ~

10 INPUT X

20 IF x,30,50,30

30 PRINT "X IS",X,"F(X) IS "y K12+ 1. 2%X+4

40 GOTO 10

50 PRINT

60 PRINT “END OF RUN"
70 END

TRUN

THIS PROGRAM EVALUATES THE FORMULA:
F(X)=X12+]1.2X+4

15.7

X IS 5.7 F(X) 1s 43,33
15,6,7

X 1Is 5 F(x) Is 35
11200000

X IS «12E 07 Fx) Is « 144E 13
IX15

ERROR UV LINE 10
7?RUN

THIS PROGRAM EVALUATES THE FORMULA:
FOX)zX12+1.2X+4

10

END OF RUN
70 EXIT

?

Figure 3-11. Use of INPUT Statement

3-22 ABS85

PRINT Statement
While the READ statement inputs values of item lists, the PRINT statement does

the opposite by outputting the values of item lists.

Among the common uses of the PRINT statement are:
Printing out the result of a computation

b. Printing a message included in a program

c. Performing a combination of a and b

d. Skipping lines

In PRINT a_, a, . . . , a
1 2 _ n
where In is a line number
PRINT is the statement operator
ays a,, is a list of the items separated by commas or
a semicolons whose values are to be printed out
cees @)

ITEMS OF PRINT LIST
Figure 3-3 has shown that variables and expressions may be items of a list to be
printed out. Among the many types of items which comprise a printout are:
a. Constants — Constants may also be members of a print list, as
10 PRINT S8, &, 7

The format or position of the numbers on the output line is deter-
mined by the machine. The output from the above line will appear

as
RUN
5 6 7
o EXIT
?
b. Variables — Figure 3-3 illustrates that a variable may be a mem-

ber of a print list. The value of the variable X was printed as
part of the output. Printing a variable does not destroy its value.
In Figure 3-3, the variable X still retains its value after it has
been printed.

c. Expressions — Figure 3-3 also illustrates an expression as part
of a print list. The expression is evaluated and the value printed
out, However, the value of the expression is not available for

3-23 ABS85

further computation, because it has not been stored in a variable.
If the value of the expression will be needed for further computation,
the following lines could be used:

15 Y=X12+1, 2*X+4
20 PRINT X, Y

d. Alphanumeric Literals — The PRINT statement can also be used to
type out an alphanumeric literal. An alphanumeric literal is any
string of characters the user chooses, enclosed in quotation marks.
"THIS SENTENCE IS A GOOD EXAMPLE OF A LITERAL." The
main use for literals is as a title for computer output. A literal
may appear as any list element or as the only list element. (The
program from Figure 3-3 may be rewritten as illustrated in
Figure 3-12.) The « (character delete) and @ (line delete) cannot
be printed in a literal, because the system responds as usual to
these characters. The blank is important in a literal. The blank
is as much a part of a literal as any other character.

In Figure 3-12, the first PRINT statement in the program has no list of items fol-
lowing, so it causes a blank line to be typed. Next an explanation of the function of the
program is listed, with the output data. If only the data were present, there would be no
indication of how it was obtained. The PRINT statement in line 20 illustrates a list of ele-
ments, including a variable, an expression, and two literals. The literals are typed ex-
actly as quoted. The output from lines 4 and 5 begins in column 1, the output from line 20

in column 2, because literal X IS begins with a blank (column 1).

SEPARATING PRINT LIST ITEMS WITH COMMA

A comma following a literal or variable in a PRINT statement moves the print head
to the next position (column 15, 29, 43, or 57). A comma at the end of a PRINT statement
suppresses a carriage return/line feed to the next line. When the comma is used in a
PRINT statement, the Interpreter looks at one line on the terminal as composed of five
zones of 14 spaces each. Each element of a PRINT statement list is put in a zone (or
zones, if necessary with a long literal), The next element of the list is put in the next
unused zone. If more than the five zones of one line are needed for a PRINT statement,
a new line is started. In Figure 3-12, each of the four elements of the print list of line 20
required one zone each. The literals were each less than 14 characters, so only one zone

was used for each of them.

SEPARATING PRINT LIST ITEMS WITH SEMICOLON

The items of a print list may also be separated with semicolons. All items must be
followed by a punctuation mark, except the last. Commas and semicolons may be inter-
mixed in the same line. A semicolon following a literal or variable in a PRINT statement
does not move the print head at all when that literal or variable is printed. A semicolon

at the end of a PRINT statement suppresses a carriage return/line feed to the next line.
3-24 AB85

The semicolon results in what is called packed output. In packed notation, zones are for

the most part ignored. Each element of the list is printed out with only enough spaces

before and after to make it readable and distinguishable from the other list items.

ure 3-13 illustrates how the semicolon packed the output data from Figure 3-12.

7LIST

PRINT

PRINT "F(X)zX12+1.2X+4"
PRINT
10 LET X=5

30 LET X=X+1

40 IF X<=10 GOTO 20
50 PRINT

60 PRINT "END OF RUN"
70 END

?RUN

THIS PROGRAM EVALUATES THE FORMULA:
F{X)=X12+1.2X+4

X IS 5 F(x) IS
X IS) F({X) Is
X IS 7 F(x) Is
X IS 8 F(X) IS
X 1s 9 F(X) Is
X Is 10 F(x) Is
END OF RUN

70 EXIT

?

20 PRINT "X IS",X,"F(X) IS ",X12+1.2%X+4

K
4 PRINT "THIS PROGRAM EVALUATES THE FORMULA:"
5
6

35
47.2
6§le4

" 17.6

55.8
116

Figure 3-12. PRINT Statement

220 PRINT ™ X IS "3 X3 " F(X) IS "; X12+1.2%X+4

?RUN
THIS PROGRAM EVALUATES THE FORMULA:
FCX)zXT2+1.2X+4
X IS 5 F(X) IS 35
X IS 6 F(x> Is 47.2
X IS 7 F(X) IS 6l.4
X I8 8 F(X) IS 77.6
X I3 9 F(X) IS 95.8
X IS 10 F(X) IS 116
END OF RUN
70 EXIT
?
S meSms—

Figure 3-13. Semicolon in PRINT Statement

3-25

Fig-

ABS85

A literal is typed exactly as it appears in the PRINT statement, whether it is used
with commas or semicolons. If a literal is followed by a semicolon, any remaining part
of the zone is used for the next element in the print list. If a comma is used, the rest

of the zone is left blank.

NUMERICAL OUTPUT FORMAT IN LISTS

All numbers printed out of program lists are printed to take up as little room as
possible and yet maintain reasonable accuracies. Numbers with absolute values between
0.1 and 9999 are printed in the format XXXX.YYYYYY or -XXXX.YYYYYY , with lead-
ing and trailing zeros suppressed. The decimal point is suppressed for integral values.
Numbers outside the above range are printed in the following format:

XXXXXXEZZ or -. XXXXXXE+ZZ

TABBING

Another item that may be included in a print list is a term to permit spacing across

the line.
TAB (e)
where e is an expression evaluated and truncated with
a value from 0 to 70 representing a print posi-
tion along the line

The TAB causes the carriage to space over to the position designated by e. If TAB
(50) is an element in a print list, the next zone or list element would start at print posi-
tion 50 on the terminal. If position 50 has already been passed, the TAB is ignored.
Printing continues normally after the TAB. A zone begins at the tab point. The print

positions across the line are numbered from 0 to 70.

The TAB may be used to position literals used as headings and columns of numbers,

to ensure that all values appear in the correct column.

Figure 3-14 illustrates the three types of constants and the output that results when
a semicolon, or TAB is used. Although the semicolon allows more numbers on a line,
the comma keeps the decimal points lined up in the columns of numbers. In the output
from lines 130 to 230, BASIC automatically supplies carriage returns when they are

needed.

3-26 AB85

7LIST

10 LET X=123

20 LET Y=1.23

30 LET L=.123E11
40 PRINT

50 PRINT X,

60 PRINT Y,

70 PRINT ¢

100 PRINT

110 PRINT ™ USE OF THE COMMA™

120 PRINT

130 PRINT XoYsZyeXyYsZyXyY,HZ

200 PRINT

210 PRINT "USE OF THE SEMICOLON"

220 PRINT

230 PRINT X3Y3Z3X3Y3Z3X3Y32

240 PRINT

300 PRINT " USE OF THE TAB"

310 PRINT

320 PRINT TAB(10),X,TAB(20),Y,TABC40),Z
. 400 END

7RUN

123 1.23 «123E 11

USE OF THE COMMA

123 1.23 «123E 11 123 ' 1.23
«123E 11 123 1.23 123E 11

USE OF THE SEMICOLON

123 1.23 +123E 11 123 1.25 .123E 11 123 1.23
«123E 11

USE OF THE TAB

123 1.23 «123E 11

400 EXIT
?

Figure 3-14. Uses of PRINT Statement

SPECIFICATION STATEMENTS

Statement Types

Specification statements are the only noncomputational elements of a BASIC pro-
gram. There are two types: a comment or remarks statement for appending explanatory
text to the program; and a dimensioning statement which reserves locations in memory
for program data, When a specification statement is executed, no computations are per-

formed and control is passed to the next line.

3-27 ABS85

DIMension Statement

APPLICATION

The DIM (short for dimension) statement is used to declare variables as tables or
matrices and to reserve space for them (i.e., declare the size or dimensions they will

have)., In Series 16 BASIC, the DIM statement may appear anywhere in the program.

In DIM v (list.), v, (list.), ..., v (11stn)

1 1 2
where 1n is a line number
DIM is the statement operator
Vi Voo are single letter names
ees V
n
li‘stl, are each integer constants (no decimal point)
. which represent the largest value that a partic-
list_, ..., . .
2 ular subscript will ever reach.

The constants in the DIM statement must be integer (no decimal point) numbers,

If a variable, say X, is dimensioned as X(101), then 102 spaces are reserved for X.
The elements of X are X(0), X(1), X(2), ..., X(101). Note that array subscripts start at
zero. If Y is dimensioned Y(5,5), then 6 x 6 = 36 spaces are reserved for Y. In general,
the number of spaces reserved for a singly dimensioned array, V(n), is (n+l); the number
of spaces reserved for a doubly dimensioned array, V(n,m), is (n+l)x(m+1); the number

reserved for a triply dimensional array, V(n,m, o), is (n+t1)x(m+1)x(0+1); etc.

The DIM statement is nomexecutable. When the BASIC program is executed (RUN),
the information in the statement is used by the compiler‘ to assign memory locations. The

DIM statement need appear only before the dimensioned variables.

A DIM statement is not always necessary, If a single letter is used as a subscripted
variable name with no preceding DIM statement, BASIC will automatically set aside mem-
ory space for the name. If the letter is used as a table, BASIC automatically sets aside
11 locations (i.e., as if it has been dimensioned 10). The same name cannot be used as
both a singly and a doubly subscripted array; however, the same name can be used as an

array (table or matrix) and a simple variable.

ABS85

w
I

N
o]

Care should be taken in the use of the automatic dimensioning feature. If either of
the dimensions is to be greater than 10, the name must be included in a DIM statement.
If a table or matrix is to be much smaller than the automatic specifications, it may still
be included in a DIM statement to save space. For example, a matrix A(3, 3) requires
room for 16 values. If the automatic specifications are used, the matrix is dimensioned

A(10, 10). This requires 121 values, more than seven times the neces sary space,

SINGLY SUBSCRIPTED ARRAYS
Any single letter may be a table name. This means there may be up to 26 tables in

one BASIC program. Table names such as P2 or XX are illegal. Tables are also called
one-dimensional, or singly subscripted, arrays. These names arise because of the way
elements are retrieved from a table. Note that a variable can have the same letter as a
table; e.g.,

10 A =10

11 A(1l) = A+10

is legal in the same program.

In order to pick out a particular item in a table, each element is given a number.
The first element of a table is numbered 0, the second element is 1, the third element is
2, and so on. When a table element is to be referenced, the name of the table is given

followed by the number or subscript of the desired element enclosed in parentheses.

v (e)
where v is the table name (any single letter)
e is any expression to be evaluated, truncated,

and used as a table subscript

A subscripted variable may be used wherever a variable can be used, e.g., in
expression, PRINT statements, etc. Only integers may be used as subscripts, since
one specific item is being referred to. A subscript expression is evaluated and truncated
(the fractional part dropped); it is not rounded to an integer. Thus a subscript of 1, 99999

refers to v(1) not v(2).

Suppose the user wished to set up the table described above: a table of 12 values,
each of which represents the number of television sets a salesman sold in one month of a
year. The name of the table will be S, For ease of numbering, the element S(0) of the
table is not used in this example. (All the elements in a table need not be used.) The

3-29 ABS85

element S(1) will be the number of sets the salesman sold in January; S(2), the number of
sets sold in February; and so on to S(12), the number of sets sold in December. The
following BASIC statements contain legal references to table S,

10 LET S(3)=12

130 LET QI1=S(1) + S(2) + S(3)

252 PRINT "SETS SOLD IN OCT. ='": S(10)

345 IF S(3) - 10, 200, 350, 600
In this example, all the subscripts are constants. However, any expression may be used

as a subscript.

The convenience of tables is demonstrated in the program segment in Figure 3-15.
The coding fills the previously discussed sales table with the appropriate values and com-
putes the sum of all the elements to determine the number of sets the salesman sold in one
year. The loop in lines 30 to 60 is used to do this. As each element is read (line 40) from
the data pool, it is added to the variable S1 (line 50). After the loop is complete, the total
is printed out (line 70).
LIST

10 DATA 10,7,12,10,15,19,18,12,14,5,10,18
15 DImM 5C12)

20 LET Si=0

30 FOR C=1,l2

40 READ sS(C)

50 Sl=S1+5(C)

60 NEXT C

70 PRINT ™ YEARLY SALES TOTAL",SI

80 END

7RUN
YEARLY SALES TOTAL 150

80 EXIT
?

Figure 3-15. Subscripted Variables
The DIM statement (line 15) is usedto reserve space for a table in the computer's
memory. This type of statement will be discussed more thoroughly later. A subscript
expression value must always be less than or equal to the space reserved for the array and

greater than or equal to 0.

Without the facility of tables, the instructions to accomplish the task performed in
Figure 3-15 would have been considerably longer. For example, the READ statement
would have contained 12 variables rather than the ''one' it contains. The arithmetic state-
ment to compute the sum would have contained 12 variables with 11 plus signs. If any

amount of computation had to be done, a tremendous amount of typing would be necessary.
3-30 ABS85

DOUBLY SUBSCRIPTED ARRAYS
Suppose there is more than one salesman selling television sets. When it is desired

to sort data by two categories (e.g., salesman and month), a double subscripted, or two-

dimensional, array may be used.

A matrix, in BASIC, is a set of elements, each of which is referenced by two sub-
scripts. Figure 3-16 illustrates matrix A with dimensions m x n. In BASIC, 0 is a sub-

script, so the matrix illustrated contains (m+1)x(n+1) elements.

column 1 column 2 column 3 column n+1
row 1 a0,0 aO,l ao,2 ao,n
2
row 21 9 2,1 21,2 ®In
row 3 #2,0 22,1 22,2 %2,n
' +
row mtl am, 0 am’ 1 am’ 2 e e am’ a

Figure 3-16. Matrix A (m,n)

The first subscript defines the row the element is in and the second gives the

column.

A matrix is used in the same way a singly subscripted array (or table) is used.

V(el, ez . ..en)

where v is the matrix name (any single letter)
el, are expressions to be evaluated, truncated,
e and used as subscripts
2}
3...
e
n

Again, a matrix reference may be used anywhere a variable or table can be used.
The subscript expressions e, and e, follow all the rules for subscripts of tables. They
must be greater than or equal to 0 and less than or equal to the matrix dimensions.

Suppose there are three salesman selling television sets and their sales records are
as summarized in Table 3-1. The program illustrated in Figure 3-17 was written to

evaluate the performance of each salesman, using the information in Table 3-1 as input.

3-31 ABS85

The output from the program includes the total sets each salesman sold and the average
number of sets sold per month by each salesman. The chart following this output is just
the input written neatly in columns. The numbers marked with an asterisk in Figure 3-18

denote values which are below the salesmen's monthly quota of 13 sets,

Table 3-1. Sales Totals

Month Salesman 1 Salesman 2 Salesman 3
January 10 10 12
February 7 5 9
March 12 10 12
April 10 15 11
May 15 17 12
June 19 22 17
July 18 20 15
August 12 15 14
September 14 10 14
October 5 5 10
November 10 7 12
December 18 20 16

The program begins with three DATA statements; each one contains the sales record
of one salesman. Although BASIC does not care how many data items are contained in
each DATA statement (as long as no more than one line is used), the data has been divided

so each statement contains 12 values, the sales record for one salesman.

The DIM statement sets aside space for three subscripted variables. The first, the
S matrix, contains the number of sets sold by the salesmen. The first subscript of the
matrix refers to the particular salesman, the second to the month. Thus subscript 2, 5
refers to the sales of the second salesman in May, while 1, 12 refers to the sales of the
first salesman in December. The program never uses the 0 subscript of matrix S. Table
T has four spaces reserved for it (again the 0 position is not used). This table contains
the yearly total sales for each of the salesmen. The last table, A, also with four spaces

reserved for it, is used to store the monthly average sales by each of the three salesmen.

The first action of the program is a FOR loop to set the elements of the T table
equal to 0. The initial value of 0 is required in T, because line 130 assumes T begins as
0. In the run, it was not necessary to set T initially to 0, because BASIC sets array
values to 0 at the beginning of a run. However, if this program were '"used' by another
program (see the section following on subroutines), the T table might not be 0.

3-32 AB85

LIST

10 DATA 10,7,12,10,15,19,18,12,14,5,10,18
20 DATA 10,5,10,15,17,22,20,15,10,5,7,20
30 DATA 12,9,12,11,12,17,15,14,14,10,12,16
40 DIM S5(3,12),T(3),A(3)

50 REM ZERO OUT TOTAL ARRAY

60 FOR X=1,3

70 T(X)=0

80 NEXT X

90 REM READ SALES DATA AND CALCULATE TOTAL SALES PER MAN
100 FOR S=1,3

110 FOR M=z1,18

120 READ S(s,M)

130 LET T(S)=T(S)+S(sS,M)

140 NEXT M

150 NEXT S

160 REM CALCULATE AVERAGE MONTHLY SALES
200 FOR s5=1,3

210 LET A(S)=T(8)/12

220 NEXT S

230 REM PRINT OUTPUT

240 PRINT

250 PRINT "YEARLY SALES PER MAN"

260 PRINT ™ SALESMAN ONE T TCL)
270 PRINT " SALESMAN TWO "y T(2)
280 PRINT " SALESMAN THREE",T(3)
290 PRINT

291 PRINT "AVERAGE MONTHLY SALES"

292 PRINT " SALESMAN ONE ",ACD)
253 PRINT " SALESMAN TWO "yA(2)
294 PRINT " SALESMAN THREE",A(3)
295 PRINT

296 PRINT " SALESMAN ONE SALESMAN TWO SALESMAN THREE"

297 REM FOR EACH MONTH (M), PRINT ONE LINE OF DATA
300 FOR M=1,12

310 PRINT TABC4)3;SC1,M);

320 IF SC1,M)=13,330,340,340

330 PRINT "*";

340 PRINT TAB(24);S(2,M);

350 IF S(2,M)=13,360,370,370

360 PRINT "*";

370 PRINT TABC44);5(3,M);

380 IF SC3,M)-13,350,400,400

390 PRINT "*";

400 PRINT

410 NEXT M

413 PRINT

417 PRINT " ASTERISK (%) IF UNDER QUOTA OF 13 MONTHLY SALES"
420 END

Figure 3-17. Sales Evaluation Program

3-33 ABB85

?RUN
YEARLY SALES PER MAN

SALESHMAN ONE 150
SALESMAN TWO 156
SALESMAN THREE 154
AVERAGE MONTHLY SALES
SALESIAN ONE 12.5
SALESMAN TWO 13
SALESMAN THREE 12.8333
SALESMAN ONE SALESMAN TWO SALESMAN THREE
10 * 10 * 12 %
7 * 5 % 9 *
12 * 10 * 12 %
10 * 15 11 *
15 17 12 *
15 22 17
18 20 15
12 = 15 14
14 10 % 14
5> x 5 * 10 %
10 * 7 % 12 %
18 20 16

ASTERISK (*) IF UNDER QUOTA OF 13 MONTHLY SALES

420 EXIT
?

Figure 3-18. Sales Evaluation Program Results

The instructions in lines 100 and 150 illustrate the use of nested FOR loops. The
outer loop (the S, or salesman, loop) iterates on the subscript of the salesmen. The
inner loop (the M, or month, loop) counts through the months. The third parameter in
the FOR statements has been omitted because it is 1. The inner loop is executed once
each time the outer loop is executed. This means the statements enclosed in the inner
loop (lines 120 and 130) are executed a total of 3 x 12 or 36 times. Notice that S has been
used as both a single variable and a matrix. In BASIC, a name may represent a sub-
scripted variable and a single variable. The value of the single variable is stored in the
machine separately from the values of the subscripted variable. The way the variable

name is used (subscripted or not) in an instruction decides what value is being referred to.

The M and S loops read the sales record data and add the appropriate values to get
the yearly totals for three salesmen. The inner loop is executed the first time with S
equal to 1 (salesman one). The first 12 values are read from the data pool, and since S
is always equal to], the 12 numbers are added together to get T(1). When the inner loop
is complete, the value of S is increased to 2 in the outer loop, and the inner loop is

repeated. The next 12 values in the data pool are read from the sales record of salesman

3-34 ABS85

two and added to produce the sum T(2). Again, when the inner loop is satisfied, S is
increased to 3, and the inner loop is repeated for salesman three. After this point the
outer loop is also satisfied so control continues at line 200 (REM lines are ignored by

BASIC).

Lines 200 and 220 are a FOR loop to calculate the average monthly sales for the
three salesmen. The total sales, T(S), for each man are divided by the number of months

(12) and stored in A(S), the corresponding element of A.

Lines 230 through 290 are all PRINT statements which print out the headings for the
output, the average (A), and the total (T) table.

Lines 300 and 410 contain a PRINT routine which takes full advantage of the output
control characteristics of BASIC. The lines contain a FOR loop. Each execution of the
loop produces one line of output for a month of the year. In addition to printing out the
sales per month of each salesman, an asterisk (*) follows any sales values which are
below the established quota of 13, TABs are used to position the data so the numbers are
in vertical columns. The semicolon is used instead of the comma to make sure the aster-

isk immediately follows the number that is printed out.

The loop tests each salesman's sales for month M to see whether it is less than 13.
If the sales total is less than 13, an extra PRINT line to insert an asterisk is executed.
If the sales total is greater than or equal to 13, this PRINT line is skipped, and the next
sales value is printed at the position determined by the TAB setting. The extra PRINT
statement at line 400 has the effect of a carriage return. The last item of a line is either
printed by line 370 or line 390. Each of these lines ends with a semicolon so the carriage
is not returned to start a new line. Line 400 causes the carriage to be thrown and a new

line to be started.

The program did not use elements such as A(0), S(5,0), and S(0,0). Not all the

elements of a table or matrix need be used.

RULES FOR DIMENSIONING VARIABLES

There are many uses for dimensioned arrays. The number of subscripts any ele-
ment can have is unlimited. If any variable is declared as having a specified number of
subscripts, every reference to that variable name in the BASIC program must have the
specified number of subscripts unless it is used as a simple variable. A name cannot

refer to a singly and doubly subscripted array in the same program.

3-35 ABS85

There are two rules to remember when forming subscript expressions (for either

tables or matrices):
1, The subscript expression will be evaluated and truncated. If the
expression is evaluated as 1.99999, this will be truncated to 1.

2. The value of the subscript expression must not be greater than
the corresponding constant in the DIM statement and must not be
negative, If it is, BASIC will print

ERROR AS LINE XXXX

where XXXX is the line number in which the array was referenced
with the subscript out of bounds.

Arrays are stored columnwise as in FORTRAN, with the first subscripted varying
most quickly. Thus A(1,1,1) is stored as

A(0,0,0)
A(1,0,0)
A(0,1,0)
A(l,1,0)
A(0,0,1)
A(l1,0,1)
A(0,1,1)
A(l1,1,1)

This is useful when transferring arrays with FORTRAN subroutines.

SUBROUTINES AND FUNCTIONS

Subroutines and functions are among the most powerful and flexible computational
tools available in the BASIC Language. Both are provided to minimize the necessity of
rewriting a sequence of code when the sequence is logically required several times in a
program. But whereas the function is confined to the calculation of an arithmetic expres-
sion one line in length, the subroutine can do more than a mere calculation and can con-
tain a large number of statements. Additionally, a function is named and tested like a

variable. A subroutine is not named and may not be used in arithmetic expressions,
Two types of functions are used, those which are intrinsic to or "built" into the
language (sine, cosine, exponentiation, etc.) and those which are defined by the user

himself.

Series 16 BASIC also contains a provision for calling one of up to ten DAP-16 and

FORTRAN IV subroutines through its CALL statement.

3-36 ABS85

Subroutines Within Main Program

Subroutines may occur inside the main program or they may be stored elsewhere

in core.

A subroutine is not used in the same manner as a function; it is ""executed' by the

proper BASIC instruction. The instruction which executes a subroutine is a control

statement.
In GO SUB ln1
where In is the line number of the instruction
GO SUB is the statement operator
ln1 is the line number of the first statement of

the subroutine

When the GO SUB instruction is encountered, control is transferred to the indicated
line number lnl, and the line number of the GO SUB statement is saved for use with a later
RETURN statement. When the subroutine has been executed, control returns to the
instruction immediately following the GO SUB instruction. The result is that between the
execution of lines In-1 and 1n+l, the block of coding beginning at line lnl has been
executed. The statement of line In, can be any BASIC statement.

1
Go SUBs can be executed as many times as desired from any point in the program

file. BASIC remembers where to return after the subroutine has been executed.

A subroutine knows the variables and functions of the main or calling program;
variables and functions need not be redefined in subroutines. Conversely, any variables
defined in the subroutine are also known in the main program after execution of the sub-

routine. A subroutine does not have an argument, whereas a function does.
A special statement causes a subroutine to cease execution and return control to the

statement following the last executed GO SUB statement. If no GO SUB statement has been

executed, an error return is made to the command mode.

3-37 ABS85

In RETURN

where In is the line number of the statement

RETURN is the statement operator

A subroutine may have rnore than one RETURN statement, but every subroutine
must have at least one. A RETURN statement does not have to be the last statement of a
subroutine. The RETURN statement is the only statement which can return control from

a subroutine; 2 GO TO, IF, or any other control statement cannot be used,

The file in Figure 3-19 contains a main program and a subroutine. The subroutine
in lines 1000 to 1090 converts a number from radians to an angle in degrees, minutes,
and seconds, and prints out the result. The main program in lines 10 to 70 uses the sub-
routine three times. Before each call to the subroutine, the value of R is set and used as
input to the subroutine in the same way a function argument is used. This can be done

because a subroutine is always executed by use of the same variable names.

Generally, as many variables as necessary are set aside as inputs to the subroutine
and then set to desired values before each subroutine call. Conversely, variables may be
set aside and used as outputs from the subroutine. In Figure 3-19, the variables D
(degrees), M(minutes), and S(seconds) could be considered outputs from the subroutine.
The subroutine calculates these values; thus they are available to be used in the main pro-

gram after the subroutine has exited.

Program execution is terminated by the STOP in line 70, while the file is terminated

with an END statement in line 2000.

The input R to the subroutine is assumed to be positive. In line 1000, R is first
converted to degrees. Lines 1010 to 1030 form a loop to normalize the angle to a value
between 0 and 360 degrees. The function INT is used to extract the integer portion for the
degree value. Line 1050 takes only the fractional portion of the degree value and multi-
plies by 60 to get the minutes value. Line 1070 extracts the fractional portion of the
minutes value and converts it to a whole number of seconds, Line 1080 prints one line of

output. The seconds value is rounded.

3-38 AB85

LIST

10 LET Rz.174533E-01

20 GOSUB 1000

30 LET R=8

40 GOSUB 1000

50 LET R=1.5708

60 GOSUB 1000

65 STOP

70 REM AND SO FORTH THROUGH THE RENAINDER OF CALLING PROGRAM
1000 LET D1=R*57.2958

1010 IF D1<=360 THEN 1040

1020 LET D1=D1-360

1030 GOTO 1010

1040 LET D=INTCDD)

1050 LET M1=(D1=D)*60

1060 LET M=INT(MI)

1070 LET S=INT((M1=M)*60+.5)

1080 PRINT "ANGLE="3;D;"DEGREES";M;"MINUTES";S;"SECONDS"
10950 RETURN

2000 END

?2RUN

ANGLE= 1 DEGREES 0 MINUTES 0 SECONDS
ANGLE= 98 DEGREES 21 MINUTES 59 SECONDS
ANGLE= 50 DEGREES - O MINUTES 1 SECONDS

65 EXIT
?

Figure 3-19, Subroutine in File with Main Program

A STOP or END statement, when it is executed in a subroutine, functions as it does

in the main program; execution terminates and control returns to the system command

mode.

Subroutine calls may be made from subroutines also., This is called nested GO
SUBs. GO SUBs may be nested up to eight deep; eight GO SUBs can be executed before a
RETURN is executed. BASIC remembers where to continue control for each RETURN
executed. The first RETURN returns control to the statement following the last GO SUB
executed; the second RETURN returns control to the statement following the next to the
last GO SUB executed; and so on. If more than eight nested GO SUBs exist, BASIC will
print

ERROR GS LINE XXXX

DAP-16 and FORTRAN IV Subroutine CALL Statement

The CALL control statement to execute subroutines written in the DAP-16 assembly
language and the FORTRAN IV compiler language differs from the GO SUB statement to

execute subroutines written in BASIC.

3-39 ABS85

In CALL (sn, a_,,a_,...a)
1" 2 n

where 1In is the line number of the statement
CALL is the statement operator
sn is a subroutine number from 1 to 10
a, to a_ are arguments to be passed to the subroutine
called

When the CALL statement is executed, control is transferred to the first line of the
identified subroutine. When a FORTRAN RETURN or DAP-16 JMP* instruction is exe-
cuted, control is returned to the statement line following the CALL statement in the BASIC
program. For example:

10 CALL (1, A, B)
80 CALL (4, 10, 20)
175 CALL (9, SIN(X), ABS(X), FNA(X))

A complete description and examples of the use of the CALL statement for

FORTRAN and DAP programs are given in Section IV, Interface Conventions.

Built-In Functions

Certain commonly used functions have been built in as part of the BASIC language.
Functions are used in expressions as are constants and variables. The name of the func-
tion is given followed by an expression enclosed in parentheses. This expression is called
the function argument. When BASIC encounters a function name in an expression, it
evaluates the argument in the parentheses and uses this value to compute the requested

function. The functional value is then used to evaluate the remainder of the expression.

Table 3-2 lists the built-in functions of the BASIC compiler. These functions may
be used anywhere a variable or constant may legally appear. A function reference in an

expression looks much like a table reference.

nom (e)
where nom is the three-letter name of the desired
function
e is an expression to be evaluated and used as
the function argument

3-40 ABS85

Table 3-2, Built-In BASIC Functions

Function
Reference Mathematical Equivalent
SIN(X) sin(x)
The trigonometric sine of the argument x, where x is in radians.
COS(X) cos(x)
The trigonometric cosine of the argument x, where x is in radians.
ATN(X) tan™}(x)
The arctangent in radians of the argument x.
EXP(X) e”
The exponential function.
LOG(X) log_(x)
The logarithm to the base e of the argument.
ABS(X) IXI
The absolute value or magnitude of the argument x.
SQR(X) Nx, x>0
The positive square root of the argument. The argument must be greater
than or equal to zero.
INT(X) The largest integer less than or equal to the argument x. Only magnitude
is considered.
INT(+1.5)=1
INT(-1.5)=-2
SGN(X) The sign of the argument x.
x<0 SGN(X) =-1
x=0 SGN(X) =0
x>0 SGN(X) =1
TAN(X) tan(x)
The tangent of the argument x, assuming x is in radians.
RND(X) A pseudo-random number generates:

1. If X>0, the argument is returned as the random number.
2. If X=0, RND will supply a random number such that 0>/RND(0)< 1.

3. If X<0, a "fixed" random number is supplied such that 0< RND(X)<1.
The same random number is generated for each use of RND(X) with
the same negative argument X,

Options 1 or 3 would probably be used to initiate a sequence of random
numbers, after which option 2 would be used repeatedly.

3-41 AB85

A function reference may be
10 LET V = 1-SQR(X)
Using a variable as the argument of a function does not destroy the value of the variable.

In the line above, X still has its original value. The value of V becomes 1-~N X.

The trigonometric functions (SIN, COS, and TAN) require arguments in radians.
The ATN (arctangent) function result in an angle in radians. This angle is between -

/2 and 0 if the argument is negative and between 0 and + /2 if the argument is positive.

The SQR (square root) function must have a positive argument. The value of the
function is also positive. If the argument is negative, the message ERROR SQ LINE XXXX

is typed at the terminal, and control returns to the system command mode.

The result of the function INT is the largest integer less than or equal to the argu-
ment:
INT (1.99999) =1
INT (~1.99999) =-2 (not -1)

The RND (random number generator) function generates a random number. If the
argument is zero on the first call, the generator is initialized with a computer-defined
number. If the argument is nonzero, the generator is initialized on that argument. When-
ever the random number generator is initialized on the same number, the same list of
random numbers is generated when RND is used. To get a random number after initiali-
zation, use an argument of zero. Any time RND (0) is used, a new random number is
generated. The random number is from a uniform distribution of numbers greater than

or equal to 0 and less than or equal to 1.

All function names consist of three letters. A function argument can be any expres-
sion, but there must be one and only one argument. There is only one result for any of

the functions described in Table 3-2.

Functions have a higher priority than exponentiation in the operator hierarchy.
Functions are evaluated before any other arithmetic operator in the expressions in which
they appear. This means the expression used as an argument of a function has a higher

priority than the expression of which the function is a part,

A function may be used anywhere an expression can be used — in IF statements, in
PRINT statements, and even as an argument of another function. The following statements

are examples of how functions may be used:

3-42 ABS85

10 LET Z=ATN (X/SQR(1-X1*2))

112 I9=INT(X+. 5)

280 IF SQR (ABS(At2-Bt2)), 110, 120, 130

600 PRINT "N=", N, "LOG OF N =", LOG (N)
If the LOG function is called with a negative or zero argument, the following message will
be printed on the teletypewriter:

ERROR LG LINE XXXX

Programmer-Defined Functions

Besides the functions which are part of the BASIC language, the user is allowed to
define his own, one-variable functions. Functions may be defined and redefined through-

out a program, the last executed definition taking precedence.

A programmer-defined function reference can appear in any expression where a
variable may be used. The value of the function is determined before the other arithmetic
operations are performed; therefore, the expression used as the function argument is
evaluated first. For example, suppose a program is written containing the following
related statements:

30 DEF FNE(X)=2*EXP(1-X)

520 LET Y = FNE (A/B)
. . . . : (1-A/B)
Then, after line 520 is executed, the variable Y will contain the result of the 2e

operation.

3-43 ABS85

SECTION IV
INTERFACE CONVENTIONS

INTRODUCTION
BASIC differs from compiler and assembler languages such as FORTRAN and

DAP-16 in that its Interpreter does not produce reusable object text from the user's
source program. Object text is the machine-language binary representation of the source
program text that the user entered into the computer for compilation or assembly. Once
compiled or assembled, this object text can be loaded into core memory by a loader or

linkage editor, and executed whenever needed.

Further, the compiler or assembler need not be in core with the object text, BASIC,
on the other hand, requires its Interpreter's presence in core to reinterpret the source
text each time the program is run. However, Series 16 BASIC does provide a subroutine
CALL statement that causes a DAP-16 assembly language CALL through a table, CLST,
maintained by the BASIC Interpreter. The addresses of up to 10 DAP-16 or FORTRAN IV

object text subroutines to be called are entered in this table by the user.

A subroutine number in the parameter list of the BASIC CALL statement (see the
discussion of Built-In Function in Section III) tells BASIC which table entry to use. Argu-
ments are transferred to the calling subroutine by an assembly language subroutine

called F$AT.

Entry points in a DAP-16 subroutine are declared by use of the ENT or SUBR
psuedo-operations. Entries to FORTRAN subroutines are made by the SUBROUTINE
statement. Linkages are made by the DAP psuedo-operation, CALIL, and by the corre-
sponding CALL statement in FORTRAN. Control is returned to the calling program by an

assembly language JMP*instruction or by the FORTRAN statement RETURN.

ARGUMENT TRANSFER SUBROUTINE F$AT

The compiler inserts a call to this subroutine at the beginning of FORTRAN-coded
subroutines. F$AT transfers pointers (DACs) to the variables being communicated
between the calling program and the subroutine. No call to F$AT is made for subroutines

which need no arguments.

4-1 ABS85

Calling a Subroutine

The following sequence is used to call a subroutine which transfers arguments via
F$AT. The variables are listed in the same order as in a FORTRAN CALL statement.

If there is only one argument, the terminal zero must be omitted:

(L) CALL subroutine name

(L+1) DAC <first variable > N

(L+2) DAC <second variable >

(L+n) DAC <nth variable >
(L+n+1) OCT 0 Zero must be omitted for n=1
(Ltn+2}) Return point

The DACs to the variables can be indirect pointers; F$AT tracks down the indirect
links and transfers a direct pointer. Note that variables themselves are never transferred.
The reason for this is that the length of the variable is not known (it could be any length,

since arrays are acceptable variables).

Calling F$AT

By convention, the first action of a subroutine is to call F$AT. Therefore, the
location preceding the call points to the first argument to be transferred. F$AT transfers
the arguments associated with the words following the call to F$AT. ‘Then, F$AT incre-
ments the pointer to the calling program so that it now points to the conventional return

point (following the zero). For example:

(L) <name> DAC s Subroutine entry point

(L+1) CALIL F$AT Must immediately follow entry

(L+2) DEC <number of arguments, n>

(L+3) <name> DAC Rk First argument address goes here
(L+tn+2) <name> DAC Sk nth argument address goes here
(L4+n+3) Return point for F$AT

The subroutine call may include extraneous arguments following those used by the
called subroutine. Although only the number of arguments specified in L+2 of the call to

F$AT are transferred, the return pointer is incremented until it points to the word follow-

ing the zero in the subroutine call,

EXAMPLES OF SUBROUTINE LINKAGE AND USE
Figures 4-1 and 4-2 are examples which typify the use of FORTRAN IV and DAP-16

subroutines that can be called from a BASIC program. Both subroutines were written for
the same purpose, i.e., to list the elements of an array on a line printer, five elements

to the line.
4.2 AB85

The CALL from the BASIC program would be of the form

where

CALL (S, A(I), N)

S corresponds to the CLST Table entry contain-
ing the address of this subroutine

A(I) is the first array element to be printed

N is the number of elements to be printed

For example, executing the BASIC statement

10 CALL (1, B(0), 10)

will cause elements B(0) to B(9) to be printed at the line printer.

|

S

SUBROUTINE SUBI1 (X, Y)

DIMENSION X(1)

CONVERT SECOND ARGUMENT TO INTEGER
I=Y

PRINT THE ELEMENTS

WRITE (4, 1) (X(J), J=1.1)
FORMAT (5G14.7)

RETURN
END

Figure 4-1. Example of FORTRAN Subroutine for BASIC Program

ABS85

Ywoa
24302
Va3

20834

B335
JDI6
anaT
4208
AAN9
Bp19
2211
3312
2913
VAl 4
W15
JI16
Bo17
va1s
3919
oy
An21
voe2
AD23
DR24
naA25
026
20217
028
ane9
D330
0231
32
8433
P034

I35

Baadtrl
uvBL2
a1 3
ANA1 4
40315
AN 6
Jdo17
¥3I2d
J38021
veaze
d9023
naa24
22125
hAB26
w27
200839
239031
00232
29933
PAB34
PN 35
20336
20037
DBD 40
Jvv at
DLd 42
(K]

2
a

Bduenuo
19 ¥2240

PDRVAA2

S8 S S8 O O

D4 1235
10 080v2
ABPA37

2 771177
B4 VWIV36

2415 77

7]
@

[}

86 20203
B7 VD43
D4 VBV34
19 0pAu

B2d9d2

]
%

VIV B34
¥2 20336

141206

11 20235

1 Byva32
A1 20014
21 VD14
19 00102
V1 BIB00

22309

Q30329
P332303
124265
143661
132256
133651

Bagan2

sSuB1

<X

LOoopP

TEMP

I
J
F1

NO ERRORS IN ABOVE ASSEMBLY.

DAP~-16 REV.

E

Vo-19-6

SUBR
REL
DAC

CALL
ocT

DAC
DAC

CaLL
NDAC*

cAl.L
STA

caLL
DAC
LDA
STA
ALS
ADD
SuB
STA
CaLL
OCT
DAC*
LDA

ADA
CAS

JMP
Jmp
Jmp
CALL
JMP*
BSZ
BSZ
BSZ
BCI

SuUB1

* %
FSAT
2

* %
*k
Ls22
Y

Cs21

F$Wa

TEMP
FSL2
2
TEMP
J

I

*+3
LOOP
LOOP
F$CR
?UBI

1
1
45 (5G14.7)

Figure 4-2,

Example of DAP-16 Subroutine for BASIC Program

ABS85

SECTION V
OPERATING PROCEDURES

INTRODUCTION

This section presents detailed operating procedures for loading and executing the

BASIC Interpreter and for entering and running user programs and subroutines.

STAND-ALONE VERSION

Loading Interpreter

The BASIC System is provided on a self-loading paper tape, which is loaded as
follows:

1. Refer to Figure 5-1, which depicts the control console of a Series 16
general purpose computer. Set the MA/SI/RUN switch to SI and
depress the MASTER CLEAR pushbutton.

2. Select the P register by depressing the P/Y switch and load 0000014
in the P register by depressing illuminated pushbutton 16.

3. Insert the self-loading tape into the appropriate input device.

4, Set the MA/SI/RUN switch to RUN and push START. (When loading
with an ASR-33 teletype unit, the manual START switch on the
device must be activated. When loading with an ASR-35 teletype
unit, the MODE switch must be set to KT.)

Executing Interpreter

After the BASIC Interpreter has been loaded, execute it by proceeding as follows:
1 Set MA/SI/RUN to SI.

2 Press MASTER CLEAR,

3. Select the P Register by depressing the P/Y switch.

4

Select location 1000g by depressing the illuminated pushbutton marked
"7" above and ""A'" below.

Set MA/SI/RUN to RUN.
6. Press START.

Ot

5-1 ABS85

S o (v MERIEN

DEPRESS

INITIALLY
INTERPRETER
START
LOCATION
1000g

SET FOR

" INPUT
. - |_DEPRESS

- -
Coeo. e e
.
- ‘
’ .
i)
-

DEPRESS SELECT P SET TO RUN

Figure 5-1. Model 316 Control Panel

OP-16 VERSION OF BASIC

Configuring BASIC Interpreter Under OP-16

In order to execute the BASIC Interpreter under the OP-16 Operating System's
RTX-16 Executive Program, it is necessary to make five 1-word entries in the Executive
Program List Table, XPLT. The table entries, which are described in full in Section 4
of the OP-16 Users Guide, are the following:

XPLT BCI 1, BI WORD 1 — PROGRAM NAME
XAC BASIC WORD 2 — STARTING ADDRESS
OCT 0 WORD 3 — STATUS WORD
VFD 5,0,8,5,3,1 WORD 4 — OPTION WORD
ocCT MASK WORD 5 — COORDINATION WORD

where S is the number of the starting core segment into which BASIC is to be loaded.
BASIC must be loaded above the point specified by the parameter XSPT in the Configura-
tion Module. The Coordination Word, MASK, is specified so that BASIC does not conflict
with other programs using the teletypewriter. The value of this word will of course depend
on the convention that the user employs at his installation for device coordination. BASIC

does not utilize the Communication Word option.

h-2 ABS85

Loading OP-16 Version of BASIC

Using the LDR-APM loader program, load the following five components of BASIC,

starting above the point specified by S in the Option Word of the XPLT entry for BASIC.

BASIC-16-B
BASIC-10S-C
BASIC-MATHPAK
BASIC-INIT-B

DAP-16 object tape of the following subroutine source code:

SUBR TABLE

REL

TABLE DEC N
BSS N
END

where N is the projected size of the user's symbol table. It is suggested that

N have a value of 1024 for two sectors minimum. A certain amount of experi-

mentation in selecting this parameter may be needed because of differences in

memory size and user programming requirements.

Loading DAP and FORTRAN Subroutines

BASIC maintains a table called CLST which contains 10 entries (CLST, CLST+1,

CILST+2,..CLST+9), each of which may designate a pointer to some user DAP-16 or

FORTRAN IV subroutine. The address of table CLST can be obtained by loading the sys-

tem tape and examining the contents of 7768. If the user is configuring his own system

the address will appear on the memory map. The user loads these subroutines as

follows:

1.

2.

Load the LDR-APM loader, starting at some convenient, 'out-of-the-
way'' location.

Load the user subroutines (and any subroutines that they may require),
starting at a point such that the highest location used will be as close
as possible to the end of core (or Bank 1, whichever comes first),

To find the address at which the user may start his cross-sector link-
age area to Sector 0, load the BASIC system tape and note the address
contained in the last nine bits of word '777. The last nine bits are
equivalent to the address specified as *BASE on the memory map if

the user has configured his own system. The area between the address
specified by the contents of location 777g and location 1000g may be
used for cross-sector references for user subroutines.

Reload the BASIC system and enter the entry points of the user sub-
routines in table CLST, If the user has a BASIC system tape, these
can be found by examining location 776g. If the user is configuring
his own system, he should consult his system memory map.

For example, if the user had an 8K system and subroutines which
would occupy approximately two sectors of memory, he might
accomplish his loading as described in the sample procedure on the
following page.
5-3 ABS85

Load LDR-APM starting at 110008.

b. Load the BASIC System Tape as on page 5-1.
c. Load the subroutines beginning at 15000g and start
the cross-sector references for the subroutines at

the address specified by the contents of the last
nine bits of location 7778.

d. Enter the addresses of the subroutines in table CIST.

e. If the user desires a dump of BASIC and his subroutines,
the PAL-AP program should be loaded at 10000g and a
dump made first from 100g to 7577g and then from
15000g to the highest address occupied by his sub-
routines.

f. When initiating BASIC, as described below, the user
should specify location 147774 at the step where he is
asked to "GIVE HIGH OCTAL ADDRESS. "

Loading and Running BASIC Interpreter under OP-16

Once the BASIC Interpreter has been configured under the RTX-16 Executive routine

and the requisite DAP-16 and FORTRAN subroutines have been loaded, the BASIC Inter-

preter can be executed in the following manner:

1.
2.

3.

Call the keyboard program by typing a dollar sign. .
The system will respond by typing out the inquiry SF=, asking for the

-System Function you desire.

Respond by typing RP for Request Program, followed by a blank and
then the program name, Bl for BASIC Interpreter, followed by a
carriage return.

The system will again type out SF=. Respond by typing @to signify
that the Keyboard Program is no longer required.

The system will respond to the latter by typing out the program
name, followed by the revision level, the date of the revision, a
carriage return/line feed, and a question mark. The user may
now enter his BASIC commands or statements. The entire inter-
action would have looked something like this:

$

SF=RP BI

SF=@

BASIC-16-B REV.A 09-22-70

?

INPUT /OUTPUT AND CONTROL

After the Stand-Alone Only Interpreter has been loaded, but before the computer

requests user instructions, it identifies which version of itself the computer is using and

the date of that version:

BASIC-16 11-19-70

5-4 ABS85

It then asks a series of three questions requiring yes or no answers to determine
whether your program will need certain intrinsic functions. The functions involved are
the trigonometric sine, cosine, tangent, and arctangent and the square root function.
For example:

OK TO DELETE THE ATN FUNCTION? (ANSWER YES OR NO)

If these functions are not required, the Interpreter will allow just that much more
room for user program statements and data. If an intrinsic function deleted during initiali-
zation is called in a BASIC program, the following error message will be printed on the
teletype:

ERROR DF LINE XXXX
The last question asked is:

OK TO USE ALL OF CORE? (ANSWER YES OR GIVE HIGH OCTAL ADDRESS)

If the user has loaded subroutines above BASIC, he should specify a location just
below the start of his subroutines. If you reply ""7777" for decimal 4096, the computer
will type out the following message:

414 LOCATIONS FOR USER STORAGE AND DATA

?

The user may now proceed to enter instructions after the question mark, as

described below.

After BASIC has been loaded and initialized, it requests input by typing a question

mark. The programmer responds with either a statement or a command in the form of

a. an unnumbered system command

b. a line-numbered BASIC statement

c. a line number and carriage return to delete a line

d. an unnumbered BASIC statement for immediate execution

If the statement is to be stored as part of the program, it must have a statement
number., If there is no statement number, immediate execution of either a BASIC state-
ment or a system command is performed. Any instruction to the computer is terminated

by a carriage return and (optionally) a line feed.

REMark, DATA, DIMension, and DEFINE statements cannot be executed in the
immediate mode. Any reference to line numbers (e.g., GO TO or GO SUB) refers to a
statement in the program. Thus, immediate statements that transfer control may be used

5-5 ABS85

to restart execution of the program. However, care must be taken that the program has
not been modified in any way; otherwise it must be started by a RUN statement rather than

a GO TO or GO SUB.

DATA FORMATS

Input Formats

Detailed statement and data formats have been described in Section II, under Syntax.
Statements and data must be terminated by a carriage return. A line feed is optional. The
sequence X-OFF RUBout may optionally follow the carriage return or line feed. A null

line entered during a paper tape LOAD operation terminates that operation.

During input a leftward arrow («) may be used to delete one or a succession of pre-

ceding characters. The symbol @ may be used to delete the entire line.

Output Formats

Unless it is in the LOAD mode, BASIC outputs a questzion mark each time it is ready
to receive an instruction. Each time BASIC is ready to receive an INPUT value, it types
an exclamation point, awaits the carriage return following the entry of the variables, and

then continues execution of the program.

Statements are listed or punched in line number order, with all spaces except those
in comments and messages normalized. Each statement of output is terminated with a
sequence of carriage return, X-OFF, and RUBOUT characters. Each new line begins

with a line feed. The end of output for the program is signalled by a null statement.

Error Message Formats

Whenever a STOP or END control statement is encountered, the line number and the
word EXIT are printed. If the program terminates without a STOP or an END being

encountered, the line number 0000 and EXIT are printed.

For each error encountered during statement execution, the Interpreter outputs the
following messages:

ERROR AA LINE BBBB
where AA stands for error codes (listed in Appendix A) and BBBB for a line number. An
error of the general form in which the user has misplaced or illegally specified a charac-
ter results in the following error code:

ERROR c¢? NNNN

5-6 AEBES85

where c is the character questioned by the Interpreter. For example, the following line:
10 # RINT X
would result in the following error message:

ERROR #? 0010

If a statement executed in the immediate mode contains an error, the line number of
the error statement will be zero. Upon detection of this error, control is returned to the

command mode.

DETAILED DESCRIPTION OF BASIC SYSTEM COMMANDS

JOB Command

This command clears the user storage space, thereby deleting any previous BASIC
program, and prepares the system to accept new information. It does not affect DAP-16

or FORTRAN subroutines nor the subroutine CALL table.

CLEAR Command

CLEAR voids all user data locations but does not delete any programs.

RUN Command

RUN utilizes BASIC to execute the current program. It initializes all array dimen-
sions as specified in DIMension statements and starts interpreting the program at the state-
ment specified or at the lowest numbered statement. Each statement is interpreted and
executed as it is encountered. The program is executed until an error, a STOP, an END,

an SS1 command, or the last defined statement is reached.

CONTINUE Command

To halt execution of a program or unneeded listing, depress Sense Switch SS1 on the
control panel of the computer. The statement number to be executed next and the word
BREAK are printed at the console and the computer pauses, awaiting the execution of a
CONTINUE command. Executing CONTINUE resumes processing where it left off after
the SS1 interrupt. Note that the program may not be restarted with the CONTINUE com-
mand if modified subsequent to BREAK,

LIST Command

This command causes the whole or specified portions of the program in core to be

listed in line number order.

5-7 ABS85

QUIT Command

This command in the stand-alone version places the machine in the HALT state,
To resurne operation, press START. Inthe OP-16 version, QUIT returns control to the
RTX-16 Executive.

LLOAD Command

A null line entered during a paper tape LOAD operation terminates that operation.

The reader will not start if the paper tape is improperly loaded.

On ASR-33, the reader reads one character after the X-OFF before stopping.
Therefore it is conventional to follow all X-OFFs with RUB-OUTs.

On ASR-35, the reader may read two additional characters before stopping. How-

ever, if the first character after the X-OFF is a RUB-OUT, the second character will

not be read.

5-8 ABS85

APPENDIX A

DIAGNOSTICS

Error

Code Meaning

AS Array subscript out of bounds

DA Attempt to READ more data than available

DF Attempt to use a function deletion during initialization

DL Statement terminator error

DP Two decimal points in a number

DV Dummy variable in DEF statement is subscripted

DZ Divide by zero

FD Invalid delimiter in FOR statement

FN Characters FN misplaced in DEF statement

GS GO SUBs nested more than eight deep

1C Condition in IF statement is incorrect

ID General error

v Index variable in FOR statement is subscripted

LG Negative logarithmic function argument

MO Memory overflow

M, Missing or misplaced comma

M= Missing or misplaced equals sign

M) Missing or misplaced right parenthesis

M(Missing or misplaced left parenthesis

NO Numerical overflow

NU Numerical underflow

NX Next statement has no matching FOR

ON Expression in ON statement is nonpositive, as the GO TO is
missing

PD Illegal item delimiter in PRINT statement

RT RETURN statement not in subroutine

SN Statement number error (range 1-9999)

SQ Negative square root function argument

SS Subroutine selector in CALL out of range (1-10) or subroutine
is missing

TH THEN left out of IF statement

X No end of quote

A-1 ABB85

Error
Code

UF
UM
Us

uv

Meaning
Undefined function
Unitary minus error
Undefined statement number

Undefined variable

ABS85

APPENDIX B
SYNTACTIC STRUCTURE OF BASIC

The following BASIC syntax is described in Backus Normal Form. Quantities -
enclosed within angle brackets (<>) are metalinguistic variables representing a class of
syntactic variables. A colon followed by an equal sign (:=) means ''is defined as.' A
vertical line (]) connecting two elements means logical OR. An element or group of
elements enclosed in square brackets followed by a subscript and superscript ([]Z) may
be repeated any number of times within the inclusive range of the subscript and super-
script. All letters and symbols not enclosed in angle brackets are actual characters of
the syntax.

<alphabetic character> := A|B|CIDIEIFIGIHIIIJIKILIMIN|O|PIQ|RISITIUIVIWIX|
Y| Z|

<digit>:=0|1]2|3141]5]6]718]9
<special character>:=+[- x|/ | tl=]()I<I>].],];lA

<integer >:= [<digit>] (1)

< -
<decimal number >: = [<digit>] IN—9 . [<digit>] Z N
<sign>:= [+]-] 1
g < 0
: - 2
<exponent>:= E<sign> [<digit>] 1
<number >: = <integer > |<fraction>|<decimal number > i [<exponent >] (1)

<signed number >:= <sign> <number >

<simple variable>:= <alphabetic character> [<digit>] (1)

<fraction>:= . <integer >

<subscripted variable >: =" <alphabetic character>(<expression> [<expression>] 2)0

<variable >: = <gimple variable > | <subscripted variable >

<function name > := SIN|COS|TAN|ATN|EXP| ABS|LOG|SQR| INT| RNDI SGNI|
FN <alphabetic character >

<function term > := <function name > (<expression>)

<term >:= <number >|<variable > | <function term>| (<expression>)

B-1 ABS85

<involution factor >: =<term > |<involution factor > t <term >

<multiply factor >: = <involution factor >|<multiply factor > [/] i <involution factor >

<expression>: = <multiply factor >|<sign> <expression>|<expression>[+| -]
<involution factor >

<assignment statement>:= LET <variable> [, <variab1e>]6° = <expression>
<READ statement>:= READ <read list>
<INPUT statement>: = INPUT <read list>

<read list>:=<variable> [, <variable >] g

<DATA statement>:= DATA <number list>

. . . [es]
<number list>:= <expression> [, <expression> | 0

<RESTORE statement>: = RESTORE

<PRINT Statement>: = PRINT [<print list>]
<print list>:=<print item> [[,|;] i<pr1nt 1tem>] [, {3] 0

<print item>:= <expression>|<message>|<message> <expression>| TAB
(<expression>)

<message>:="'[<alphabetic character >|<digit>| <special character >] “’°1"
<commient>:=REM [<alphabetic character >|<digit>|<special character >] g

<GO TO statement>: =GO TO <line number >
<GO SUB statement> := GO SUB <line number >

<RETURN statement>: = RETURN

<ON statement>: = ON<expression> GO TO<line number > [<line number >] cg
<line number >: =[<digit>] :1)

<logical IF statement>:= IF <expression> <relational operator>r§expressmn> [THEN
<statement body> [: <statement body>]o |THEN <line number >
GO TO<line number >]

<arithmetic IF statement> := I[F <expression> <line number >, <line number >,
<line number >

<relational operator>:= >|>=| =|=<|<|<>

B-2 ABS85

<FOR statement>: = FOR<simple variable >=<expression> [TO|,] i <expression>
[[STEP},] i<expression>] 0

<NEXT statement>:= NEXT <simple variable >
<STOP statement>:=STOP
<END statement>: = END

<DIMENSION statement > := DIM <dimension variable> [, <dimension variable >] go

<dimension variable > := <alphabetic character> (<size>)

. . Y
<size >:=<integer> [, <integer >] 0

<DEFINE statement> := DEFFN <alphabetic character > (<simple variable>) =
<expression>

<CALL statement>:= CALL (<subroutine identifier > [s <subroutine parameter >] 83

<subroutine identifier > :=<expression>
<subroutine parameter > :=<expression>

<command request response>: = <system command > |<BASIC statement>|<line deletion > |
<immediate command >

<system command>: = JOB|CLEARI|RUN|LIST| CONTINUE|QUIT | PUNCH | LOAD
<line deletion>: = <line number >

. [os]
<immediate command>: = <immediate statement>[: <immediate statement>
0

<immediate statement> : = <assignment statement>|<READ statement>| <INPUT
statement >| <RESTORE statement >| <PRINT statement > |
<GO TO statement>|<logical IF statement> |
<arithmetic IF statement>| <ON statement> |[<FOR
statement >| <NEXT statement>|<GO SUB statement>|
<RETURN statement>|<CALL statement>| <comment
statement > | <STOP statement>

<statement body > : = <immediate statement >|<DATA statement>|<DIMENSION
statement > | <DEFINE statement >

<BASIC statement>: =<line number > <statement body>[: <statement body>] E)O

[o¢]
<BASIC program>: =[<BASIC statement>] 1 <line number > <END statement>

B-3 ABS85

COMPUTER GENERATED INDEX

316

MODEL 316 CONTROL PANELe 5=2

USE OF STATEMENT DELIMITER (:). 2=5
APPLICATION

APPLICATIONe 3-28
ARGUMENT

ARGUMENT TRANSFER SUBROUTINE FSAT. 4-1
ARITHMETIC

ARITHMETIC ASSIGNMENT STATEMENT, 3-1
ARITHMETIC OPERATORS, 2=9
EXAMPLE OF ARITHMETIC ASSIGNMENT STATEMENT. 3=2
ARRAYS
DOUBLY SUBSCRIPTED ARRAYS, 3-31
SINGLY SUBSCRIPTED ARRAYS, 3-29
ASSIGNMENT
ARITHMETIC ASSIGNMENT STATEMENT. 3=1
EXAMPLE OF ARITHMETIC ASSIGNMENT STATEMENT, 3-2
BASIC
BASIC LANGUAGE SUMMARY, 1=2
BASIC PROGRAMMING EXAMPLE. 2-1
BUILT=IN BASIC FUNCTIONS. 3=41
CONFIGURING BASIC INTERPRETER UNDER OP=l6e 5=2
DETAILED DESCRIPTION OF BASIC SYSTEM COMMANDS. 5-7
ELEMENTS OF BASIC, 2-7
EXAMPLE OF DAP=-16 SUBROUTINE FOR BASIC PROGRAM. &4=¢
EXAMPLE OF FORTRAN SUBROUTINE FOR BASIC PROGRAM, 4=3
LOADING AND RUNNING BASIC INTERPRETER UNDER OP=16. 5-4
LOADING OP=16 VERSION OF BASICe 5-3
OP=16 VERSION OF BASICs 5=2
SYNTACTIC STRUCTURE OF BASIC. B-1
BUILT=IN
BUILT=-IN BASIC FUNCTIONSe 3=41
BUILT=IN FUNCTJONS, 3-40
CALL
CALLING A SUBROUTINE. 4-2
CALLING F$ATe 4=2
DAP-16 AND FORTRAN Iv SUBROUTINE CALL STATEMENT. 3=-39

— CLEAR COMMAND, 5=7
COMMA
SEPARATING PRINT LIST ITEMS WITH COMMA, 3=24
COMMAND
CLEAR COMMAND. 5=7
CONTINUE COMMANDe 57
DETAILED DESCRIPTION OF BASIC SYSTEM COMMANDS, 5=7
JOB COMMANDe 5=7
LIST COMMAND, 5=-7
LOAD COMMAND. 5-8
QUIT COMMAND. 5-8
RUN COMMAND. S5=7
SYSTEM COMMAND SUMMARY, 1=-3
SYSTEM COMMANDS. 1-3
CONDITIONAL
ON STATEMENT CONDITIONAL CONTROLe 3=1¢
CONFIGURING
CONFIGURING BASIC INTERPRETER UNDER OP=l6e 5=2
CONSTANTS
CONSTANTS. 2=-7
CONTROL
CONTROL STATEMENTS. 3-3
EXAMPLE OF ON CONTROL STATEMENT. 3=15
EXAMPLE OF UNCONDITIONAL CONTROL STATEMENT (GO TO).
3=4
INPUT/OUTPUT AND CONTROLe 5=4
MODEL 316 CONTROL PANEL. 5=-2
ON STATEMENT CONDITIONAL CONTROL. 3=l4
CONVENTIONS
INTERFACE CONVENTIONS, 4~-1

DAP
LOADING DAP AND FORTRAN SUBROUTINESs 5=3
DAP-16 .
DAP-16 AND FORTRAN Iv SUBROUTINE CALL STATEMENT, 3-39
EXAMPLE OF DAP-16 SUBROUTINE FOR BASIC PROGRAMs 4=4
DATA
DATA FORMATS. 5-6
READ AND DATA STATEMENTS. 3~18 3-20
DELIMITER
USE OF STATEMENT DELIMITER (i), 2=5
DESCRIPTION

DESCRIPTIONe 2-7

DETAILED DESCRIPTION OF BASIC SYSTEM COMMANDS. 5«7
DIAGNOSTICS

DIAGNOSTICS. A-1
DIMENSION

DIMENSION STATEMENTe 3-28

RULES FOR DIMENSIONING VARIABLES. 3=35
bouBLy

DOUBLY SUBSCRIPTED ARRAYSe 3-31
ELEMENTS

ELEMENTS OF BASICe 2=-7

END

END STATEMENT. 3-15

STOP AND END STATEMENTS. 3=17
ERROR

ERROR MESSAGE FORMATS, 5=6
EVALUATING

EVALUATING EXPRESSIONS. 2=-11
EVALUATION

SALES EVALUATION PROGRAM. 3-33
SALES EVALUATION PROGRAM RESULTS. 3-34
EXAMPLE .
BASIC' PROGRAMMING EXAMPLE. 2~-1
EXAMPLE OF ARITHMETIC ASSIGNMENT STATEMENT, 3=-2
EXAMPLE OF DAP-16 SUBROUTINE FOR BASIC PROGRAM, 4-4
EXAMPLE OF FORTRAN SUBROUTINE FOR BASIC PROGRAMe 4=3
EXAMPLE OF ON CONTROL STATEMENT. 3=15
EXAMPLE OF UNCONDITIONAL CONTROL STATEMENT (GO TO).
3e4
EXAMPLES OF SUBROUTINE LINKAGE AND USE. 4-2
EXAMPLES OF USEe. 3-8
RESULTS OF NESTED FOR=NLXT LOOPS EXAMPLEs 3-14
STATEMENT FORMAT EXAMPLE, 2=-5
EXECUTING
EXECUTING INTERPRETER. 5~-1
EXPONENTIAL
EXPONENTIAL NUMBERS. 2-8
EXPRESSIONS
EVALUATING EXPRESSIONS, 2-11
EXPRESSIONSe 2-9
FORMING EXPRESSIONSe 2=-10
FS$AT
ARGUMENT TRANSFER SUBROUTINE F$AT. 4=]
CALLING F$ATe 4=2
FILE
SUBROUTINE IN FILE WITH MAIN PROGRAM. 3-39
FLOATING=POINT
FLOATING~POINT NUMBERS, 2-8
FOR=NEXT
FOR<NEXT STATEMENT ‘USAGke 3=-10
FOR=NEXT STATEMENTS. 3-8
NESTED FOR=NEXT LOOPS. 3-12
RESULTS OF NESTED FOR=NEXT LOOPS EXAMPLE. 3=14
FORMAT
DATA FORMATS. 5=6
ERROR MESSAGE FORMATS, b=6
NUMERICAL QUTPUT FORMAT IN LISTSe 3=26
INPUT FORMA1S, 5=6
OUTPUT FORMATSe 56
STATEMENT FORMAT EXAMPLEe. 2-5
FORMING
FORMING EXPRESSIONSe 2~10
FORTRAN
DAP-16 AND FORTRAN 1V SUBROUTINE CALL STATEMENT. 3-39
EXAMPLE OF FORTRAN SUBROUTINE FOR BASIC PROGRAM. 43
LOADING DAP AND FORTRAN SUBROUTINESe 5-3
FUNCTIONS
BUILT=IN BASIC FUNCTIONS. 3-4]}
BUILT=IN FUNCTIONSs 3=40
PROGRAMMER=DEFINED FUNCTIONS. 3-43
SUBROUTINE AND FUNCTIONS. 3-36

HARDWARE

REQUIRED HARDWAREs 1=4
TLLEGAL

LEGAL AND JLLEGAL NESTED LOOPSe 3-12
INPUT

INPUT FORAMTS. 5«6

INPUT STATEMENT. 3-21

USE OF INPUT STATEMENT. 3-22
INPUT/QUTPUT

INPUT/QUTPUT AND CONTROLe 5=4

INPUT/OUTPUT STATEMENTS. 3-17

INTEGER

INTEGER NUMBERSe 2=7
INTERFACE

INTERFACE CONVENTIONSe 4=1
INTRODUCTION

INTRODUCTION, 1=1 2«1 4=l 5=-1
ITEMS

ITEMS OF PRINT LISTe 3-23
SEPARATING PRINT LIST ITEMS WITH COMMA. 3«24
SEPARATING PRINT LIST ITEMS WITH SEMICOLON. 3=24
v
DAP-16 AND FORTRAN 1V SUBROUTINE CALL STATEMENT. 3-39
Jog .
JOB COMMANDe 5=7
LANGUAGE
BASIC LANGUAGE SUMMARY. 1-2
LANGUAGE STATEMENTSe 3=l
LANGUAGE SUMMARY, 1=-1
LANGUAGEs 2=1

ABBS

COMPUTER GENERATED INDEX

LEGAL
LEGAL AND ILLEGAL NESTED LOOPSe 3=12

LINE NUMBERe 2=4
STATEMENT LINE. 2=4
LINKAGE
EXAMPLES OF SUBROUTINE LINKAGE AND USEe 4=2

ITEMS OF PRINT LISTe 3-23

LIST COMMAND. 5-7

NUMERICAL OUTPUT FORMAT IN LISTSe 3=26
SEPARATING PRINT LIST ITEMS WITH COMMA. 3=24
SEPARATING PRINT LIST ITEMS WITH SEMICOLON. 3-24

LOAD COMMAND. 5-8
LOADING AND RUNNING BASIC INTERPRETER UNDER OP=16, 5=4
LOADING DAP AND FORTRAN SUBROUTINESs $-3
LOADING OP=16 VERSION OF BASICe 5=3
LooPS
LEGAL' AND ILLEGAL NESTED LOOPS. 3=12
NESTED FOR=-NEXT LOOPS, 3~-12
NESTING LOOPSe 3=12
RESULTS OF NESTED FOR-NEXT LOOPS EXAMPLE, 3«14

SUBROUTINE IN FILE WITH MAIN PROGRAMs 3=39
SUBROUTINES WITHIN MAIN PROGRAMs 3e37
MATRIX
MATRIX A [MsN)e 3=31
MESSAGE
ERROR MESSAGE FORMATS, 5«6
MODEL
MODEL ‘316 CONTROL PANELe 5=2
NEGATIVE
NEGATIVE STEP SIZE. 3-11
NESTED
LEGAL AND ILLEGAL NESTED LOOPS. 3«12
NESTED FOR=NEXT LOOPS. 3~12
NESTING LOOPS. 3-12
RESULTS OF NESTED FOR-NEXT LOOPS EXAMPLE, 3-14
NUMBER

NUMBER

LIST

LOAD

MAIN

LINE NUMBER. 2=4
S

EXPONENTIAL NUMBERS, 2~-8
FLOATING=POINT NUMBERS. 2-8
INTEGER NUMBERSe 2«7
NUMERICAL
NUMERICAL OUTPUT FORMAT IN LISTS. 3-26
OPERATING
OPERATING PROCEDURES, 5«1
OPERATOR
ARITHMETIC OPERATORS, 2=9
RELATIONAL OPERATORS, 2=9
STATEMENT OPERATOR, 2-%
oP=-16
CONFIGURING BASIC INTERPRETER UNDER OP=16e 5=2
LOADING AND RUNNING BASIC INTERPRETER UNDER OP-16, 5=4
LOADING OP=16 VERSION OF BASIC, S5=3
OP=16 VERSION OF BASICs 5=2
OUTPUT
NUMERICAL OUTPUT FORMAT IN LISTS. 3-26
OUTPUT FORMATSe 5-6
PANEL
MODEL 316 CONTROL PANELe 5=2
PERFORMANCE
PERFORMANCE SPECIFICATIONS. l=4
PRINT
ITEMS OF PRINT LIST., 3-23
PRINT STATEMENT. 3=23 3=25
SEMICOLON IN PRINT STATEMENT. 3-25
SEPARATING PRINT LIST ITEMS WITH COMMA, 3=25
SEPARATING PRINT LIST ITEMS WITH SEMICOLON. 3-25
USES OF PRINT STATEMENT. 3=27
PROCEDURES
OPERATING PROCEDURES. 5-1
PROGRAM
EXAMPLE OF DAP-16 SUBROUTINE FOR BASIC PROGRAMe 4=4
EXAMPLE OF FORTRAN SUBROUTINE FOR BASIC PROGRAM, 4-3
SALES EVALUATION PROGRAM. 3=33
SALES EVALUATION PROGRAM RESULTS. 3=34
SUBROUTINE IN FILE WITH MAIN PROGRAM. 3=39
SUBROUTINES WITHIN MAIN PROGRAM, 3-37
PROGRAMMER=DEF INED
PROGRAMMER=DEF INED FUNCTIONS. 3=43
PROGRAMMING
BASIC PROGRAMMING EXAMPLEe 2-1
QUIT
QUIT COMMAND. 5-8

READ

READ AND DATA STATEMENTSe 3=18 3-20
RELATIONAL

RELATIONAL OPERATORS. 2=-9

REMARK -

REMARKSe 2-6

USE OF REMARK STATEMENTSe 2=6
RESTORE

RESTORE STATEMENTe 3-19

S
RESULTS OF NESTED FOR=NEXT LOOPS EXAMPLE. 3~14
SALES EVALUATION PROGRAM RESULTS. 3=34
RULES
RULES FOR DIMENSIONING VARIABLES. 3=35
RUN

RUN COMMANDe 5~7
RUNNING

LOADING AND RUNNING BASIC INTERPRETER UNDER OP=16+ 5«4
SALES

SALES EVALUATION PROGRAMe 3-33

SALES EVALUATION PROGRAM RESULTSe 3=34

SALES TOTALS, 3=32
SEMICOLON

SEMICOLON IN PRINT STATEMENT. 3=25

SEPARATING PRINT LIST ITEMS WITH SEMICOLON. 3=24
SINGLY

SINGLY SUBSCRIPTED ARRAYS, 329

NEGATIVE STEP SIZE. 3~-11
SOFTWARE
REQUIRED SOFTWAREe l=4
SPECIFICATION
* PERFORMANCE SPECIFICATIONSe 1=4
SPECIFICATION STATEMENTS. 3-27
STAND=ALONE
STAND=ALONE VERSIONs 5=1
STATEMENT
ARITHMETIC ASSIGNMENT STATEMENT. 3-1
CONTROL STATEMENTS,. 3-3 -
DAP-16 AND FORTRAN IV SUBROUTINE CALL STATEMENT. 3-39
DIMENSION STATEMENT. 3-28
END STATEMENT« 3-15
EXAMPLE OF ARITHMETIC ASSIGNMENT STATEMENT. 32
EXAMPLE OF ON CONTROL STATEMENTe 3-15
EXAMPLE OF UNCONDITIONAL CONTROL STATEMENT (GO TO).
34
FOR=NEXT STATEMENT USAGE. 3=-10
FOR=NEXT STATEMENTSe 3-8
IF STATEMENT. 3=6
INPUT STATEMENT. 3-21
INPUT/OUTPUT STATEMENTSe 3=17
LANGUAGE STATEMENTSe 3=l
ON STATEMENT CONDITIONAL CONTROL. 3=14
PRINT STATEMENT. 3«23 3«25
READ AND DATA STATEMENTSe 3«18 3=20
RESTORE STATEMENT. 3=19
SEMICOLON IN PRINT STATEMENT. 3=25
SPECIFICATION STATEMENTSe. 327
STATEMENT FORMAT EXAMPLE. 2-5
STATEMENT LINE. 2~4
STATEMENT OPERATOR. 2«5
STATEMENT TYPES. 3=27
STOP AND END STATEMENTSe 3-17
STOP STATEMENTe 3«16
THREE~-BRANCH IF STATEMENT., 3=-6
TWO-BRANCH IF STATEMENT. 3~4
UNCONDITIONAL GO TO STATEMENT. 3-3
USE OF INPUT STATEMENT,. 3-22
USE OF REMARK STATEMENTSe 2=-6
USE OF STATEMENT DELIMITER (:)e 25
USES OF PRINT STATEMENTe 3=27

NEGATIVE STEP SIZE, 3-11l

STOP AND END STATEMENTSe 3-17
STOP STATEMENTe 3«16
STRUCTURE
SYNTACTIC STRUCTURE OF BASICs B=-1
SUBROUT INE
ARGUMENT TRANSFER SUBROUTINE F$AT. 4=l
CALLING A SUBROUTINE. 4=2
DAP-16 AND FORTRAN IV SUBROUTINE CALL STATEMENT. 3-39
EXAMPLE OF DAP-16 SUBROUTINE FOR BASIC PROGRAM, 4=
EXAMPLE OF FORTRAN SUBROUTINE FOR BASIC PROGRAMe 4=3
EXAMPLES OF SUBROUTINE LINKAGE AND USE. 4=2
LOADING DAP AND FORTRAN SUBROUTINES. 5-3
SUBROUTINE AND FUNCTIONSe 3-36
SUBROUTINE IN FILE WITH MAIN PROGRAM, 3=39
SUBROUTINES WITHIN MAIN PROGRAMs 3=37
SUBSCRIPTED
DOUBLY SUBSCRIPTED ARRAYS, 3-31
‘SINGLY SUBSCRIPTED ARRAYS. 3-29
SUBSCRIPTED VARIABLESe. 3=30
SUMMARY
BASIC LANGUAGE SUMMARY, 1=-2

RESULT

STEP
STOP

ABBS

COMPUTER GENERATED INDEX

SUMMARY (CONT)

LANGUAGE SUMMARY. 1=-1

SYSTEM COMMAND SUMMARY. 1=3
SYNTACTIC

SYNTACTIC STRUCTURE OF BASIC. B=-l
SYNTAX

DETAILED DESCRIPTION OF BASIC SYSTEM COMMANDS. 5=7
SYSTEM COMMAND SUMMARY, 1=3
SYSTEM COMMANDSe 1=-3
TABBING
TABBINGe 3=26
THREE=-BRANCH
THREE=BRANCH IF STATEMENT. 3=6
TOTALS
SALES TOTALS. 3-32

TwWO=BRANCH -

TWO=-BRANCH IF STATEMENT. 3-4
TYPES

STATEMENT TYPESe 3-27
UNCONDI TIONAL

EXAMPLE OF UNCONDITIONAL CONTROL STATEMENT

3-4
UNCONDITIONAL GO TO STATEMENT. 3-3
USAGE
FOR=NEXT STATEMENT USAGE. 3-10
VARIABLES
RULES FOR DIMENSIONING VARIABLES. 3-35
SUBSCRIPTED VARIABLES. 3-30
VARIABLES. 2-8
VERSION
LOADING OP=-16 VERSION OF BASICe 5-3
OP-16 VERSION OF BASICe 5=2
STAND=ALONE VERSIONe 5-1

(GO TO }e

ABBS

Cor ALONG LINE =-=-=----=cs-ccaecamnannnn

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

6 S R

TITLE: SERIES 16 BASIC LANGUAGE

ORDER No.:

AB85, REV. 1

DATED: | MARCH 1972
ERRORS IN PUBLICATION:
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:
(Please Print)
FROM: NAME DATE:
COMPANY
TITLE

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here.D

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
50 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

CUT ALON!

-

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	4-1
	4-2
	4-3
	4-4
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	A-1
	A-2
	B-1
	B-2
	B-3
	I-1
	I-2
	I-3
	replyA
	replyB

