DAP-16 AND DAP-16 MOD 2
Honeywe" ASSEMBLY LANGUAGE
SERIES 16
SUBJECT:
DAP-16 Assembly Language and Its Extension for the 316 and 516 Computers, DAP-16
Mod 2.

SPECIAL INSTRUCTIONS:

This manual completely supersedes the edition dated August 1970. Changes specified
by ECO 9246 update this manual to comply with Revision C of the Assembler and provide
improved examples to assist programmers in more efficient application of the DAP-16
Assembly Language. The order number has been changed to be consistent with the
overall Honeywell publications numbering system,

DATE:
June 1971

ORDER NUMBER:
BYO09, Rev. 0 (Formerly M-1756)

DOCUMENT NUMBER:
70130072442B

PREFACE

This document is organized as a reference manual. The DAP-16 and DAP-16 Mod 2
Assembly Languages and Assemblers used on Series 16 general purpose computer systems
are described. Subject areas include pseudo-operations (instructions to the assembler rather
than instructions to be assembled into the program), the mixing of FORTRAN and DAP- 16

programs in a memory load, performing an assembly, and generating an assembler system.

Users of this manual should have some familiarity with Series 16 computers but need

no assembly language experience. The 316/516 Programmers' Reference Manual (Order

No. BX47, Doc. No. 70130072156 — M-490) and the 316/516 Operators' Guide (Order No.

BX48, Doc. No. 70130072165 — M-491) are companion volumes.

Series 16 DAP-16 and DAP-16 Mod 2 Assembly Language is a coded
program designed to extend the power of Series 16 in the area of
program preparation and maintenance. It is supported by compre-
hensive documentation and training; periodic program maintenance
is furnished for the current version of the program in accordance
with established Honeywell specifications, provided it is not modi-
fied by the user.

©1970, Honeywell Computer Control Division
©1971, Honeywell Information Systems Inc. File No.: 1A23

BYO09

CONTENTS

SECTION I
INTRODUCTION
Scope of Manual
Supporting Programs
Reference Documents
SECTION II

DAP-16 ASSEMBLER
Location Counter
Two-Pass Assembly
One-Pass Assembly
Loaders
Modes of Operation
Desectorizing Modes
Load Mode
Coding DAP-16 Programs
Symbolic Names
DAP-16 Coding Form
Test Examples
Operation Field
Address Field
DAP-16 Assembly Listings
SECTION III
PSEUDO-OPERATIONS
Assembly-Controlling Pseudo-Operations
CFx, Computer Configuration
V REL, Relocatable Mode
ABS, Absolute Mode
LOAD, Load Mode
V ORG, Origin
FIN, Assemble Literals
MOR, Operator Action Required
VEND, End of Source Program
List-Controlling Pseudo-Operations
EJCT, Start At Top Of Page

LIST, Generate Assembly Listing;
NLST, Generate No Assembly Listing
iii

2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-8
2-9
2-14

CONTENTS (Cont)

Loader-Controlling Pseudo-Operations

EXD, Enter Extended Desectorizing;
LXD, Leave Extended Desectorizing

SETB, Set Base Sector
Symbol-Defining Pseudo-Operations
¥ EQU, Give a Symbol a Permanent Value
SET, Give a Symbol a Temporary Value
Data-Defining Pseudo-Operations
¥V DAC, Address Constant

¥ DEC, Decimal Constant;
DBP, Double Precision Constant

¥ OCT, Octal Constant,
HEX, Hexadecimal Constant

V BCI, Binary (ASCII) Coded Information
VFD, Variable Field Constant
Storage Allocation Pseudo-Operations

BSS, Block Starting With Symbol,
BES, Block Ending With Symbol

V BSZ, Block Storage of Zeros
COMN, Common Storage
SETC, Set Common Base
COMMON Storage

Program-Linking Pseudo-Operations

ENT, Entry Point;
V SUBR, Entry Point

EXT, External Name
VXAC, External Address Constant
V CALIL, Call Subroutine
Conditional Assembly Pseudo-Operations

IFP, Assemble Only if Plus;
IFM, Assemble Only if Minus;
1FZ, Assemble Only if Zero;
IFN, Assemble Only if Not Zero

ENDC, End of Conditional Assembly
ELSE, Combined IF and ENDC

FAIL, Identifies Statement Which Should Never Be Assembled

Using Conditional Assembly

iv

3-16
3-17
3-17
3-18

3-18
3-19
3-19
3-19
3-19
3-21

3-21
3-22
3-22
3-23
3-23

3-23

3-24
3-24
3-24
3-24

Special Symbols

CONTENTS (Cont)

%%, Op Code Zero;
PZE, Op Code Zero

Error Code

Example

Common

SECTION IV
USE OF FORTRAN PROGRAMS

Argument Transfer Subroutine F$AT

Calling a Subroutine

Calling F$AT

DAP-16 Main Program With FORTRAN Subroutine
FORTRAN Main Program With DAP-16 Subroutine

SECTION V

PERFORMING AN ASSEMBLY (DAP-16 MOD 2)

Estimation of Symbol Table Size

Assembler Support Prog

rams

0O16-DECS, Ol6-DECL

SYMLIST, Symbol
TABLESIZ

Input/Output Supervisors

Table Printer

Dedicated IOS Programs

I0S-016D

SECTION VI
PERFORMING AN ASSEMBLY (DAP-16)

Estimation of Symbol Table Size

Assembler Support Prog
DECCS, DECCL
MEMSIZ, SETSIZ

Input/Output Supervisors

rams

Dedicated I0S Programs
I1I0S-516X, 10S-516D

Loading Loader
Loading Assembler

Generating Map

SECTION VII
GENERATING AN ASSEMBLER SYSTEM

3-27
3-27
3-28

4-1
4-1

6-2

6-2

6-2

6-2

6-3

CONTENTS (Cont)

Loading I0S-016D
Loading O16-DECL
Loading SYMLIST

Loading 1I0S Drivers

Loading TABLESIZ

Producing Self-Loading Core Image

Figure

1-1
2-1
2-2
2-3
2-4
3.1
3.2
3.3
3.4
3.5
3-6
3-7
3-8
3-9
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

APPENDIX A
EXPANDED STDDEV LISTING

ILLUSTRATIONS

General Program Flow

DAP-16 Processing of a Line

Assembler and Loader Operating Modes

DAP-16 Coding Form

Assembly Listing

General Format for Numerical Values

Binary Point Position

Fixed-Point Word Formats

Floating-Point Word Formats

COMMON Allocation in DAP-16

Flow Chart for Example in Figures 3-7 through 3-9
Example, Main Sequence

Example, Conversion Routine

Example, Output Routine

Portion of DAP-16 Program Calling FORTRAN Subroutine STDDEV
FORTRAN Subroutine STDDEV

Loader Map for AVGCOL, MEASURE, and STDDEV
Output From STDDEV

FORTRAN Calling Sequence for DAP-16 Subroutine READT
DAP-16 Subroutine READT

Paper Tape Input Format (for Figures 3-4 and 3-5)

DAP-16 Subroutine READT, Transferring Arguments Without
Calling F$AT

A-Register Settings for Assembler Initialization

A-Register Settings for Assembler Initialization

vi

Figure
7-1

-2
A-1

Table
2-1
3-1
3-2
3-3
5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4

ILLUSTRATIONS (Cont)

Dummy Example
Core Map, After Generating Assembler System
Expanded Listing of STDDEV

TABLES

DAP-16 Assembler Formats

Pseudo-Operations

Subfield Conversions for DEC and DBP Pseudo-Operations
Warning and Error Flags

Assembler Starting Addresses

Dedicated Input/Output Supervisors

Device Selection with I0S-016D

B-Register Settings for Magnetic Tape Input/Output
Assembler Starting Addresses

Dedicated Input/Output Supervisors

Device Selection with I0S-516X and I0S-516D
B-Register Settings for Magnetic Tape Input/Output

vii

6-1
6-3
6-4
6-4

SECTION I
INTRODUCTION

SCOPE OF MANUAL

This manual describes the DAP-16 and DAP-16 Mod 2 Assembly Languages and
Assemblers for use on Honeywell Series 16 general purpose computer systems. DAP-16
Mod 2 is an extension of the DAP-16 Assembly Language which is supported only on the
DDP-516 and H316 computers. All existing source programs for these computer systems

will assemble correctly using the DAP-16 Mod 2 Assembler.

SUPPORTING PROGRAMS

Source programs written in DAP-16 language may be processed by several supporting
programs. KEach provides the programmer with a specific tool helping him toward the goal
of producing an efficient, error-free object program.

The DAP-16 Assembler is the primary program for processing the DAP-16 Language.
This program produces object text for eventual loading into the computer along with a listing
of the source program and the assembler's action on each statement. This program is
discussed in Section II of this Manual.

The Macro Preprocessing Program permits processing of a DAP-16 source program
with several additional statement types. These statements allow predefined blocks of source
text to be modified and inserted in a copy of the source program. The term ""Macro'
implies that one statement produces several instruction blocks. These blocks, called
macro-expansions, may be defined within the program or may come from a macro library.
These macro-expansions are also modified to include appropriate symbols for each instance
of use. Through use of the Macro Preprocessing Program the programmer can significantly
reduce the number of statements to be written. With this program, the user can also define
a new language which suits his needs more closely than DAP-16, Macros also aid "instal-
lation standard' code for system interfacing where the macro library contains the critical
code for connecting user programs with the operating system and/or I/O equipment. The
output of the Macro Preprocessing Program is a DAP-16 source text suitable for use by any
of the programs discussed in this Manual. However, the Macro Preprocessing Program is
discussed in a separate Manual, titled MAC Macro Preprocessor Programmers Reference
Manual.

The Concordance Program operates upon a DAP-16 source program in a manner
similar to the operation of the DAP-16 Assembler. Its Output is a cross-reference table
listing each symbolic name and literal and the source locations of every reference to them.
This program is discussed in a separate Manual, titled XREF Concordance Program Pro-

grammers Reference Manual.

The Update Program allows manipulation of a source program within the computer.

This program is discussed in a separate manual titled 016-XREF, SSUP and MAC Source

Language Processors.

The discussion so far has concerned the assembly process prior to loading.

However, a loading program is logically inseparable from an associated assembler,

because the path from assembly language code to loaded program must pass through both

the assembler and the loader.

are described in Section II of this manual.

ing programs,

The loading programs used with either DAP-16 Assembler

Figure 1-1 illustrates the processing of a DAP-16 source program by these support-

Note that Figure 1-1 references another useful program, namely, the

Write and Load Program. This type of program provides a core dump which is easily

reloaded without the use of a loader, providing a handy method of storing completed pro-

grams between use.

REFERENCE DOCUMENTS

Document

DAP-16
DAP-16M2
DECCL
DECCS
DUMY-X16
I0S-OAAA
I0S-ORAA
I0S-ORPA
10S-016D
I0S-5AAA
I0S-5CAA
I0S-5CPA
I0S-5RAA
IOS-5RPA
10S-516D
10S-516X
LDR-APM
LDR-C
MEMSIZ
MINILOAD
016-DECL
016-DECS
SETSIZ

Doc. No.

70180275000
70181446000
70180455000
70180458000
70180095000
70182615000
70182603000
70182601000
70181507000
70180323000
70180618000
70180594000
70180592000
70180573000
70180278000
70180324000
70180005000
70180582000
70180606000
70180580000
70181506000
70181505000
70180457000

Order No.

M-1052
M-1727
M-236
M-186
M-861
M-1732
M-1726
M-1723
M-1810
M-1053
M-535
M-534
M-538
M-354
M-567
M-1054
M-569
M-860
M-363
M-372
M-1801
M-1703

Document
SLDR-A
SLDR-C
SLDR-P
SYMLIST
TABLESIZ

Doc, No.
70180341000
70180583000
70180342000
70181445000
70181497000

Order No.

M-237
M-368
M-76
M-1821
M-1728

PROGRAMMER

PROGRAMMER

SOURCE
CARD
IMAGES
‘ SHEETS
MACRO PO {_‘
PREPROCESSING
LIBRARY PROGRAM
UPDATE
CARD
‘ IMAGES
SOURCE
CARD
IMAGES
. UPDATE
i T | PROGRAM
CONCORDANCE ASSEMBLER
Sggggﬁ&cm OPERATOR SYSTEM 4—(OPERATOR) &
T UPDATED
i SOURCE
CARD IMAGES
CROSS
REFERENCE AENaLY OBJECT
LISTING TEXT

OPERATOR

OPERATOR

LOADER
PROGRAM

OTHER
OBJECT

TEXT

DESIRED
MEMORY
CONTENTS

—
MEMORY
MAP

Figure 1

-1.

General

WRITE AND
LOAD
PROGRAM

RELOADABLE
(SELF—
LOADING)
CORE
DUMP

Program Flow

SECTION II
DAP-16 ASSEMBLER

The DAP-16 Assembler provides the programmer with the means for generating
linkages between a source program and others which are assembled or compiled separately.
The linkage is actually performed by the Loader. Each point in a program to be linked is
assigned an external symbolic name which is then referenced by any other program requesting
use of that link point. The Loader will not complete its job until all references to external
names in the program being loaded have been satisfied.

The Assembler produces two independent outputs. The first is the object text which
is further processed by the Loader, and the second is the assembly listing. The listing
serves to inform the programmer of the actions taken by the Assembler so he can eliminate
errors and make other changes. The assembly listing also carries programmer comments
and other documentation.

The assembly listing is printed during the final pass. Thus the listing from a two-
pass assembly contains more information than that from a one-pass assembly, namely the
definition of all symbols encountered anywhere in the program. Object tapes from the two
types of assembly may be loaded by the same Loader.

The DAP-16 Assembler must be linked to a number of support programs which permit
it to operate independent of associated input/output devices and to operate either alone or
under an operating system. The input/output system can use a general supervisor, allowing
successive assemblies to be conducted with different devices, or can be formed from one of
several dedicated supervisors which use a preselected combination of input/output devices.
Such a dedicated supervisor is useful for systems where standard devices are always used
or the available memory is limited. Note that the DAP-16 Assembler is referred to as an
Assembler System in Figure 1-1. The specific programs comprising this system are
described in Section V and VI.

The Assembler may make either one or two passes over a source text depending on

how the assembly is initiated.

LOCATION COUNTER
The DAP-16 Assembler maintains a Location Counter which points to the memory
location for which a word is currently being assembled. This counter is relocatable or
absolute depending on the mode of assembly and is used in defining symbols appearing in
the Location Field and in establishing a value for asterisks appearing in the Address Field.
After each word (instruction) is assembled, the Location Counter is normally incre-

mented by one.

TWO-PASS ASSEMBLY

In this mode of assembly, ‘the DAP-16 Assembler reads the source program twice,
first to develop a dictionary of symbols, and a second time to assemble the object program
by referencing the Symbol Table (Dictionary). Each entry in the Symbol Table is three
words in length. Therefore, the maximum number of symbols that may be handled is one-
third of the number of locations available (usually all of the locations between the highest
location used by the assembler and the highest location of memory). During pass two,
DAP-16 assembles and outputs the Object Text and Assembly Listing. Each source line is
processed before the next line is read. Figure 2-1 illustrates the processing of each line.

During the processing of a line, the operation mnemonic is first examined. If a
standard machine operation is being conducted, the proper code is inserted in the object
text. If a pseudo operation is specified (calling for some action by the assembler rather
than specifying an operation code) the proper action is taken. The address field is then
processed and the proper value inserted in the object text. The a‘ssembly listing image is

formed and any errors detected in the line are flagged at the left end.

ONE-PASS ASSEMBLY

The development of the Symbol Table and the assembly of the Object Program are
accomplished simultaneously in a one-pass assembly. Any symbols not defined when en-
countered are assigned an internal symbol number. The printed output shows two asterisks
in the field which would contain the symbol value. When the Assembler determines the
assigned value of a symbol this information is included in the object text., The Loader then

uses this information to finish assembling the instruction words in core.

LOADERS

A Loader processes object text to form a core image and places this image in memory.
Memory references within the program are resolved and indirect links generated as required.
References to external names (which are assembled without an address) are also resolved.
The Loader operates in the mode specified by the programmer in the source text. Loaders,
which are large and complicated programs, are as important to the process of generating
an executable core content as Assemblers and Compilers.

There are two kinds of Loaders available, namely linking and non-linking. LDR-APM,
SLDR-A, SLDR-C, and SLDR-P are the linking Looaders; and MINILOAD is the non-linking
Loader.

LDR-APM is the full Loader, and with proper support programs can load object text
from any medium or mix of media. Object Text from either one or two-pass assemblies
can be loaded as well as FORTRAN Object Texts with all external references correctly
linked.

SLDR-A and SLDR-P are smaller linking loaders for paper tape Object Texts loaded
through 2n ASR teletypewriter and the high-speed tape reader respectively. SLDR-C is the

small linking loader for punch card object text. These Loaders can load object text from

Figure 2-1.

READ ONE
INPUT LINE

PROCESS THE
OPERATION OR
PSEUDO —
OPERATION

PROCESS THE
ADDRESS
FIELD

FORM THE
OBJECT TEXT;
OUTPUT IF
BUFFER FULL

PRINT THE
LINE LISTING

DAP-16 Processing of a Line

two-pass assemblies and FORTRAN compilations, but not from one-pass assemblies.
Again, all external references are correctly linked.

MINILOAD is the smallest of the Loaders, and loads object text from any medium in
conjunction with appropriate support programs. The object text must be derived from two-
pass assemblies. One-pass assemblies and FORTRAN compilations cannot be loaded.
Furthermore, only one mode of loading must be used in any one program. Since no linkages
are made to external names, these must be handled by the programmer as absolute refer-

ences.

MODES OF OPERATION

There are three assembly and loading modes which may be specified to and through
the DAP-16 Assembler by the programmer. These are illustrated in Figure 2-2. The
descriptions of the pseudo-operations which implement the three operating modes are

located in Section III.

ABSOLUTE RELOCATABLE

DEFAULT MODE

REL
—

DESECTORIZING ABS

e

j LOAD

NON- ‘

DESECTORIZING
(LOAD)

(NON EXISTENT
MODE)

Figure 2-2. Assembler and Loader Operating Modes

Desectorizing Modes

In the two Desectorizing Modes, the Loader handles all intersector references by
generating indirect address links (vectors) when necessary. These links are located in
sector zero unless the programmer has specified location elsewhere by the use of a SETB
pseudo-operation. Because in general the programmer may not be aware of which instruc-
tions will have indirect bits set by the Loader, he must be careful in modifying the address
of instructions during program execution.

The Loader may handle intersector links for either normal addressing or extended
addressing. The EXD pseudo-operation causes the Loader to form 15-bit indirect address
links, while the LXD pseudo-operation returns the Loader to the normal 14-bit mode.
These pseudo-operations should be used in conjunction with the EXA and DXA machine
operations. The effect of EXD and LXD may also be forced by the operator at load time.

Desectorizing and Absgolute Mode. -- This mode is the Assembler default mode for program
loading unless one of the other modes is specified, The location at which the program is
loaded is fixed by the ORG pseudo-operation, which must be assembled before any locations

are assigned. This location cannot be changed at load time.

Desectorizing and Relocatable Mode. -- This mode differs from the Desecto.rizing and
Absolute Mode in that addresses may be relocated at load time. The REL pseudo-operation
initiates entrance into this mode. The ABS pseudo-operation may be used to return to
Desectorizing and Absolute mode.

Any symbolic names assigned in the relocatable portion of a program are considered
relocatable. Such symbols may not be treated in ways which the Loader cannot handle,

(e.g., being added together).

Load Mode

In this mode all intersector links are assumed to be handled by the object program.
Warning flags are posted whenever a link is required. The Loader will generate the link if
this program is loaded. This feature provides a useful tool for debugging, timing, or
loading a program when the programmer must give cross sector linkages special treatment.
Addresses are absolute (there is no relocatable load mode). The Load Mode is entered

with the LOAD pseudo-operation and continues for the duration of the assembly.

CODING DAP-16 PROGRAMS

Symbolic Names

DAP-16 uses Symbolic Names to identify numerical values computed by the Assembler.
These values are normally the addresses of instructions or data. The assembler maintains
a Symbol Table that permits substitution of the proper value for any reference to a Symbolic
Name.

The most common method of assigning values to Symbolic Names is to enter the
symbol to be named in the location field of the DAP-16 coding form. The assembler will
assign the value of the Location Counter to that symbol when that line is processed.
Multiple definition is an error. Symbols may also be assigned values by the EQU and SET
pseudo-operations.

Allowable symbols consist of from one to four characters from the 37-character set
A-Z, 0-9, and $, with at least one of the characters in a symbol being alphabetic. The
dollar sign can not be the first character, and generally should be used with care since it
usually signifies system programs. Six-character symbols may be used for referenced
external names in the address field.

The following symbols are legitimate:

LOOP

ST2P

A$

CENTER (an external name)

DAP-16 Coding Form

The DAP-16 Assembler's input support programs accept input in either of two for-
mats, namely, fixed-field and tab-field (paper tape input only). In the fixed-field format
each source line is an 80-character field (a punched card image). Each data field within
this 80-character field has a specified location. The input drivers convert a tab-field for-
mat to this fixed-field format. Each data field may be terminated by a backslash charac-
ter (\, '334), and the source line may be terminated by a carriage return.

Figure 2-3 shows a DAP-16 Assembler Coding Form. The five fields that appear
on this form are: Location, Operation, Operand, Comments, and Identification. The
circled t's in columns 5, 11, and 29 signify that a backslash to the left of that column will
be interpreted as a tab to the column following the marked column. Similarly, the circled
CR in column 72 indicates that the comments field may be terminated by a carriage return.
Furthermore, Table 2-1 shows in detail how the assembler defines and interprets these
fields in both the fixed-field and tab-field formats, Notice that each field, with the excep-
tion of the Comments and Identification fields, is terminated by blanks. Therefore, their
contents must be left-justified and cannot contain embedded blanks. If, for example, the
statement X1 LDA X2+7 were written as X1 LDA X2 + 7, the assembler would interpret

this statement as X1 LDA X2 and assume that + 7 was a comment:

H # INTEMDED STATEMENT

a1 g g N2 11427 LTA X2 +7
nyas # CAISES INCORPECT ANTION TF WPITTEN AS
ninse 01031 0 02 n142n LA X2 + 7

Text Exa,mples

The examples in this manual are shown in the form of assembly listings which are
described in detail at the end of this section. The first few examples present both the
coding form and the assembly listing to show the correspondence of the fields. See
DAP-16 ASSEMBLY LISTINGS near the end of this section for a description of the fields
generated to the left of what the programmer has written.
Location Field

Each time a symbolic name is encountered in the location field it is entered into the
symbol table along with the value of the location counter at the time the name was encoun-
tered. Thus, the location field is used to name instructions or data for later reference.
In the second pass of the assembler (or the first pass for one-pass assemblies), the sym-
bolic name is replaced by its value as found in the symbol table. In addition, the location
field can sometimes be used in other ways by pseudo-operations. References to multiply
defined symbols are arbitrarily assigned to the first definition.

As asterisk in column 1 of the location field signifies that the entire line is a com-

ment, which is printed on the output listing but otherwise ignored. The first line in the

2-6

Burpod 91-4va

T 1 LI B B B |
T T T T T T T
T T T T T T
T T T T T T 1771
T T T T T T T T
T T T T T
T T T YT T T T
T LI L B I

oan31 q
VT
T T 7
T
T
T T 17T
T 1T 1t
1
T 17

TII0

=TT
LI
LI
T T T T
T
T T T
T ._ T
T T 171
T

T T 7 1 7T

_Pd _*_ .N.x

T 171 T T T 1 _w_‘_ .z_w_kl_tr_i“.\}

1Ly

130

T

IR BN S R I S B B M |

T T T _P_+AN_X

L LI A B B § T

T

"IWILyvLs

o e W B R B A

o e e

4 _NTNT__Q_ t_m_ T,__z_m._m_

T T 1 Ll T T T T 1 T T T T T
T T T T T T T T T T T T T T
T 1 T T T T T T T T T T T T
T T T T T T T T T T T T T
T T T T T T 1 1 T T T T T
T T T T T T T T T T T T T
LI T T T T T 1T 17T T T T
T 1 T T T T T [T T T 1 1
T T T T T 0 T T T T T T T T
T T T T T T T T T T T T T T
T T T T T T T T T T T T T T
T T T T T T T T T T T T . T
T T LIS 1T 7T T T T T T T 1
T T T T T T T 1] T T T T T
T T T T T T T H T T T T T T
T T T T T T T T T [T T] T
T T T T T T T T T T T T T T
T T T T T T T T T T T T T T
T T T T T 1 T T T T T T T T
T T T T T T T T T T T T T T
T T T T T T T T T T T T T T
T T T T T T T T T T T T T T
T T T T T T T T T T T T T T
T T T T T T T T T T T T T L}
NOILYOLILNIQI G

J3aN3LX3

SLNIWWOD

0 o

Q733 ONVY3dO

LI A I | T
T T T 7 T
T T T T T T
T T 1 T LI T
T LI | T T T 1
T T 7T T 17T
T T 1 T T 1T 71
T T T T T T T
T T 71 T
LI | T) T T T
T T L} 1] T T
T T T T T T
T T L T T T T
T _fs_Q_4 LR
}H_ —”qm.w : (—b— ﬂ*
T —
asanafifnt 4
o__m_mTT S Ln_u__
NOLWY340 |@] NoLwvooT

J9UVHO

WVY¥904d

40 39vd

ava

HINWYHOOHd

0L01-b164

WY04 9SNIQ0D dva

[loMAB3uoly

2-7

assembly (whether it is a comment or not) is used as a header for all pages in the

assembly listing.

Operation Field

This field contains the abbreviation (mnemonic) of an operation or pseudo-operation.

If a given abbreviation is not recognized or is not legal on the object machine, an error is

flagged.
TABLE 2-1. DAP-16 ASSEMBLER FORMATS
How Assembler
Field Fixed-Field Format Tab-Field Format Handles Field
Location Column 1 to first blank | First column to first | Symbolic name for
column following blank or backslash address of this
following operation or data
Operation Column 6 to first blank | End of location field Abbreviation for
column following to next blank or back- | operation or
slash pseudo-operation
Operand Column 12 to first End of operation field | Variables or data
blank column follow- to next blank or back-
ing slash
Comments First blank column First 15 characters Printed on listing,
following column 12 between end of otherwise ignored
to column 44 operand field and
carriage return
character
Extended Columns 45 to 72 Any remaining Printed on listing,
Comments characters before except overprints
carriage return last character on
character ASR
Identification Columns 73 to 80 Part of comments Printed on listing,
field otherwise ignored
An asterisk (*) used in the operation field of a memory reference line (immediately

following the operation code) signifies that the indirect bit is to be set.

For example, to

store the contents of the A-register indirectly through the location at symbolic name XNA

(i.e., to store at the location pointed to by XNA), the following code would be written:

LOCATION i ®{ OPERATION OPERAND FIELD O]] COMMENTS

l12|3‘4 5 6[7]8 QIIO I 121|3l|4ll5|B[l7ll8[i91242|l22£3[24 25k6l27k8k9’30l31|32[33l34l3436 7{34391444442[[43 445
111 SlTlAl*l XINIAI | SRR ORENORS VNN WY N S VOO WIS S S WU SO W ¥ ‘INQDI'_l,EJ.?JS.ITI. JSlTLoIRIEI -
L1 I I PP RS TN AN YUY VT T WY U TN SN W WY VRN TN TN W (NN VU TN AN S NN SO SN S SO SO NN S

The assembly listing of this line would appear as follows:
0010 03407 -0 04 03244 STA= XMA INDIRFCT STORE
The assembly listing always shows a minus sign for indirect references as shown
above.
Address Field
The address field is used in several ways, but generic operations do not use this
field at all. As an example of the use of this field, consider two's complementing the cur-

rent value of the A-register:

LOCATION {®{ oPERATION |® OPERAND FIELD ®| COMMENTS
l|213l4 5 el?ls 9lio]i I2|I3|I4l151lell71!8 |9L0121L2L3lz4%Izse&ekeﬂalzzlﬂu]ss}ae 7|3439|4c{4lj-421r43
4 1 TICIAI 1 1 1 1 I] L | 1 1 1 1 1 1 L I 1 2lSL lcloJ_M_l_P_L‘TIE_LM_LE‘._LWL_.N T.L_—l
I |] — 1 1 1 1 1 1 | S OO SENS IOU SO S |]l H 1 | 1 1 L] 1 i - {] i - !
or:
0011 06654 140407 TCA 2S COMPLEMENT
Shift instructions use the address field to specify the number of bit positions to
shift. For instance, a 4-bit logical right shift is coded as:
LOCATION ;®{ oPERATION |® OPERAND FIELD G)T COMMENTS
1{2!3\4 5 el7|e gliofil |2]|3[|4|15[|6I17[tallglzolzllzzlmla 25&26127&6&9343'l32|33]34|3436[37|3439]444||42i43ﬂ41
11 1 L IGIRI 1 4] 1 1 1 1 1 I | I S | 1 L I\ | I) i TIHI ’ lsvl .L‘.JEL_LA_LM..
R W S W 1 i } 1 1 ! 1 1 i 1 1 1 1 1 1 i i 1 1 1 1]] i 11 4 4] 1 1 i 1 t

2-9

0018 02763 0404 74 LGR 4 THIS 1S A SHIFT

In input/output instruction lines, both the value of the function and the controller
address may be coded as a single variable or an expression to be evaluated. This is often
an octal number coded with an apostrophe. However, it is recommended that a symbol be
used (see SET and EQU Pseudo-Operations in Section III). For instance, before using the
ASR (controller address = '04), it must be enabled in the proper mode. The function code
for enabling in the output mode (applicable to ASR) is '01. Therefore, the instruction for

enabling the ASR in the output mode may be coded numerically as:

LOCATION \@{ OPERATION |®! OPERAND FIELD ® [COMMENTS
l[2|3]4 5 GI 7|8 9llofil I2|I3II4I15[|6II7,18 IQIZAZIh212312425|26;27£8k930|3ll32|3434l343657|3439]43;|
11 01C|P1 L ’lol' lolql N TN SN NN SO U WY U B T N | |5|R| IOJyJI_LELq.J‘T_L_l_
X PR L lo|R| S TS NSO Y U U0 U WA NN U TSN Y G OO N SO I N TN WS AU T TS SO U G |
N ' OICIPI i ’l’loqu B R U U SN TN I W WU N TR U . | L1 1 N WS N N T |
*l Lo} 1 :ole TS TN N S TN TR U WY SN U NN WA MUY SN NS O | | Y WO Y YUY (N N TR WO W N
O O|C|P| 1 ,1,10101*'1 '|41 N TN NN N TR N W N T | | N N S TN N NN R N B
The first line is listed as:
0014 07667 14 0104 ocpP 10104 ASR oUTPUT

The address field for memory reference instructions contains two subfields. The
first subfield specifies the address to be used in the instruction. For example, loading
the A-register with the contents of the memory cell at symbolic location CEX would be

coded as follows:

LOCATION i ®{ OPERATION | OPERAND FIELD ®l COMMENTS

||2|34 5 e|7a 9/I0

|2|13||4|55|5‘I7II8 lslzolmlzz]zslm zslzsmlza}zsﬂaulaz]u[ulﬁse 7{3439‘444442143 4

11 45
1 1 i LlDlAI I C IEI xl 1 1 i 1) 1. i 1 | [S N T | ! I] | Y S WY WU I W
and assembled as:
0020 04202 0 02 04221 LDA CEX

In the example above, the second subfield is null. However, when used, the second sub-
field usually specifies that the index bit is to be set in the assembled line. " A value of 0
or null designates no indexing; a value of 1 designates indexing. All other values are
errors. Also, the two subfields are separated by commas. For example, storing the
contents of the A-register in the memory cell at the address which is the sum of the sym-
bolic value CEX and the contents of the X-register at the time this STA instruction is
executed would generate the following line on the listing:

0022 04207 1 04 04221 STA CEX,»1
The assembly listing shows the index bit as 0 or 1 for memory reference lines. Pseudo-
operations can use the address field in a number-of ways, some of which allow division

into many subfields separated by commas.

Expressions. -- The address field generally contains a symbolic algebraic expression to
be evaluated, with the result of the evaluation being passed to the loader through the
object text. Within the object text, such an expression may be either absolute or
relocatable.

Only plus and minus operators are allowed. Furthermore, all elements of the
expression must be constants or symbols present in the symbol table by the end of the
final pass. Arithmetic may not be performed on external symbols. No indication of
overflow is given. The following examples show both addition and subtraction. In the

third line, indexing is also specified.

0101 06072 N 02 nezsb? LNA DATA+S

n1n2 0A073 0D 06 06744 AND DATA-1

nins3 06074 1 04 6154 STA RRLT+40,1
0104 06075 -0 01 0DK3I73 JMpe NEXT+20

n10s% 06076 0 0ono170 DAC DATA=RSLT+23

Absolute and Relocatable Symbols. -- Symbols defined within relocatable program seg-
ments are relocatable, Other symbols and all constants are absolute. In the following
example the retrieval of the contents of core location 0002 is implemented irrespective

of where the instruction resides or is relocated in core.

0018 03717 0 02 00002 LDA 2
Special Elements. -- The asterisk is used as an element by itself, and three other sym-
bols — the apostrophe ('), the dollar sign ($), and the equals sign (=) — modify the ele-

ments they precede.
The DEC and DBP pseudo-operations allow the letters B and E to be used in the

address field to specify the position of binary and decimal points (these pseudo-operations

are discussed in Section III).

Asterisk. -- The single asterisk is a variable which always has the value of the location

counter. For example:
0026 04615 0 01 04614 JMp #-1

means jump to the previous instruction. The two following examples have the same effect,

a jump to symbolic location CONT:

0030 00462 0 01 00464 JMP #42
0031 00463 101000 NOP

0032 00n464 0 01 00501 Jmp CONT
0077 00462 0 01 00464 JMP X3
0078 00463 101000 NOP

0079 00464 0 01 00501 x3 JMP CONT

Double Asterisk. -- The double asterisk is assembled as zero. Normally the program

will set the address during execution.
0030 01347 0 01 oooo00 JMP 8

The example above might be used in a program in which the location to be jumped to was
unknown before assembly, The loader places zero in the 9-bit address and 1-bit sector
fields and handles the index and indirect bits normally. However, if this instruction were
assembled in sector 0 rather than sector 1, the sector bit would be one, because the

referenced location, location 0, is in the same sector as the instruction.

Apostrophe (Octal Numbers). -- An Apostrophe preceding a number signifies that the number

is to be evaluated as an octal number. The following examples yield the same result:

0037 05164 0 02 00200 LDA '200
0022 05164 0 02 00200 LDA 128
The minus sign for negative numbers should follow the apostrophe, e.g., '-60 = -48, and

the minus operator in expressions should precede the Apostrophe; A-'60 is valid but A+'-60

is not.

Dollar Sign (Hexadecimal Numbers).® -- A Dollar Sign preceding a number signifies that the

number is to be evaluated as a hexadecimal number. The following examples yield the

same result:

0034 00213 0 02 060017 LDA $F
0041 00213 0 02 00017 LDA 15
0026 00213 0 02 00017 LDA '17
The minus sign for negative numbers should follow the Dollar Sign, e.g., $-30 = -48.

The minus operator in expressions should precede the Dollar Sign; A-$30 is valid but

A+$-30 is not.

Equal Sign (Literals). -- The use of constants in calculations is done conventionally by
storing a constant as data and writing the data name in the Address field. When

reading the listing, the value of the constant is not apparent from its name. However, by
using a literal (expressed as the value of the constant preceded by an equal sign), the same
result is achieved except that the name of the constant now gives its actual value. There
are two additional advantages to use of literals. First, the storage location of the literal
becomes the concern of the Assembler and Loader rather than the object program (i.e., a
literal is self-defining). And second, all references to a literal of the same value refer

to the same location, even though the programmer may not remember that he had made
more than one use of that value or even that the form of the literal is different.

Evaluated literals are stored in the Symbol Table along with other symbols.

@DAP-16 Mod 2 only.

The following examples all achieve the same effect, namely loading of a word composed
of all ones (-1 in twos complement notation) into the A Register. The programmer controls
the location of the -1 word in the first case, but the Assembler controls location in all other
cases. In any case, the address in the assembled instruction is the address of a word

containing -1.

0039 01306 0 02 01323 LDA M1

0043 01323 177777 M1 DéC -1

0047 01306 0 02 01344 LDA z=1

0051 01306 0 0?2 01344 LDA ='-1
0055 01306 0 02 01344 LDA =f-1
0059 01306 0 02 01344 LDA ='177777

The DEC pseudo-operation, as used above, assembles a word with the indicated decimal

value (-1 in this case).

USASCII Literals. -- To specify a USASCII literal the form =A is used. The following
example implements loading of a 16-bit word containing C and $ ('141644) into the A-
Register:

0045 00456 0 02 00563 LDA =AC%

DAP-16 ASSEMBLY LISTINGS

The printed output of DAP-16 Assembler System is an Assembly Listing containing
the source program as it was read along with the action taken by the assembler. Figure 2-4
illustrates a sample listing.

The first column contains the line record number of the source statement. The next
column contains the value of the Assembler Location Counter (octal). The third column
shows, in octal, the binary word assigned to the location. The parts of the word are
broken up differently for different categories of instruction. Fifteen bits of address infor-
mation are included in memory reference instructions and the Loader uses these fifteen
bits to determine the ten bits of address information to be loaded into the instruction. The

three modes of loading cause the Loader to modify these fifteen bits in three different ways.

Note the following features of Figure 2-4.

D

Line 1 contains an asterisk in the location field, causing DAP-16 to treat the

entire line as remarks.

Line 2 contains a pseudo-operation (ORG) which sets the DAP-16 location counter

to octal 1000, the starting address of sector one.

The expression in the variable field in line 3 means the current value of the loca-
tion counter, plus one. Consequently, DAP-16 has written octal 100 into the

address field of the instruction word assigned to this location.

The symbol in the left margin of line 5 is a diagnostic signifying that a memory
reference instruction (LDA) has an empty address field. Diagnostics are covered

in more detail in Section III.
Indirect addressing is specified in line 5, and indexing is specified in line 8.

In line 10 the programmer has entered the number of shifts desired in an LGL
instruction. DAP-16 has generated the necessary TWOs complement form in the
object program.

The literal pool starts in line 11 and continues until all three literals called for

have been satisfied.

0001 # SAMPLE ASSEMPLY LISTING
0002 ORG 512
0003 01000 0 02 01001 STRT LDA w4+l
0004 01001 0 04 01000 STA #-1
A 0005 01002 -0 02 00000 LDA®
0006 01003 0 06 01012 ADD =15
00607 01004 0 06 01011 ADD =115
0008 01005 1 04 00700 STA STRT=-64,1
ngo09 p10né 0 02 niolo LDA ='=5
0010 01007 0414 76 LGL 2
0011 01010 177773 END

01011 000015
01012 000017

(Performs no useful function. See text for discussion of handling of fields.)

Figure 2-4. Assembly Listing

SECTION III
PSEUDO-OPERATIONS

DAP-16 pseudo-operations are instructions to the Assembler rather than instructions

to be assembled into the program. Table 3-1 lists the abbreviations (mnemonics) for these

instructions in the order of discussion.

by a checkmark.

The most basic pseudo-operations are preceded

TABLE 3-1. PSEUDO-OPERATIONS

Abbreviation Meaning Abbreviation Meaning
ASSEMBLY -CONTROLLING HEX Hexadecimal constant
PSEUDO-OPERATIONS / BCI Binary (ASCII) coded

CFx Computer Configuration information
\/REL Relocatable mode VFED Variable field constant
ABS Absolute mode STORAGE ALLOCATION
LOAD Load mode PSEUDO-OPERATIONS
\/ORG Origin BSS Block starting with symbol
FIN Assemble Literals BES Block ending with symbol
MOR Operator Action Required \/ BSZ Block storage of zeros
\/END End of Source Program COMN Common storage
LIST-CONTROLLING SETC Set common base
PSEUDO-OPERATIONS PROGRAM-LINKING
EJCT Start at top of page PSEUDO-OPERATIONS
LIST Generate assembly listing ENT Entry point
NLST Generate no assembly \/ SUBR Entry point
listing EXT External name
LOADER-CONTROLLING \/ XAC External address constant
PSEUDO-OPERATIONS \/ CALL Call subroutine
EXD Enter extended CONDITIONAL ASSEMBLY
g PSEUDO-OPERATIONS
LXD Lzzzzci};iigifg IFP Assemble only if plus
SETB Set base sector IFM Assemble only if minus
SYMBOL-DEFINING IFZ Assemble only if zero
PSEUDO-OPERATIONS IFN Assemble only if not zero
\/EQU Give a symbol a permanent ENDC End of conditional assembly
value ELSE Combined IF and ENDC
SET Give a symbol a temporary FAIL Identifies statement which
value should never be assembled
PSEUDO-OPERATIONS SPECIAL SYMBOLS
\/DAC Address constant e Op Code Zero
\/DEC Decimal constant PZE Op Code Zero
DBP Double precision constant
OCT Octal constant

In the discussion that follows, the diagram under the title of each pseudo-operation
illustrates what the Assembler expects to find in the location, operation and operand
fields. The comments and identification fields are used normally for all pseudo-opera-
tions. The words '"previously defined' mean ""aiready in the symbol table even in the first

ass.' The pseudo-operations that apply only to DAP-16 Mod 2 are footnoted.
p p p pPp Yy

ASSEMBLY -CONTROLLING PSEUDO-OPERATIONS

CFx, Computer Configuration

LOCATION OPERATION OPERAND

Ignored CF1 for DDP-116 Ignored
CF3 for H316

CF4 for DDP-416
CF5 for DDP-516

The pseudo-operation CFx defines the computer on which the program is to run and
if used, must precede the executable instructions to be tested. If the configuration is not
specified with CFx, the DAP-16 Mod 2 Assembler assumes that the program will be run on
an H316 or DDP-516. The DAP-16 Assembler assumes that the source computer is the
object type. The only effect of this pseudo-operation is to print O flags on the listing for

illegal operations. The object text is unaffected.

V' REL, Relocatable Mode

LOCATION OPERATION OPERAND

Ignored REL Ignored

The pseudo-operation REL specifies the desectorizing and relocatable mode for
assembly and loading (see Section II, Modes of Operation). The action of the REL is
reversibly terminated by an ABS pseudo-operation and irreversibly terminated by a LOAD

pseudo-operation. REL may not follow LOAD.

ABS, Absolute Mode

LOCATION OPERATION OPERAND

Ignored ABS Ignored

This pseudo-operation specifies the desectorizing and absolute mode for assembly

and loading (see Section II, Modes of Operation). The assembler assumes this as the

3-2

operating mode in the absence of a REL, ABS, or LOAD pseudo-operation. The action
of the ABS is reversibly terminated by a REL pseudo-operation and irreversibly termin-

ated by a LOAD pseudo-operation. ABS may not follow LOAD.

LOAD, Load Mode

LOCATION OPERATION OPERAND

Ignored LOAD Ignored

The pseudo-operation LOAD informs the assembler that the source program from
this point on is to be assembled in load mode (see Section II, Modes of Operation), All
references to addresses not present in either the current sector or sector zero are
flagged as errors on the assembly listing but do not affect the object text. Load mode

continues in effect for the duration of the assembly.

VW ORG, Origin

LOCATION OPERATION OPERAND

Normal ORG Any previously-defined
symbol or expression

The assembler's location counter is given the value of the expression in the address
field. In the desectorizing and relocatable mode, the program will be loaded at the loca-
tion specified by the ORG plus the relocation factor, which is not normally useful. In the
absolute mode (either desectorizing or load) the ORG specifies the exact location at which
the program will be loaded. Any number of ORGs may be used in a program.

Any symbol in the location field will be assigned the value of the location counter
before the ORG is processed.

In the following example, a relocatable program temporarily reverts to absolute and
stores two pointers to relocatable locations. The program then returns to the relocatable
mode giving the location counter the value it would have had if the excursion into absolute

had not been made.

0034 REL RELOCATABLE PROGRAM
0037 01050 0 02 N0334 LLDA '1334 .. .REFERENCING SECTOR
0038 01051 0 04 01573 STA x47 7ERO

0039 701 ORG 1334 START AT LOCATION
06040 ABS ABSOLUTE 1334,

0041 00334 0 004465 DAC X PUT IN POINTERS,

0042 00335 0 004507 DAC Y AND

0043 ORG 01 RETURN TO MAIN SEQUFNCE
0044 RFL (RELOCATABLE)

0045 010%2 ~0 06 00335 . ADDs 335

0046 01053 0 04 01574 STA X48

In the example below, the next instruction must be in an odd location. The DBP
pseudo-operation (described below) forces the assembler to locate its first word in an even

memory location. Therefore, ODD in the example below is forced to be in an odd location.

0003 03260 0 01 03263 JMP ono

0004 03262 00000 DBP 0 DUMMY VALUE, USED FOR
03263 poonon

0005 * AL IGNMENT

0006 0RG -1 FORCE ODD LOCATION

0007 03263 0 02 03244 0DD LDA XNA PROGRAM EXECUTION RESUMES

FIN, Assemble Literals

LOCATION OPERATION OPERAND

Ignored FIN Ignored

Whenever the pseudo-operation FIN is encountered, DAP-16 starts at the present
setting of the location counter and assembles all literals accumulated since the beginning
of the program or since the last FIN. When the next statement is processed, the location
counter points to the first location following the literals. The same function is performed
by the END pseudo-operation; however, END also terminates the assembly. FIN allows
the programmer to distribute literals throughout his program, thereby possibly reducing
the indirect address links that the loader must supply. The program must not be allowed

to jump to a location within the literal pool.

MOR, Operator Action Required

LOCATION OPERATION OPERAND

Ignored MOR Ignored

This pseudo-operation is used when additional material mustbe addedtothe assembly.
When MOR is encountered the computer halts (unless the source input is on magnetic tape,
in which case MOR is ignored). The computer resumes processing when the START button

is pushed. MOR causes a halt on both the first and second passes.

V' END, End Of Source Program

LOCATION OPERATION OPERAND

Ignored END Blank of any defined symbol or
expression., If blank, loader
will start execution of program
at its first location. Otherwise,
execution will start at address
specified.

An END pseudo-operation must be the last statement in a source program; no state-
ments are processed following an END statement. All accumulated literals are assembled
as with a FIN statement. If this is the final pass, the value in the address field is entered
into the object text. The loader can be directed to start execution of the program at that
address. If the address field is blank, the first address in the program will be entered
into the object text as the starting address.

In a two-pass assembly from cards or paper tape, the computer halts when the END
statemenf is reached on the first pass. The operator must then reposition the source text
to its start and push the START pushbutton to initiate pass two. The second pass may be

repeated with the same parameters or with other parameters to gain additional outputs.

LIST -CONTROLLING PSEUDO-OPERATIONS

EJCT, Start At Top Of Page

LOCATION OPERATION OPERAND

Ignored EJCT Ignored

The pseudo-operation EJCT causes the next source line on the assembly listing to
be printed at the top of the next page following the heading. It has no effect if the NLST
pseudo-operation is in effect. The EJCT pseudo-operation is effective only when the line
printer is being used for the assembly listing or the ASR is being used with Input/Output
Supervisor Ol6-OAAA (see Section V, Input/Output Supervisors). The line containing EJCT

is printed.

LIST, Generate Assembly Listing;
NLST, Generate No Assembly Listing

LOCATION OPERATION OPERAND

Ignored LIST or NLST Ignored

The LIST pseudo-operation causes the assembly listing to be printed. The assembler
is ordinarily in the LIST mode. NLST inhibits printing of the assembly listing. LIST and
NLST may be used throughout a program in order to list selected sections. The line con-

taining NLST is printed if printing is on.

LOADER-CONTROLLING PSEUDO-OPERATIONS

EXD, Enter Extended Desectorizing;
LXD, Leave Extended Desectorizing

LOCATION OPERATION OPERAND

Ignored I EXD or LXD Ignored

The loader forms 14-bit indirect address words (each having an indirect bit and an
index bit) unless an EXD pseudo-operation is performed or the operator forces extended
loading at load time. EXD causes the loader to form 15-bit indirect address words (each
having an indirect bit but no index bit). EXD, normally used in conjunction with the EXA
operation, implies that the program is to be operated in EXTEND addressing mode. LXD,
used in conjunction with the DXA operation, implies that the program is in the normal

addressing mode,

SETB, Set Base Sector

LOCATION OPERATION OPERAND

Normal SETB Normal. For one-pass
assemblies, any symbol
used in this field must be
previously defined.

‘The pseudo-operation SETB is used for programmer control of the location of the
address constants. SETB causes the loader to place the address constants starting at the
address derived from the address field of SETB. This statement may be used to ensure
that the loader-generated address vectors are in the same sector as the instructions that
use them. In this case, the program must reserve a block of memory locations for their

storage. The following example shows this use of SETB.

0067 ORG *3000 START AT BEGIMNING
f068 SFTR #+1 0F SECTOR 3

0069 030600 0 01 03013 JMP #+11 JUMP 0OVFR ADDRESS
0070 # CONSTANTS

0071 03001 BSS 10 UP T0O 10 CONSTANTS
0072 03013 0 02 03763 LDA RTOP CONTIMUF HERE

SETB pseudo-operations and loader B-register settings may be used freely to move
the base during the course of loading a program and its subroutines. The loader allows
only one contiguous block of base locations to be in any one sector. Thus, if the base is
ever returned to a sector it has been directed to before (e.g., back to sector zero) address
constants will continue to be loaded immediately following the previous block of address
constants loaded in that sector. For example, if the next address constant were to be
loaded into location '134 when the loader encountered a SETB to another sector, a following

3-6

SETB to any location in sector zero (e.g., SETB 0, SETB '134, or SETB '100) would re-

turn the base to '134, _
SETB may also be used with the base-setting operation SMK '1320 (Memory Lockout

Option). The programmer must be sure that the relocation register is properly loaded
when the program starts executing and that storage is allocated for the address constants.

SYMBOL-DEFINING PSEUDO-OPERATIONS

~/EQU, Give a Symbol a Permanent Value

LOCATION OPERATION OPERAND
Normal. EQU Normal. Any symbol used in
Must contain this field must be previously
a symbol. defined.

The EQU pseudo-operation allows a symbol to be defined without being used in a
location field, thereby permitting more than one symbol to refer to the same value. EQU
also allows a symbol to be given a value outside the range of locations in the program.

Once a symbol has been defined with EQU it may not be redefined.

SET, Give a Symbol a Temporary Value®

LOCATION OPERATION OPERAND
Normal. SET Normal. Any symbol used in
Must contain this field must be previously .
a symbol. defined.

The SET pseudo-operation is identical to the EQU pseudo-operation, except that the
symbol may be redefined any number of times with further SET pseudo-operations. An
example of the use of EQU and SET pseudo-operations is shown below. At the start, EQU
is used to set STRT = A, S1 = B, and S2 = C. SET is used to set TOP = A = STRT. Later,

TOP is reset to '4223.

0usys 001121 STRT ENU *
0054 001122 S1 EQu #+]
0055 001123 S2 EQU *+2
0056 001121 TOP SET *
0057 # '
R
0058 01121 0 000000 A DAC e START INSTRUCTIONS
0059 01122 0 02 01162 R LDA CNT
0060 01123 141206 c ADA
0061 01124 0 04 01162 STA CNT
0062 011?25 -0 01 01121 ' JMP# TOP RETURN THROUGH
0063 * . TOP (=4)
0067 004223 TOP SET 14223

4DAP-16 Mod 2 only.
3.7

EQU is particularly useful in making the address field of I/O instructions more read-

able. For example, if the ASR teletypewriter is to be programmed, the following memory

aid symbols might be chosen:

0009 000004 TIN EOU ‘4 SET INPUT MODF

0010 000104 TOUT EQU '104 SET OUTPUT MODE

noil 000004 TRDY EOU ‘4 SK1P IF READY

0012 000104 TNRS EQU 1104 SKIP IF NOT BUSY

0013 001004 TINA EQU '1004 CLEAR A AND INPUT ASCII
0014 000004 TOTA ERU 'q OUTPUT ASCII

DATA-DEFINING PSEUDO-OPERATIONS

v DAC, Address Constant

LOCATION OPERATION OPERAND

Normal DAC or DAC?* Normal. Indexing may
be specified.

The low-order 14 bits of address generated from the address field of a DAC pseudo-
operation is combined with the indirect bit (if specified by an asterisk after DAC) and index
bit (if specified by , 1 after the address). Relocatable addresses are relocated during
loading. If extended desectorizing has been specified with EXD, the loader will form 15-
bit instead of 14-bit addresses (without regard to the index bit). Thus, the programmer -
must be careful in using address constants with the index bit set. A 14-bit number with
indirect and index bits, or a 15-bit number with indirect bits, is generated by the loader
for any positive expression or negative relocatable expression. A 16-bit negative number
is generated for negative absolute expressions.

There is no provision for literal address constants. Thus, a DAC must be used and
given a symbolic value for each indirect reference. For example, to transfer the address

of location FIND to location PUT, the following statement must be written:

0110 03617 0 02 03045 LDA ADDR
0111 03620 0 04 03300 sTa puT

0115 03045 0 003307 ADDR DAC FIND

The following example shows address constants used in several ways. This sequence
works properly only for programs operating in the normal addressing mode, because the
desired post indexing is specified in the address constants. The example moves 10 words

from a buffer specified by the calling sequence to a buffer in the example program.

3-8

0003
0004
0005
0006
0007
0008
0009

0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035

addressing.

address constant.

0040
0041
0042
0043
0044
0045

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
ng72

03355
03356

03357
03360

05375

05376
05377

05400

05401

05402
05403
05404
05405

05406
05407

05410
05411
05423

0 10

05375

1 003372

0 01

03374

-0 000000

0 35
-0 02

-0 04

0 12

0 01
0 02

05424
05375

05410

00000

05377
05375

140100
141206

0 04
-0 0t

05423
05423

1 005423

000000

»
AC1

BUF?2
TEMP

SAMPLF CALLING SEQUFNCE FOR TRANSFER SUBROUTINE

(NORMAL ADDPESSYNG)

JST
DAC

JMP
BSS

.
.
.

TRANSFER SUBROUTINE

DAC*

LDX
LDA®

STA#

IRS

JMP
LDA
§SP
ADA

STA
JMP

DAC

BSS
BSZ

TRNS
BUF1+10,1

CONT
10

* %
z=10
TRNS

AC1

LOoP
TRNS

TEMP
TEMP

BUF2+10,1
10
1

CALL TRANSFER SUBRQUTINF
INDEXED POINTER

TO FIRST BUFFER
CONTINUE AT CONT
FIRST BUFFER

TRANSFER SURROQUTINE
ENTRY POINT, HAS
INDIRECT FLAG SFT.

TEN TRANSFERS WILL BE MADE

PICK UP WORND USTNG IN-
DIRECT AND INDEXED DAC

STORE IN RUFFER, USING
ANOTHFR INDIRECT,
INDEXED DAC

UPDATE INDEX USED FOR
BOTH RUFFERS

CONTINUE IF NOT DONE

PICK UP RETURN POINTER

REMOVE INDIRECT FLAG

INCREMENT TO POINT TO
RETURN POINT

STORE 1IT

RETURN TO RETURN POINT

INDEXED POINTER
SECOND BUFFER
TEMPORARY POINTER LOCATION

The following example shows this same subroutine rewritten for operation in extended

03355
03356
03357
03360

05375

05376
05377

05400

05401

05402
05403
05404
05405

05406
05407

05410
05411
05423

Notice that indexing must now be specified in the instruction rather than the

oo

10 05375
003372

0 01 03374

-0 0000600

0 35 05424
-1 02 05375

-1 04 05410

0 12 00000

0 01 05377
0 02 05375
140100
141206

0 04 05423
=0 01 05423

0 005423

000000

BUF1

*
AC1

RUF2
TEMP

SAMPLF CALLING SEQUENCE
(EXTENDFD ADDRESSING)

JST
DAC
JMP
BSS

-
.
-

TRANSFER SURROUTINE

DAC»

LDX
LDAs

STA®

IRS

JMP
LDA
$SP
AOA

STA
JMP #

DAC
BSS
BSZ

TRNS
BUF1+10
CONT

10

%

==-10
TRNS;1

AC1,1

LOOP
TRNS

TEMP
TEMP

BUF2+10
10
1

FOR TRANSFER SURBROUTINE

CALL TRANSFER SUBRQUTINE
POINTER TO FIRST RUFFER
CONTINUE AT CONT

FIRST BUFFER

TRANSFER SURROUTINME
ENTRY POINT. HAS
INDIRECT FLAG SET,

TEN TRANSFERS WILL BE MADE

PICK UP WORD USING IN=-
DIRECT DAL HWITH
POST<INDEX

STORE IN BUFFER, USING
ANOTHFR INDIRFCT
DAC WITH POST=-INDEX

UPDATE INDEX USED FOR
BOTH BUFFERS

CONTINUF IF NOT DONE

PICK UP RETURN POINTER

REMOVE INDIRECT FLAG

INCREMENT .TO POINT TO
RETURN POINT

STORE IT

RETURN TO RETURN POINT

POINTER

SECOND RUFFER
TEMPORARY POINTER LOCATION

3-9

Address constants may also be used to define ranges by subtraction. In this case,
the only restriction is that the result must be a positive number less than 16, 384 (or
32, 768 if the program is being loaded with extended addressing). In the following example,

the assembler calculates the length of the buffer and enters it as the first word.

nnsa 000100 LNET Eou '100

n057 01341 0 000100 ayFF pac LAST=-RUFF4+1
N058 01342 pnooon BS7 LNGT-?
0059 01440 onooon LAST BSZ 1

(The BSZ pseudo-operation is described in this section.) Notice that the length of the buffer
has been specified to the assembler by LNGT earlier (using EQU or SET).

v DEC, Decimal Constant;
DBP, Double Precision Constant

LOCATION OPERATION OPERAND

Normal DEC or DBP One or more subfields, each
containing a decimal data item.
As many subfields can be used
as can fit in columns 12-72, but
no more than 29 words can be
generated.

These pseudo-operations, DEC and DBP, cause DAP-16 to convert each subfield to
one, two, or three words of binary data with the desired value in either fixed-point or
floating -point format. As each subfield is encountered, the next successive memory
location is used. Subfields are separated by commas.

The addition and subtraction operations may be used in DEC and DBP address sub-

fields, for example:

0119 00633 002010 DEC 1024+8

The DBP pseudo-operation is identical to the DEC pseudo-operation, except that in
all cases two words are generated and the first word is always in an even memory location.
This allows constants generated by DBP to be loaded and stored using DLD and DST of the
High-Speed Arithmetic Option. The loader maintains the double-word boundary alignment.

Figure 3-1 shows the general format of numerical values for DEC and DBP. Table
3-2 summarizes subfield conversions for DEC or DBP. Further details on writing sub-

fields for either DEC or DBP follow Table 3-2.

3-10

(+) n...n [.n. . .n] [EEE (H mm] [BBB () PP]
N—

mantissa characteristic scale
or or factor
fraction exponent .

Figure 3-1. General Format for Numerical Values

TABLE 3-2 SUBFIELD CONVERSIONS FOR DEC AND DBP PSEUDO-OPERATIONS

DEC DBP
Condition Pseudo-Op Pseudo-Op
\/ 1. No decimal point, B, or E (Bl5
assumed) 1
or Fixed, 1 word Fixed, 2 words
B (with or without decimal point,
E, or EE)
2. BB (with or without decimal point, Fixed, 2 words Fixed, 2 words
E, or EE)
3. Decimal point, no B or E
or Floating, 2 words Floating 2 words
E, no B (with or without decimal
point)
4, EE, no B (with or without decimal Floating, 3 words Floating, 2 vvords2
point)

1The second word is always '000000.

2No third word is generated when EE is used with DBP,

Use of Plus and Minus Signs. -- A plus or minus sign (unary operator) may be used before
any number in a DEC or DBP subfield (including the numbers which follow B or E). The

plus sign is always optional.

Use of B (Binary Point Position), -- The letter B followed by a number is used to specify
the location of the binary point in evaluating fixed-point data. The number following the B
is the number of positions the binary point is shifted from the standard assumed location
between bits 1 and 2., For example, 3B5 means assemble a word with the value of 3 if the
binary point is considered to be 5 bits to the right of the standard position (i.e., between
bits 6 and 7, see Figure 3-2).

The hardware binary point location between bits 1 and 2 is important only for multipli-
cation and division. The Assembler therefore assumes a binary point following bit 16 (B15)

when the B is not specified.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 156 16

FIRST WORD Ll b bbbyl
. S T O A A S S N N SN A S U S N N ¢
B-1 BO B1 B2 B3 B4 B5 B6 B7 B8 BO9B10B11B12B13B14 B15
[_THE COMPUTER TREATS ALL NUMBERS
AS IF THE BINARY POINT WERE HERE
THE ASSEMBLER CONSIDERS ALL
UNSPECIFIED BINARY POINTS TO
BE HERE
secoNDWORD (O] 4 4 | 4 oy | 4 oy |) 4] 4 g |
A U K S DU SO I I O T SO N O L
B15B16B17B18B19B20B21B22B23 B24 B25 B26 B27 B28 B29B30
Figure 3-2. Binary Point Position
Use of E (Decimal Point Position). -- The letter E followed by a number is used to specify

the position of the decimal point in either fixed-point or floating-point data. The E should
be read as "times ten to the...'. For example 3E5 means assemble a floating point word
with the value of 3 x 105 (300, 000). The number following the E is known as the exponent

or characteristic, and the value before the E is known as the fraction or mantissa.

Use of the Decimal Point. -~ A decimal point may be specified in any floating-point number
and some fixed-point numbers. However, it may not be used in the number specifying the

exponent or the position of the binary point (that is, following E or B).

VFixed-Point Word Formats. -- Figure 3-3 shows the word format for single and double-
precision fixed-point words. The central processor always treats fixed-point words as if
the binary point were between bits 1 and 2. Negative numbers are in twos-complement
form. All bits of a double-precision word except bit 1 of the second word are twos comple-

mented. Bit 1 of the second word is always 0.

Specifying Fixed-Point Data, -- Fixed-point data is specified either by no modifier at all
(e.g., 349) or by a B or BB with or without an E or a decimal point (e. g., 349.3B13).

B signifies single precision, and BB signifies double precision.

SINGLE - PRECISION FIXED - POINT FORMAT :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IIIIIIIIIIIIIIII—l
\ \- INTERNAL POSITION OF THE BINARY POINT

SIGN BIT
DOUBLE - PRECISION FIXED - POINT FORMAT :
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
FIR
stworo | | Ll L1
\. J
———
\ 15 MOST SIGNIFICANT BITS
POSITION OF THE BINARY POINT
SIGN BIT
SECOND WORD |°| [T A O VO N N M O I I IJ
. J
oo
\ 15 LEAST SIGNIFICANT BITS
ALWAYS ZERO

(Negative numbers are represented by two’s complement of absolute
value. Bit 0 of second word in double-precision is always 0 for both

positive and negative numbers.
Figure 3-3. Fixed-Point Word Formats

The effect of B and BB is to move the actual point to an assumed position. B or BB
is referred to as a scale factor since it allows the programmer to scale his number to a

value more easily handled. The relationship is:

-P
N1 = NO(Z)

where N1 is the value ot the generated word, with the binary point between bits 1 and 2;
No
the value following B or BB. Any low-order bits beyond 15 (or 30) bits of significance are

is the original value of the number in the DEC, DBP, or literal address field; and P is

truncated without rounding.
E may also be used in fixed-point numbers if B is present. The formula above is then

modified to:
N, = Ny2) (10%)
where NO’ Nl’ and P have their former significance and X is the value following E. The
DAP-16 Assembler flags an error for any value of N1 not between -1 and +1,
The following example delineates fixed-point conversions and serves to point out
errors. The last four conversions show that there is no rounding in the conversion. The

binary approximation to 1/10 (which often appears in conversions) is also shown.

0023 00346 000017 DEC 15 DECIMAL 15 = nCTAL 17

0024 00347 177761 DEC -15 NEGATIVE OF FIRST EXAMPLE
0025 00350 041170 DFC 150F=1 ERROR==RESULT IS FLOATING
00351 000000
0026 » POINT (NO B)
0027 00352 177610 DEC =15B+12 SFCOND EXAMPLF TIMES 8
0028 00353 000170 DEC 15B12 NEGATIVF OF PREVIONUS
0029 » EXAMPLE
C 0030 00354 074000 DEC 1581 ERROR==100 LARGE
0031 00355 000170 DEC 150F-1B+1? USE OF ROTH E AND B
0032 00356 001700 DEC +0,15F2R¢ PREVIOUS EXAMPLE TIMES 8
0033 00357 000000 DEC 1.5FE+1BR21 DOURLE PRFCISTION USING DEC
00360 017000
0034 00362 000000 DBP 1.5E1BB24 DOUBLE PRECISION USING nge
00363 001700
0035 00364 000000 DBP 15000F-3BRB24 saMF As PREvIous ExampLE
00365 001700
C 0036 00366 074000 DBP 15BB+1 ERROR~~T0O0 LARGE
00367 000000
0037 00370 000001 DBP +15RB18 BIT 17 ALWAYS = 0
00371 070000
¥VC 0038 00372 000000 DEC *17R15 ERROR=-=~CANNOT USE B
0039 M OR E WITH APOSTROPHE
0040 00373 020000 DEC 0,125B=-1 USE OF NEGATIVE B
D041 00374 001717 DEC 15+.0015E4B9 USE OF ADDITION
0042 « THE FOLLOWING CONVERSIONS SHOW
0043 * TRUNCATION AND THE RINARY VALUE OF 1710
0044 00375 000001 DEC 1,1R1S
0045 00376 000001 DEC 1.1BB1S
00377 006314
0046 00400 000001 DEC 1,99999R15
0047 00401 000001 DEC 1.99999RB1S

00402 077777

Floating-Point Word Formats. --Figure 3-4 presents the format for single- and double-
precision floating-point words. Negative numbers are constructed by assembling a posi-
tive number and taking the twos complement of the entire two- or three-word number
including the exponent.
The exponent is a power-of-two expressed in excess-128 notation. This gives a range
127 +127 -38 +38

between 2~ and 2 (about 10 to 10). The number zero is represented by using

a number of all zero digits.

Specifying Floating-Point Data. -- Floating-point data is specified by an E without a B, an
EE without a B, or a decimal point without a B, One E specifies single-precision (two
words); two Es specify double-precision (three words).

The DAP-16 Assembler automatically generates the floating -point number with the
largest possible (normalized) fraction (<1). An error is flagged if an exponent with an
absolute value greater than 127 is required. Zero is converted to two or three words of

all zeros, and excess bits are truncated.

SINGLE - PRECISION

FIRST WORD:

SECOND WORD:

DOUBLE — PRECISION

FIRST WORD:

SECOND WORD:

THIRD WORD:

FLOATING - POINT FORMAT:

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16
L [O N T O B I]
\ _ —
~ ~
EXPONENT MOST SIGNIFICANT
(EXCESS - 128 NOTATION) 7 BITS OF THE FRACTION
SIGN BIT POSITION OF THE BINARY POINT
IR T N SN T B A B A e B
. ~ J

LEAST SIGNIFICANT 16 BITS OF THE FRACTION

FLOATING —POINT FORMAT:

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
L I T T B | I T N

e J

~ ~
EXPONENT TS Or T ERACTION
TSOF T
(EXCESS - 128 NOTATION) 78l
SIGN BIT | POSITION OF THE BINARY POINT

7

LEAST SIGNIFICANT 16 BITS OF THE FRACTION

VALUE OF NUMBER IS FRACTION X 2 RAISED TO EXPONENT,

NEGATIVE NUMBERS ARE REPRESENTED BY TWO'S COMPLEMENT

OF ENTIRE POSITIVE NUMBER INCLUDING EXPONENT.

Figure 3-4. Floating-Point Word Formats

The following example illustrates floating -point decimal conversions and serves to

point out errors:

0003 s FLOATING POINT EXAMPLES

0004 » EXPONENT FRACTION

0005 * NO., 1 1/2 TIMES 2 T0 THFE 0

0006 00223 040100 DEC 0.5 200 «400..,
00224 000000

0007 » NO. 2 SLIGHTLY LESS THAN NO. 1

0008 00225 037777 DEC 0.49999999 177 V77740
00226 177777

0009 # NO. 3 25 COMPLEMENT OF NO. 1

0010 00227 137700 DEC -0.5
00230 000000

0011 # NO, 4 NO, 1 TIMES 2 70 THE 11

0012 00231 042700 DEC 1,024E3 213 .400,..
00232 000000

0013 # NO. 5 NO, 1 TIMFS 2 T0 THE =2

0014 00233 037500 DEC 125F-3 176 .400,,,
00234 000000

0015 # NO. 6 P1 (IN DOUBLE PRECISION)

0016 00235 040544 DFC 3,1415926535898FER 202 .62207+
00236 103755
00237 050420

0017 #* NO. 7 ERROR==FIXED POINT., NOT FLOATING POINT

0018 00240 040000 DEC 16E0BS (R 1S PRESENT)

vV OCT, Octal Constant; a
HEX, Hexadecimal Constant

LOCATION OPERATION OPERAND

Normal OCT or HEX One or more subfields, each
containing an octal or hexa-
decimal data item. As many
subfields can be used as can
fit in columns 12-72, but no
more than 29 words can be
generated.

These pseudo-operations, OCT or HEX, cause DAP-16 to convert each subfield to
one word of binary data with the desired value. As each subfield is encountered the next
successive memory location is used. Subfields are separated by commas.

Octal numbers use the characters 0 through 7, plus, minus, and apostrophe. The
apostrophe is redundant but acceptable. Hexadecimal numbers use the character 0 through
9, A through F, plus, minus, and dollar sign. A through F represent decimal numbers
10 through 15 and are contiguous to 0 through 9. The dollar sign is redundant but accept-

able. Hexadecimal and octal data may not be mixed in these pseudo-operations.

2DAP-16 Mod 2 only
3-16

The binary point is fixed following bit 16 with both OCT and HEX, However, there is
no provision for moving the point with B or E as there is with DEC and DBP, The following

example illustrates binary conversions using OCT and HEX:

0018 01021 000015 ocT 1% DECIMAL 13
n019 01022 000015 oCT +15 SAME AS FIRST EXAMPLE
0020 01073 177763 ocT -15 NEGATIVE 0NF FIRST EXAMPLE
cvC 0021 01024 000000 ocr 1587 ERROR~=R AND F CANNOT
noz2e * BE USFD IN NCT AND HEX
0023 01025 177763 ocT 177763 SAMFE AS THIRD EXAMPLE
C 0024 01026 onoooo ocT 200000 ERROR==TO0 LARGE
0025 01027 600025 HEX 15 DECIMAL 21
0026 01030 177753 HFX -15 NFGATIVF OF PREVIOUS
0027 * EXAMPLE
0028 01031 177777 HEX FFFF -1
C 0029 01032 073543 HEX 177763 ERROR==TO0 LARGE

¥BCI, Binary (ASCII) Coded Information

LOCATION OPERATION OPERAND

Normal BCI A decimal number, N, followed
by a comma and 2N -alpha-
numeric characters, N speci-
fies number of words te be
formed and cannot exceed 29,

The BCI pseudo-operation causes DAP-16 to convert each group of two characters to
a binary word in USASCII code. A symbol in the location field is as siéned to the location
of the first word, The words generated are stored in successively higher storage locations
as the address field is scanned from the left., The first character of a pair is stored in the
most significant bits, Blanks are acceptable characters and do not terminate the address
field, The comments field follows the 2Nth character.

The following example shows a conversion of eight words to USASCIL. Note that the
last two and one-half words contain USASCII blanks ('240). The symbol FINI is assigned to

the first word.

0056 00027 151305 FINT BCI 8,RELNAD TAPE
00030 146317
00031 140704
00032 120324
00033 140720
00034 142640
00035 120240
00036 120240

VFD, Variable Field Constanta

LOCATION OPERATION OPERAND

Normal VFD Up to 16 pairs of subfields,
FEach subfield must contain

a symbol or expression
composed of symbols defined
in object program.

2DAP-16 Mod 2 only.

The VFD pseudo-operation allows a 16-bit word to be formed, with the programmer
having complete control over each bit. The first subfield of a pair specifies the number of
bits to be controlled by the next subfield (starting with the most significant end of the word).
The second subfield of a pair provides the value to be inserted. This value will be truncated
to the number of bits given in the first subfield with no error indication., Fach pair of sub-
fields defines one or more bits from the most-significant to the least-significant bits of
the word, Unspecified bits at the least-significant portion of the word are filled with zeros.
An error indication is given if more than 16 bits are specified. The following examples

show data conversions using VFD:

0003 01277 177777 VFD 16,'177777 -1
0004 013n0 106612 VFD 8,'215,8,'212 CARRIAGE RETURN,
000% * LINE FEFD
0006 01301 006412 VFD 1,0,7,'215,1,n,7,1212
0007 » SAME, WITH MSR = 0
0008 . FOR EACH CHARACTER
0009 01302 040000 VFD 2.1 BIT 2 ONLY

C 0010 01303 006060 VFD 6,3,6,3,6,3 ERROR--18 BITS
0011 o SPECIFIFD
0012 01304 100063 VFD 1,1,15,'63 SAME AS DACH* '63

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS, Block Starting With Symbol;
BES, Block Ending With Symbol

LOCATION OPERATION OPERAND

Normal BSS or BES Normal. Only one subfield
allowed, Any symbol used
must be previously defined.

These two pseudo-operations, BSS and BES, effectively reserve a block of storage
without defining its contents by advancing the location counter. The value in the address
field specifies the size of the block in words, If there is a symbolic name in the location
field, BSS causes that symbolic name to be assigned to the first location in the block,
while BES causes it to be assigned to the first location following the block. In the following
two examples a block of storage is defined from '1000 to '1027 inclusive. The symbol BUF
is assigned the value '1000 by BSS and '1030 by BES.

0073 ORG *1000
0074 01000 RUF BSS '*30
0075 01030 0 001000 DAC BUF
0071 ORG '1000
0072 01030 BUF BES '30
0073 01030 0 001030 DAC BUF

¥BSZ, Block Storage of Zeros

LOCATION OPERATION OPERAND

Normal BSZ Normal, Only one subfield
allowed., Any symbol used must
have been previously defined,

The pseudo-operation BSZ reserves a storage block which is initialized to zeros when
the object program is loaded. The first zero location is shown on a DAP-16 Mod 2 Assembly

Listing. All zero locations are shown on a DAP-16 Assembly Listing.

COMN, Common Storage

LOCATION OPERATION OPERAND

Normal COMN Normal, Only one subfield
allowed, Any symbol used
must be previously defined.

The loader establishes a pool of common values in upper memory using the pseudo-
operation COMN, The top of this pool is initialized by the loader but may be moved using
SETC (DAP-16 Mod 2 only). The block resulting from each COMN encountered in a program
is placed lower in memory than the previous one. (See COMMON Storage below for
discussion of DAP-16 and FORTRAN COMMON.)

SETC, Set Common Basea

LOCATION OPERATION OPERAND

Ignored SETC Normal. Only one subfield
. allowed. Any symbol used
must be previously defined.

The loader initializes the COMMON base (the highest location in common) to a loca-
tion near the top of memory (or the present memory bank in systems with over 16K
locations). The SETC pseudo-operation allows another location to be specified, All pro-
grams referencing this block of COMMON must use the same value in the address field
of SETC,

COMMON Storage

DAP-16 Convention. -- The absolute address assignments are made at the time of assem-
bly. The assembler maintains an internal COMMON base, which is initially set to 'XX600
(where XX is the last sector of memory). It may be reset at any time by the DAP-16 Mod 2
Assembler by the SETC pseudo-operation, When a symbol is defined by a COMN pseudo-
operation, the number of locations specified in the address field is subtracted from the
current COMMON base, The result is both the address assigned to the symbol and the new
COMMON base, Figure 3-5 presents an example of this procedure.

ADAP-16 Mod 2

DAP-16 Coding

* RESULTING SYMBCL

* STATEMENT BASE ASSIGNED

* -----------------------------------
* "27600 (CRIGINAL VALUE)
v COMN 2 ‘27576 C = '27576

I COMN 1 "27575 I = '27575

A CoMN 2 '27573 A = '27573

Storage Allocation Diagram:

127600

127577 C+1
127576 C
127575 I
127574 A+l
127573 A

Figure 3-5. COMMON Allocation in DAP-16

In the following examples, two programs reference the same COMMON location at

the top of sector 6 (location '6776). The first program refers to this location as LBUF, the
second as PASS:

0066 SETC 16777 SFT COMMON BASE

0067 006776 LBUF COMN 1 ONE VALUE NAMED LBUF
0068 00567 0 006776 LDAC DAC LRUF POINTER TO LBUF

0072 00634 0 02 00344 LDA = STORE 1

0073 00635 <=0 04 00567 STA* LDAC IN LBUF

0079 SETC 16777 SAME COMMON BASF
0080 006776 PASS CoMN 1 NOW CALLED PASS

0081 05501 0 006776 PDAC DAC PASS POINTER T0O PASS

0085 05525 -0 02 05501 LDA® PDAC PICK UP VALUE IN PASS
0086 * (=1 IF PREVIOUS PROGRAM WAS THE LAST

0087 » TO ACGCESS THIS LLOCATION)

FORTRAN Convention, -- The FORTRAN compiler passes a-displacement rather than an
absolute address to the loader for each variable in COMMON. The loader determines the
address by subtracting the displacement from the COMMON base, This base may be al-
tered when the program is loaded. The displacements assigned by FORTRAN are such that
the first variable mentioned has the largest displacement {(and is lowest in memory) and
the last variable mentioned has the smallest displacement (and is highest in memory), The
address assignment may be altered at run time by changing the loader's COMMON base
(relative location '2000 in LDR-APM). If the two COMMON statements below are the last
COMMON statements in a FORTRAN program, and if the loader COMMON base is set to
127600, these statements will reference the same locations shown in Figure 3-5, a

COMMON A, I

COMMON C

Note that variables in COMMON must be named in the opposite order in DAP-16 and
FORTRAN.,

PROGRAM-LINKING PSEUDO-OPERATIONS

ENT, Entry Point;b
VSUBR, Entry Point

LOCATION OPERATION OPERAND
Ignored ENT or SUBR One or two subfields contain-
ing a name of one to six
characters,

ENT and SUBR are two names for the same pseudo-operation. This pseudo-operation
usually precedes executable instructions; however, itmaybe usedanywhere. These pseudo-
operations cause the assembler to output the symbolic name from the address field in the
object text. Its value at load time can then be saved bythe loader for use by other programs
(via EXT, XAC, or CALL). The loader starts loading a CALLed subroutine from the point
where the programmer placed the ENT or SUBR. Thus, it is possible to bypass the begin-
ning of a subroutine, If there are two names in the address fieldthese names are considered
synonyms within the assembler, DAP-16 looks for the value of the second name in the
symbol table and assigns that value to the first name for use by other programs. Although
only four characters are used for names within a program, up to six characters may be
communicated between programs., The extra one or two characters are ignored when
searching the symbol table for a value,

The following is an example routine with three entry points, Other programs may
call the first entry using either SINE or SINF. The secondentrymay onlybe called COSINE,
The third entry may only be called ARCTAN. This entry point has been placed following the
SINE and COSINE entry points, because the ARCTAN routine uses none of the instructions

above its entry point,

@A and C are FORTRAN Real Variables occupying two words; I is an Integer Variable occu-
pying only one word,

bENT is supported only in DAP-16 Mod 2,

00677 SUBR SINE NAME FOR SINE ROUTINE

0078 ENT SINF,SINE ALTERNATE NAME FOR

0079 hd SINE ROUTINF

0080 ENT CNSINE NAME FOR COSINE ROUTINE
0081 00543 0 000000 SINE DAC * START OF SINE ROUTINE
0085 0N630 =0 01 00543 JMP# SINE EXIT FROM SINF ROUTINE
0086 00631 0 0000O0N COS1 DAC * 4 START OF COSINE ROUTINE
0090 00662 =0 01 00631 JMP# COST EXIT FROM COSINF ROUTINF
0091 SUBR ARCTAN,ATAN NAME FOR ARCTAN ROUTINE
0092 00663 0 000000 ATAN DAC * ¥ START OF ARCTAN ROUTINE
0096 00705 -0 01 00663 JMP# ATAN EXIT FROM ARCTAN ROUTINF

EXT, External Namea

LOCATION OPERATION OPERAND

Ignored EXT A name of one to six characters.

The EXT pseudo-operation signals the loader that the name in the address field is
not defined in this program. An error is flagged if executable instructions preceed EXT,
but this error may have no effect on the object text. If the name is referenced later in the
program the loader will make the proper linkage, Loading will not be complete until a
subroutine using the name in an ENT or SUBR pseudo-operation has been loaded. In the
example below, the loader is informed that a program defining SRTE as an accessible

location via ENT or SUBR must be linked to this one:

0002 EXT SRTE

0006 00070 0 02 00000 LDA SRTE

VXAC, External Address Constant

LOCATION OPERATION OPERAND

Normal XAC or XAC* Any external subroutine name.
Indexing may be specified,

The XAC pseudo-operation is the same as the DAC pseudo-operation, except that the
loader fills the low-order 14 bits (15 if extended desectorizing has been specified) with
the address of an external name specified by another program.

EXT allows the programmer to treat an external name 2s if it were part ofthe current
program, XAC performs the same function but, in addition, allows the programmer to con-

trol the location of the indirect link.

“DAP-16 Mod 2 only.

3-22

¥ CALIL, Call Subroutine

LOCATION OPERATION OPERAND

Normal CALL Any external subroutine name,

The CALL pseudo-operation simultaneously specifies a JST operation and EXT
pseudo-operation (which is effective, however, only for the processing of that one state-
ment),

The following examples link two programs, A JST is inserted in location ARC
linking (inuirectly if necessary) to the entry point ARCTAN of another subroutine, In the
second example, the name ARCTAN is valid throughout the program, but in the remaining

examples it is valid only in the statement shown.

0091 01672 0 10 00000 ARC CALL ARCTAN

0002 EXT ARCTAN

0006 01672 0 10 00000 ARC JST ARCTAN

0083 01672 -0 10 01715 ARC JST+ ARCT

.
.

0087 01715 0 000000 ARCT XAC ARCTAN

CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS?

IFP, Assemble Only if Plus;
IFM, Assemble Only if Minus;
IFZ, Assemble Only if Zero;
IFN, Assemble Only if Not Zero

LOCATION OPERATION OPERAND

Ignored IFP, IFM, IFZ, or IFN Normal. Only one subfield
allowed. Any symbol used
must be previously defined,

The address field is evaluated at assembly time. If the condition specified by the
operation field is not met, assembly is inhibited until an ELSE or ENDC is encountered,
Otherwise, assembly continues uninterrupted. In the following example assembly would

always be inhibited:
0092 1FZ 1

Assembly would be inhibited in the following example if symbolic name NAM2 has a smaller

value than symbolic name NAMI,

0097 IFM NAMI-NAM2

See Using Conditional Assembly on the following page for further details,

&Conditional assembly is supported only in DAP-16 Mod 2,

ENDC, End of Conditional Assembly

LOCATION OPERATION OPERAND
Ignored ENDC Ignored

The ENDC pseudo-operation removes the effect of a preceeding IF statement with
which it is paired. When conditions are nested this fact may not restore inhibited assembly,
A Z-error is flagged if the END statement is reached before all IFs have been matched by
ENDCs.

ELSE, Combined IF and ENDC

LOCATION OPERATION OPERAND
Ignored EISE Ignored

The ELSE pseudo-operation is used as a switch between inhibited and uninhibited
assembly and has thée following effects.
a. Between any IF and an ENDC when assembly is not inhibited, ELSE acts as
0111 ENDC
0112 IFN]
That is, it matches the previous IF statement and generates a new statement
that inhibits assembly,
b. Between any IF and an ENDC when assembly is inhibited, ELSE acts as:

0096 ENDC
0097 1FZ 0

That is, it removes the inhibition unless this IFF/ENDC pair is nested within
another statement that is causing the inhibition,

c. A Z-error is flagged if EISE is used anywhere other than between an IF and an
ENDC.

FAIl, Identifies Statement Which Should Never Be Assembled

LOCATION OPERATION OPERAND
Ignored FAIL Ignored

The FAIL pseudo-operation causes an O-error and is used in conditional assemblies

to ensure that the conditions are logically consistent.

Using Conditional Assembly

Conditional assembly allows a comprehensive source program to be written covering
many conditions. Parameters are passed using SET or EQU pseudo-operations at the be-
ginning of the program to effect different assemblies for different objects. These state-
ments can control the variables used by Conditional Assembly statements and consequently

cause assembly of only those parts of the program necessary to this objective,

The following four examples show the same program assembled in four ways. Four

parameters, V1, V2, V3, and V4 control the assembly. Note that nothing is assembled if

V1=V2. If V1 if greater than V2, only the FAIL pseudo-operation is assembled, otherwise

some combination of instructions is assembled.

In the routine below V1 =1, V2 =3, V3 =1, and V4 = 0. First is a listing showing

both assembled and skipped lines listed (see Performing an Assembly).

0112
0113
0114
0115
0116
0117
0118
0119
7120
0121
0122
0123
D124
012%
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143

00337

00340
00341

00342

00343

000001
000003
600001
000000

0 10 00375

0 10 00452
0 04 00665

100400

0 01 00301

* EXAMPLE OF CONDTTIONAL ASSEMBLY

vi EoU
v2 Eou
V3 EQU
va EQU
IFN
— IFP
FATL
==ELSF
JST
— IF2Z
JsT
STA
L ELsE
JsT
- 1FM
JST
ADD
STA
=ELSE
LDA
ADD
STA
LenDe
ERA
SNZ
- ELSE
SPL
L ENnDC
JMP
— ENnDC
ENDC

1
3
1
0
Vi=-v2
Vi-v2

A3X
Vi-y3+v4
R3X

TEMP

C3X
v2-v4
D3X
TEMP
TEMP

z~1
TEMP
TEMP

TTST

X1

The following example shows the same routine assembled without listing the skipped

statements.

0112
0113
0114
0115
0116
0121
0123
0124
0139
0141

00337
00340
00341
00342
00343

000001
Boeno3
000001
goooo0on
0 10 00375
0 10 00457
U 04 00665
100400
0 01 00301

vi
Ve
V3
V4

EXAMPLE OF CONDITIOMAL

EQU
FQU
EQU
EQU
JST
JST
STA
SPL
Jmp

ASSEMBLY

The following example shows the same routine assembled using a different set of

parameters without listing the skipped statements.

0124
n12%
n126
nie7
0124
ni3s
n138
n144
0145
0146
0148
0149
nis3

00337
060340
gn341
00342
N0343
00344
00345
00346

goonot
000003
0n000n
nconol

10
10
02
g6
04
0%

S Ccoc ooo

ap275
10467
00347
nNp665
No66S
ng666

101040

0 01

No3061

V1
ve
V3
V4

EXA
Fou
ENU
EQU
ENUY
JST
JSeT
LDA
AND
STA
ERPA
SNZ
JMP

MRLE OF COMDITIOMAL ASSEMBLY

1

3

0

1
A3X
c3x
==1
TFMP
TFMP
TTST

X1

In the following example VI is greater than V2.

0101
ninz
0103
0104
0105
0108

0nono7
000003
gnoogo
177770

v1
v2
v3
V4

EXAMPLE OF CONMDITTIONAL
ENU 7

EQU 3
FQU 0
EQU -A
FAalL

ASSEMBLY

SPECIAL SYMBOLS

sedlesk, Op Code Zero;
PZE, Op Code Zero

LOCATION OPERATION OPERAND
Normal e, ek Normal, Indeicing may be
PZE, or PZE* specified.,

These two pseudo-operations, *#* and PZE, are assembled and loaded as memory
reference instructions with an operation code of zero., Indirect addressing and indexing
may be specified. The sector bit is set or reset depending on the sector in which the
address is located., Since there is no memory reference instruction with an operation
code of zero, it is expected that the proper code will be inserted during program execution

and before attempting to execute this instruction.

ERROR CODE

The DAP-16 Assembler is able to detect various types of syntax errors commonly
made during the coding of programs, These errors are indicated by one-letter error
codes printed in the left margin of the assembly listing (see Figure 2-4 for an example).

Fach error is treated differently; some result in zero in the erroneous field, others
result in a guess at the desired result, In the case of multiply defined symbols, the first
symbol definition is used. If the operation code is illegal for the object computer configura-
tion indicated, the line will be properly assembled but flagged with an O-error. At the
end of the assembly the following message is printed (DAP-16 Mod 2): 0000 WARNING
OR ERROR FLAGS (DAP-16 prints NO ERRORS IN ABOVE ASSEMBLY). The number of
errors is printed instead of 0000 if there are any (%% for DAP-16),

See Table 3-3 for a list of the error flags and their meaning,

TABLE 3-3, WARNING AND ERROR FLAGS

A Address field missing where normally required; error in address format

C Erroneous conversion of a constant; address field of data-defining pseudo-
operation in improper format

E Executable code generated before EXT pseudo-operation; external name modi-
fied by addition; external name used in address field of something other than
a memory reference instruction?

F Major formatting error

L Label (location field) missing where normally required; error in label symbol?

M Multiply defined symbol

0] Operation field blank or not recognized; operation field not legal for object
configuration

P Phase error (different definitions in first and second passes)?

R Relocation assignment error?®

S Address of variable field expression not in sector being processed or sector
zero (applicable only in LOAD mode)

T Improper use of index subfield; error in index subfield

U Undefined symbol

A% Unclassified error in address field of multiple-subfield pseudo-operation

Z Conditional assembly error; ELSE used outside of conditional assembly;

END reached before all IFs matched by ENDCs?

2DAP-16 Mod 2 only.

EXAMPLE

Figure 3-6 shows a general flow chart of three programs that convert a binary num-
ber to an ASCII octal number and print it on the ASR; the assembled programs and their
cross-reference listings are shown in Figures 3-7, 3-8, and 3-9, These three programs
use a special format known as a Defined Character Address (DCA) for pointers to half-
words., Bits 2 through 16 of the DCA are a pointer (DAC) to the word, and bit 1 tells which
half of the word is to be accessed, with 0 meaning the left (high-order) half and 1 meaning
the right (low-order) half),

These three programs operate correctly when loaded into core and linked to another
program that supplies the number to convert, However, they were designed to show various
aspects of assembly language programming and therefore are not as efficient as they could
be.

MAIN PROGRAM

MAIN

SAVE NUMBER
TO BE
CONVERTED

{

CONV
WITH POINTER TO
QUTPUT STORAGE
AREA

{

ouTe

sTOP

CONV

‘ ENTER ’

PUT POINTER TO OUTPUT
STORAGE AREA IN X-REGISTER

!

PUT 2 SPACES IN FIRST WORD
OF OUTPUT STORAGE

!

INCREMENT POINTER AND
STORE IT IN ABSOLUTE ‘602

1

PLACE NUMBER TO BE
CONVERTED IN B-REGISTER

!

INITIALIZE ZCNT
FOR 6 PASSES

!

CLEAR A- REGISTER AND
SHIFT IN BIT 1 OF B-REGISTER

Figure 3-6,

NOT
DONE

LooP

SHIFT IN 3 BITS OF
B-REGISTER

O

CHANGETO
ASCII NUMBER

SAVE BYTE
IN TEMP

!

{

IN
WITH POINTER
T0'602

SAVE POINTER
TODCAIN
TMAD

{

{

UPDATE
WITH POINTER
T0 '602

MOVE RETURN
POINTER PAST
POINTER TO DCA

{

t

CLEAR A REGISTER

PICK UP DCA, SAVE RIGHT/
LEFT IN C BIT AND SAVE
POINTER IN TMAD

!

!

UPDATE ZCNT

PICK UP BYTE FROM TEMP
AND MOVE TO PROPER HALF
OF A, RETURN IT TO TEMP

DONE

1

MOVE RETURN POINTER
PAST POINTER TO OUTPUT AREA

PICK UP OLD CONTENTS OF
WORD WHERE BYTE ISTO GO

‘ RETURN ’

CLEAR PROPER HALF

!

PUT NEW BYTE IN WORD
AND REPLACE IT

‘ RETURN ’

Flow Chart for Example in Figures 3-7 thru 3-9 (Part 1 of 2)

ouTP

‘ ENTER)

PLACE POINTER TO
COMMON LOCATION

auT

‘ ENTER ,

INPTR

SAVEPOINTER TO
DEA IN TMAD

LFCR

‘ ENTER)

INITIALIZE X-REGISTER
FOR 4 TRANSFERS

%

OUTPUT CARRIAGE
RETURN WHEN NOT BUSY

mov +

MOVE RETURN POINTER
PAST POINTER TO DCA

f

MOVE WORD FROM LOCATION
POINTED TO BY PTR TO WORD
OF BUF, INDEXED

!

OUTPUT LINE FEED
WHEN NOT BUSY

!

PICK UP DCA, SAVE RIGHT/
LEFTIN C, SAVE POINTER

NOT
DONE

INCREMENT PTR AND
X-REGISTER

IN TMAD

+ DONE

PICK UP WORD POINTED
TO BY TMAD

SET ASR FOR OUTPUT
MODE AND WAIT FOR
NOT BUSY

!

SAVE PROPER HALF AND
PLACE IN RIGHT HALF
OF A-REGISTER

{

LFCR

!

PLACE POINTER TO
BUFFER IN PTR

I

INITIALIZE X-REGISTER
FOR 8 TRANSFERS

RETURN

UPDATE

‘ ENTER ’

|

PRNT +

NOT
DONE

ouT
WITH POINTER
T0 PTR

SAVE POINTER TO
DCA IN TMAD

!

{

OUTPUTIT
WHEN READY

MOVE RETURN POINTER
PAST POINTER TO DCA

!

{

UPDATE
WITH POINTER
TOPTR

PICK UPDCA

{

UPDATE
X-REGISTER

ROTATE IT LEFT 1 BIT,
ADD 1, ROTATEIT
RIGHT 1 BIT

!

DONE

LFCR

RETURNITTO
ORIGINAL LOCATION

RETURN

Figure 3-6, Flow Chart for Example in Figures 3-7 thru 3-9 (Part 2 of 2)

RETURN

(¢ Jo 1 33edg) @duanbog utey ‘ordwexy 2-¢ 2andig

YALIYHEYHD v 138 QL LNICH AzlinA *¥ Ova ¥Id 000C00 0 S€010 meoo
* %00

NErt 13y INd xdwr 0ICTo 10 0= ¥€0IC L%D0

NCILVvD0T TYNISI¥C NI 11 33V 43y avll wvig %S0T0 %0 0= €€010 9400
¥ILOVHYHD ¥3IN NI agY¥ dw3l LRE] €9¢1p 60 O Z€EOTC S%00

1383y LI€ 2 41 J7vk LHSIW! YD HH0T1H1 T€GTIC %%00

o¥s 1000CcT 0€010 €400

(135 LI® 2 41 J7vK 1337 Tvd 0S0TH1 L2010 2490
Q313IQCK 38 CL 4TVH ¥v3 Jss 1colol 92010 1400
SS3UAQY ¥ILOVEYKD * 0400

4C SINIINCD g7C <r »>1d gyWl *vgn %9010 20 &= S2010 6€00

dW3L Cl ¥ILOVEVYHD NaErL3d dW3l vis €9CT0 %0 0 %2010 €00

1437 41 3SNVYHI¥IINI 31 O%ETHT €2010 L€00

1437/1HS1% ¥C4 lg3l IS 16q101 22010 9€00

SLIE 8 LHSIY ATINC 3AVYS Ty2 050151 12010 S£00
¥31OvHYED 4N >D1d dW3l van €9010 20 C 02010 *€00

Y3LOVUYHD 40 §S3:ACY 3u01S ayWwl visS 49610 %0 0 L1010 €€00
Y31SIo3y v 4C T L1g wv3T> ghy * 2€00
118 D> NI L1€ L437/71HSI¥ 3AvS v¥$D 02€0%1 91010 1g00
v2Q 4 do1d QviWl #¥Q" %9010 20 0= S1010 Of00

¥ILINICH 2AYS avWl VIS #9010 »0 ¢ ¥101C 6200

¥3ILINIOd ¥IQ 1Svd INIGCH NENL3I¥ IAow 1nd sul 01¢To 21 ¢ €1010 8200
¥2Q Cl ¥3UINICH 4r ¥o1d ind #vgi 010lc 2o 0= 2101C 4200
YILOVUYHD FAWS dW3il vis €90T0 %0 0 11010 9200

YILOVYUYHD v 30vd CL INICd A¥inNd *¥ DOyd |Nd 000C0D O OIOI0 %200
dNDge31yadn IN3 %200

SANTILINCY 33¥KL FS3IML HCJ A3IdeLNC In3 €200
SIWVYN TYNYILXZE A4ILNIql lnd*N1 In3 2200

* 1200

NCWWHOD NI NCILVDCT Cl ¥3INIOd 0T NECD 291 96G6LED Cz200
SNINNIDIE 3HL CJ * 6100

Wy8 SIWNT LI QILNVISIE NIWM NIVW df 00010 10 0 LQOTO 8100
TIEKRNN. MIN ¥CH <€0iLS LM 0c0000C 30010 L100

(A¥VYSS3ID3IN ION dON) * 9100

e ELIR -1 deN 000%cT S001C St00

QIUINTY¥e ¥IGWNN 3ML 3AYH dinc 1yd 00000 0T 0 %0010 7100
{AYVSS3D3N .LON dON) * €100

IN¥IE SNENLAY KWyaSoud NOISE3IANOD dgoN o00lol €0010 2190
MOT3€ Q3NIZ43Q NOILvIC ¥ Tto0

NOWWCD 3HL LY SNILEyLS 207 2y¢ 996L€0 0 20010 0100
QILYIANCD BIEWAN IHL IAYH ANOD Tlyd 00000 o1 © 16010 6000
(T¥12C) 109 * 8000

NCILVDCT 3LMTCSEY NI ¥3EWNN Lnd 1094 Vis NiYW 10900 %0 0 00010 {000
¥ILSIS3I¥ ¥ NI * %000

QALY3IANOD 39 Ol ¥3BANN HLIM S¥IUINI »* S000
000Ts Ly ONILYYLS WYyoSOud 3LNTCggv 00011 Sx0 w %000
91€ ¥C 9189 SI NCILvENSIANQD sS40 mooo

* 000

IININTIS NIVW==31dWYX3 TvANYW ¥I1Sx3SSy * Tooo

3-31

(¢ 70 7 11Bd) sousnbag utey ‘ordwexy

v$eE0T100 ¥1d

S3INILNCY 3S3HL ACA
SNCILYO07 A¥YEOdWIL

Nar Y
11 3¥015
NOILISOd TYNISINC OL ¥3VE€ 3lvioy
11 LN3WI¥ONI
1 118 M
11g 1431/1KSI¥ INd Ol 3Lvio¥
v2Q dft >d1d
¥3ILNICH 3AvS
¥ILNIOd ¥DA LSVd INICd NENL13Y 3AQW
vdQ CL ¥3ILINICd df >>1d
v>d v 3LlvQdn Ol INICd A¥LINA

Nafn 3y

4vH 1437 ¥v31O

1437 41 S3ATVH ISNVYHIH3LINI

47VH L1437 ¥0 LHOI: ¥C4 lg3l

d3L0vavy) SNINIVINOD QuCM dn XDid

¥ALOYYYHS 40 $S3TACY 3JTOLS
¥3lsIo3y v 40 1 1lg yv3TD> any

11g D> NI 118 Ld437/1HSI¥ 3AvS

voQ 4t »D1d

Y3INICd 3AYS

¥3LNIOd vDQ 1Svd INIQd NENL3Y 3AQW

¥2Q CL ¥3INICH dr >Otd

8 °*A3Y¥

Z QoW 91=dVvQ

SOV HO¥¥3 ¥C ONINMVYM 0000

‘L-¢ 2an3dg
0L=02=01
gvyWl vES0T00
NIVK v99%L€0
eN3
L)
T#gW3l NE3 aywl
4 268 dwW3il
*
dnda #dif
gyl #v)S
T ¥uv
vov
*
T 3y
avywWl #vQ1
qyWl vis
dnoa Syl
dndo>qg *vgn
* J¥a dnda
*
¥Id %*duf
Tvd
¥o1
J¢8
avWl *vg
avil V1S
*
vsd
avwl #vgn
Qvil V1S
W14 syl
Yold #v@d

dW3l vololoo
lo R visolo0

%90100
0000¢c0

16010 10 O=

#9010 %0 O-
Ll 9040
902141

LL 9140
#9010 20 O=
#9010 %0 O
16010 21 0
16010 20 O=

000000 0O

§€0To0 10 O=
050141
oYeTlH1
100101

%9010 20 0=

%9010 %0 O

02€0%1
%9010 20 0=
%9010 %0 0
S€E0T0 21 O
S€0T0 20 O-

€9010

29010
19010
09010
L5010

96010
$5010
%5010
£5010
25010
16010

05010
L9010
95010
S#010
44010
€4010

24010
15010
04010
LE0T0
9€010

1nd
4nda

8100
1,00
9L00
$.00
%100
€L00
2100
1L00
0L00
6900
8900
L1900
9900
$900
%900
€900
2900
1900
0900
6500
8500
Lg00
9500

$600.

%600
€500
2500
1500
0¢00

3-32

(¢ 70 ¢ 3aBg) eousnbog urely ‘ordwrexy ‘L-¢ @andig

2L 120 ¢0 43¥x=91C

sgu033y% €2
S¥34In ¢
STICEWAS 21

42 qivadn

32L L9 399 lg 39¢ €5

s2¢ %4 6€ J€€ - 0¢ ez dykWl 9L
9L g% 38¢ 213 292 diWdl SiL
riy 382 Lz 22 1nd S92
rie o1s 0% %4 Wl &4

41 dlnc

€2 1ne
ret NIVK L
ot 201 02

22 NT
rel 369 49 492 dn2a €%

6 ANOD

3-33

(z 0 1 132d) 2urInoy uoIisisauoy) ‘orduwexy

32Vd L+DIY 3H)
NI Qv07 1IM SWYESCid4 SNIAQ233drg
lyH1 Cs 35N3NT3G NIvk 0L NArL3y gnv 13y

SIVEILIT IEWISSY MoN
SNCILYDCT 49vy0ls LING3In CL :3INIpd 1
FYIH H¥IYWON SLfd WyuScxd SNITTyo 1
SrALOVEYHCS 4C 1NnQED 1

0 ¥CL23S NI Sv¥2LIT 17V any

SNCILVI0T 3nCs Ke18vls3 mon 0C%
WydSC¥d SNITvD OL AarfL3X ANOD
YALNICH ¥344N8 L1Svd INICH NENLl3y 3agW ANDD
ANCC TIUINC oot dcen
Y3LINFCOD degT ZHL 3ivaggan 1ND2
L4IHS 320438 ¥31gIo=¥ v wv3Td
2092 NI 2092
E3INICd FHL 21vadh 31lyQdn
2092 NI ¥3IINICE Salsn 2097
d4444M8 =KL NI 31A8 3] Ind NI
4=C I1DSv SNIAIS *cy3z I1IJsvY qaav 0924=
v cL slI2 € 3AQw 3
LJIHS LIg=% ¥3IAC <I¥S ANy
‘v CLl ¥3ERNN 40 1I& 1SOWL437 3ACHK 1
*¥ILSTICIY v Oy
NCISH2ANCD 3HL KSrOskl S3ssvd 9 INDZ
¥Cd4 UINDZ Z2I7vILIN! g==

3161932 € N Ind
(~VEC0M4 UNTIWY AR A¥IE LNd SYV EDI4M)
s

FLEIANCD € 0L ¥3IEWNN 3IFL ¢r d)1d 1097
2597 ~l ¥3d44re CL ¥3INICE 3AYS 2097
C¥CY IX3N 3WL CL INIQC C

4340 LINdLirD Zeb 40 CxECM LSHl4

4HL NI S3DvdS 2 IFL 3r0LS e
MALSI9D3x v CLINI S33vdS 2 Cyg ! NH202Te=
FILSILIE X NI
¥i4dNE LNelrfC CL ¥ZUINICAH Lne ANOD
INICH Azpn4d *¥
APEECHd 274avlvydCgy
SANILINCE TYNy3ILX3 C3DNI¥343» dxy 3Llyddn
Lyl ONY NI R
919 ¥C 91€ SI NCILVEPSIANDD
ANCD 51 v ANCD

g-¢ 2an3rg

an3

3y
2¥C

2097
1097
LND2

13

[Holol

*

ANGT

»*
INILNCY NCISHEANDDI==3dh VX3 TvNNVYW ¥3T15,35SY ¥

0492021
2LLLLT
0s2ca0
0cooce
¢asoac
ccoaQco

occco 10 o=
60000 21 ¢C
S1600 10 ©
cC%00 21 ©
050041
2C9C00 ¢©
000C0 0T ¢
2C9C00 C
00000 QT 0O
€0900 90 0
SL 01%0
000001
LL 0140
0%00%1
00900 %0 C
%0500 20 0
1£2000

10500
20500
£00Co

00000
50507

00CCea

20
6T
21

%0
20

GE

000C00

0
0
C

—

S090C
40900
€0900
20900
To9ocC
0c9%cC

L2000
92000
§2000
72000
€2000
22000
12000
02000
L1000
91000
491000
71000
€1000
21000
11000
01000
L00g0

90000
$0000
20000

€0000
20000

10000
00000

S%00
%400
€400
2400

1500
0400
€€00
8€00
LeQo
S¢00
S€00
%€00
€€00
Z€00
Te00
0€00
ézo00
8200
L200
9200
Sz200
%200
€220
2200
1200
0z00
6100
8100
L100
3100
S100
7130
€100
2100
1100
G100
6000
2000
L000
5000
%000
%000
€000
2000
Tooo

3-34

(z 30 Z 31ed) ournoy uoisisauo) ‘ordwexy ‘g-¢ oIndig

0L 130 0 43¥x=91C

SQ¥023y G4
SY343n 61
SI08iAs 11

61 Gz
14 n9zi=
11 0%2021=
31¢ 302 Ind7 8¢
62 L2 261 20972 0%
ST 1097 6&¢
rgz g A1Ygdn
a4 139 9¢
rze 4001 ¥z
roz S NI
ryg J€€ 6 € ANOY 8

0l=02-01 8 A3y Z QoW 91~dva
SOV ¥0N¥3 NC OnIndv# G000

v0C9C0C INDZ ¥209000 2092 y109000 1092 3000000 31Yadn
0€0C0C 13y ST10000 d0OOT 3000000 NI 000008 ANCH

3-35

(z 30 1 11B4) ocﬂsom, mding ‘ordwexy ‘6-¢ 2anl3ig

IININCIS NIvW Ol Nunpi3Y
AVI3U
L1 1ndlpv
v 04 0334 2N1)
AvVi3Q
11 1ndinu
¥ ClL N¥MNL3x 3SvIdyyd
1NdINC N¥NLIY Z9vIx¥vd
/0334 3INIT 204 AYLINZ YNNI LNL

WYNB0¥d SNITIYD OL Nani3y
@334 3NIT ONY NEML3Y
F0VIYEYD ¥ LNdING *3NCQ NIHM
INNTLNGD
¥ILNNGD dCOT 3Iivagn
41A9 LX3N ¢l INICE C}
rld 31vadn
C31d300V LNdLing FIANM AvI3zU
11 [ndinu
¥ld Ag 04 J3LINICd
JLA8 IHL 139
SYALOVYEYHD 8 yod4 3ZITvILlING
(4ng 4C 3FLAY 160wld437 CL gINIOd MON)
Y20 AYVHCAWIL- NI
¥344rE Ol ¥IINICE IDyd
@334 3NIT ANV N¥MLl3y
AoVI¥EVD ¥ LNdLINCc==ASrg JLoN
ASNE 41 NIVOY Llg3l
ASNE ¥sv ¥Cd4 Lg3l
30oW LhdLNc ycd sy 13S
g3r0K N33g
LaN3AVH ¥PC4 v 41 Q¥OM ¥3FLCNY FAQW
Q3ACW N238 3JAVH SQECM Ty 41 dIds
ANV W4INIOd NCILYNILS3g 3lvad"
43INICd 32¥Mr0S 3ivadit
4rE NI 3¥0)S
NOWKC2 KWC¥4 Q¥CHF >51d
cQ¥CM » IACKW CL 3ZI1IvILINI
NCILYDCT A¥vVEOdwW3ILl NI 35v§SIn 40
NOT1YD0T7 NCWWCD CL ¥3LINICd ADynd
INICd A¥jpnd
Wy¥S0¥d 378vlvdC3y
SANILNOY TYNY3ILXI gISNIU343y
¥y 3Llvgen GhNv Lno
9v€ ¥C 916 SI NCIiV¥NSIdangD
LI¥M g1 3IKYN TYN¥ILN]
$dLrc SI AWVN vNy3ixa

¥347
T=%

9
21242
T=%

4
S124=

*¥
Liym

¥347
LN¥d

0

dld
Ilvyadn
T=%

A

yld
ino
g=s

yld
Jvas

¥4
1=
]
k'l

AO%

0

did
1¢9+40n8€
Ald

hm=

did
30

* %

31vadn
ino

1lyMedino

*dwl
dwfl
Y10
vai
dikl
vic
Vgl

ova
*dix

lsr
dif
Syl
Jya
lsr
awr
vi0
ova
lsr
Xch

vis
vaT

lsr
dinl
SHS
d2p

awr

Syl
Syl
vis
*van
X¢T
v1is
val
2ya
13y
1%3
1x3
§40

*Eng

4547
*

IN%d

AOW

LiyM

»

*

ANTLINCY LNdLNO==37dW VX3 1VANYW ¥ITEKWISSY *

2€000 10 O-
LECOO 10 ©
2000 9L
15000 20 C
€000 10 O
2000 %1

[4Jolefs)

20

000C00

00000

Z€000
020090
00000

10

o1
10
21

$%0000

00000
22000

%000 *

o1
10

9%0000

00000
€6000

94000
L9000

ZECO0
21000

ol
GE

40
20

o1
10

0
0

(=]
1

(e Ne] COOMrMODOOQOOOCO

0
0

%000 Y€
010 %1

#0000

00000
9%C00
9%Cc00
9%000
%5000
9%cCo
08200

10

21
21
20
20
13
%0
20

000000

0

QOO0 ~NO0O O

14000
0%000
Le0no
2€000
Sg000
€000
€€000

2€000
1€000

0€000
Lz000
92000
52000
%2000
€2000
22000
12000
02000
L1000

91000
S$1000

%1000
€1000
21000
11000

01000

L0000
90000
50000
20000
€0000
20000
10000
00000

6400
8400
Ly00
9500
S%00
920
€930
2400
T%00
0400
6€00
8g00
Lgoon
9€00
S€00
%€00
€€00
Z2€00
Teon
0€00
6200
8z0n
L200
9200
S200
%200
€200
2200
1200
0200
6190
8100
L100
9100
S100
100
€100
21900
Tto0
0100
6000
80900
L0009
3000
Sao0o
7000
E000
2000
1000

3-36

(z 30 7 31edg) Purnoy ndnQ ‘ordwexy ‘6-¢ 2InSLg

3-37

0L 120 0 J3¥x=91¢0

sQu0I3y Y¢
Sy34ay Lz
ST08KASs 91
82 8=z
21 =z
€9 ¢l21=
Gy 2124=
réec € Llidm &
01 20 hg
ree L 3J1vadn
HE og 392 561 €1 o11 ¥ld 2g
rog IN¥d 62
€ di1no
rez 9 1ne
ret AOW €T
re+ rLE rez ¥4 1v
48 5 S¢
€S pL dng 1g
G2 Jydg €g

0L=02=01 g8 A3y 2 doW 91=dva
§9¥I4 ¥O¥¥3 50 ONINAVM 0000

000000 LIYM 060000 20¥ 3000000 3ivYadn
9%0C00 did 020000 iNud 3000000 ino %00000 AOuW
2€0000 ¥247 ¥999L€0 2 240000 aneg L%0000 Jyag

YLLLLY 6000
oLLLLt €5000
612000 25000

aN3 212000 16000 9600

ANPC4 1S¥Id ST 39ves3w IYIKM 0T NWGD) 996LED $600
NOIlyD0T NCWWED CL ¥3INIod 9 DJyqQ J0IM 99SL€0 0 06000 Y500
d344ng A¥vyCdw3l €1 ¥3INIod 4Nd dydg dwyae 2%0000 0 Lv000 €500
Y¥3INIOd A¥YE0dW3L 1 2g8 ylid 000000 94000 2500

¥344n8 SIML WO¥d LNIyd v g8 4ng 24000 1g00

* 0goo0

SECTION IV
USE OF FORTRAN PROGRAMS

FORTRAN and DAP-16 programs may be freely intermixed in a memory load and can
communicate with each other through either COMMON, the argument transfer program
F$AT, or argument transfer routines generated by the programmer, Entry points in a
DAP-16 subroutine are declared using the ENT and SUBR pseudo-operationand in FORTRAN
by the SUBROUTINE statement, The linkages are established by the DAP pseudo-operations
EXT, XAC, and CALL, and by the FORTRAN statement CALL. Control is returned to the
calling program by an assembly JMP* or a FORTRAN statement RETURN.

COMMON

Subroutines may transfer variables through COMMON without explicitly naming the
variables in a subroutine call, Because FORTRAN COMMON and DAP-16 COMMON are
handled differently, the user must deliberately locate the appropriate COMMON at the same
place in core, COMMON may be relocated in the following ways,

a. During execution of TABLESIZ (that is, at the first execution of a DAP-16 Mod 2
Assembler System). This option is not possible with the conventional DAP-16
or FORTRAN.

b. During a DAP-16 Mod 2 assembly, using SETC.

c. During.any assembly or FORTRAN compilation, by establishing blocks of dummy
variables to move the effective COMMON location,

d. When loading, FORTRAN COMMON may be displaced by the operator.

The location of COMMON is further complicated by the Disc and Drum Operating Systems
(DOPs). When using this method of communication the exact location of both FORTRAN and
DAP-16 COMMON must be known for the local installation,

ARGUMENT TRANSFER SUBROUTINE F$AT

The compiler inserts a call to this subroutine at the beginning of FORTRAN-coded
subroutines. F$AT transfers pointers (DACs) to the variables being communicated between
the calling program and the subroutine. No call to F$AT is made for subroutines that

need no arguments.

Calling a Subroutine

The sequence on the following page is used to call a subroutine that transfers argu-
ments via F$AT. The variables are listed in the same order as in a FORTRAN CALL

statement, If there is only one argument, the terminal zero must be omitted:

(L) CALL subroutine name
(L+1) DAC <first variable>

(L+2) DAC < second variables

(L+n) DAC <nth variable>
(L4+n+1) OCT 0 Zero must be omitted for n =1
(L+n+2) Return point

The DACs to the variables can be indirect pointers; F$AT tracks down the indirect
links and transfers a direct pointer. Note that variables themselves are never transferred.
The reason for this is that the length of the variable is not known (it could be any length,

since arrays are acceptable variables).

Calling F$AT

By convention, the first action of a subroutine is to call F$AT. Therefore the location
preceeding the call points to the first argument to be transferred. F$AT transfers the
arguments associated with the words following the call to F$AT. Then, F$AT increments
the pointer to the calling program so that it now points to the conventional return point

(following the zero). For example:

(L) <name> DAC *x Subroutine entry point

(L+1) CALL F$AT Must immediately follow entry

(L+2) DEC <number of arguments, n>

(L+3) <name> DAC dok First argument address goes here
(L+n+2) <nhame> DAC %ok nth argument address goes here
(L+n+3) Return point for F$AT

The subroutine call may include extraneous arguments following those used by the
called subroutine. Although only the number of arguments specified in L+2 of the call to
F$AT are transferred, the return pointer is incremented until it points to the word following

the zero in the subroutine call.

DAP-16 MAIN PROGRAM WITH FORTRAN SUBROUTINE

The DAP-16 main program and FORTRAN subroutine combination may be advantageous
when assembly language programs must perform arithmetic or logical calculations, input/
output operations, or when FORTRAN procedures may be used to advantage. The DAP-16
main program must generate the call itself. Figures 4-1 through 4-5 present an example
of this procedure. The DAP-16 AVGCOL program in Figure 4-1 calls another DAP-16
program MESURE (not shown) which accumulates single-precision floating-point data (for
example from a peripheral measuring device). These numbers are accumulated in a buffer
with the external name MINP., The number of points collected in a given run is stored in a
location with the external name MNUM. Each time MESURE returns to AVGCOL, AVGCOL
calls a FORTRAN subroutine STDDEV which calculates the average and standard deviation.
STDDEYV then prints the run number, the values, the average, and the standard deviation and
passes these calculated values back to AVGCOL. In this example, AVGCOL does not use

the calculated values.

4-2

SUBR AVGCOL,AVGC EXTERNAL NAME

AVGC LDA =1 INITIALIZE RUN
STA RUN NUMBER
cALL MESURE SUBROUTINE TO ACCUMULATE VALUES
CALL STDDEV FORTRAN PROGRAM TO CALCULATE

* MEAN AND STANDARD DEVIATION
DAC RUN FIRST ARGUMENT (NRUN IN FORTRAN)
DAC#* NUM SECOND ARGUMENT (NPT IN FORTRAN)
DAC* INP THIRD ARGUMENT (PT IN FORTRAN)
DAC STD FOURTH ARGUMENT (DEV IN FORTRAN)
DAC AVG FIFTH ARGUMENT (AMEAN IN FORTRAN)
CCT 0
IRS RUN INCREMENT RUN NUMBER
JMP AVGC+2 COLLECT NEXT BATCH OF DATA

* .

* .

RUN BSZ 1 RUN NUMBER

NUM XAC MNUM POINTER TO NUMBER OF POINTS

INP XAC MINP POINTER TO DATA BUFFER

STD DEC Q.0 REAL STANDARD DEVIATION

AVG DEC 0.0 REAL AVERAGE

Figure 4-1. Portion of DAP-16 Program Calling FORTRAN Subroutine STDDEV

Figure 4-2 presents the FORTRAN subroutine STDDEV. An expanded listing is given
in Appendix A. Figure 4-3 presents a load map for AVGCOL, MESURE, and STDDEYV.
Figure 4-4 is a typical output from STDDEYV,

100

1000

2000

$0

SUBROUTINE STDDEV (NRUNs NPT, PTs DEV, AMEAN)
DIMENSICN PTC100)

SX = 0

SX2 = 0

DO 100 I = 1,NPT

SX2 = SX2 + (PTCI)I*(PTC(I))

SX = SX + PT(D)

ANPT = NPT

DEV = SQRT(SX2/ANPT-(SX/ANPT)*(SX/ANPT))
AMEAN = SX/ANPT

WRITE (151000 NRUN> (PTC(J)> J = 1-,NPT)
FORMAT (////12H RUN NUMBER » [5/7 (Ell1+454E14+.4))
WRITE (1,2000) AMEAN, DEV

FORMAT (19H ARITHMETIC MEAN = ,E14+5,
1/22H STANDARD DEVIATION = -E11.5)
RETURN

END

Figure 4-2. FORTRAN Subroutine STDDEV

*L.OW

*START
*HIGH
*NAME S
* COMN
*BASE
AVGCCL
MESURE

MNUM

MINP
STDDEV
SARTX
SART

Cs12
se22
AS22

M522X

Me22

DB22X

D§22
SNGL

Figure 4-3.

RUN NUMBER

0.7680E-01
0+7350E-01
0+7610E-01
0.7320E-01
0.7510E-01

ARITHMETIC MEAN =

01000
01000
06326
71501
37777
00300
01000
01024
01564
01565
02010
02306
02306
02422
02454
02462
02704
02704
03065
03065
03306

7

0.7520E-01
0.7510E-01
0.6270E-01
0.7310E-01
0«7640E-01

0.7270E-01
0.7320E-01
0+7410E-01
0.7310E-01
0.7120E-01

0«73435E-01

STANDARD DEVIATICN = 0.19745E-02

Figure 4-4.

REAL
L §22
H$22
N$22
F$AT
ARGS
FSWl
O SAP
Cs3AC
CSAF
F$IC
F %AR
F$CB
FS$ER
FSHT
AC1

AC2

AC3

AC4

ACS

0.7100E-01
0.7010E-01
0+7460E-01
0.7110E-01

Output From STDDEV

03306
03306
03316
03334
03346
03430
03450
03544
03616
03622
03632
04155
04333
06252
06262
06320
16321
06322
06323
06324
37777

Loader Map for AVGCOL, MEASURE, and STDDEV

0.7570E-01
0+7270E-01
0.7380E-01
0+7150E-01

FORTRAN MAIN PROGRAM WITH DAP-16 SUBROUTINE

The FORTRAN main program and DAP-16 subroutine combination is required when
tasks which cannot be performed in FORTRAN must be done. In this case the DAP-16
program must handle the call to F$AT, or transfer the required arguments directly.

Figures 4-5 and 4-6 provide a sample of this combination. The FORTRAN main
program requires input from paper tape in a special format as shown in Figure 4-7. The
FORTRAN main program passes the start of message character (which may vary from
application to application) to the DAP-16 subroutine. The subroutine then reads the tape.
The first two words are integer values passed back through the calling parameters. The
next two words are a real value also passed back through the calling parameters. The next
four words are a complex value passed to the main program through COMMON. The
COMMON base must be set to the same value by one of the methods mentioned above.
Notice that X3 is part of COMMON in the FORTRAN program, but not involved in calling
READT.

Figure 4-8 shows another version of READT that does not use F$AT but instead

transfers the arguments directly.

COMMON IC102,10)5J15J25X1:X2,X3
CCMPLEX X2,X3

ISTART = 129
c 129 1S OCTAL 20t (START OF MESSAGE)
CALL READT (ISTART, Jls» J2s X1)

Figure 4-5. FORTRAN Calling Sequence for DAP-16 Subroutine READT

SUBR
REL
TAPE DAC
CALL
DEC
CHAR DAC
P1 DAC
P2 DAC
P3 DAC
L.DA
STA
oce
L DA%
STA
INA
Jvp
ERA
SZE
JMpP
JST
STA*
JST
STA*
JST
STA*
IRS
JST
STA*

LDX
LOOP JST
STA*
IRS
IRS
JMP
oCP
JMP*
*
FORM DAC
INA
JMP
ICR
INA
JMP
JMP *
CN COMN
CMPT DAC
CMNt BSZ
SCM OCT
END

4-6

READT» TAPE

* %
FSAT
4

* 0k
*ok

* 0k
sk
CMPT
CMN1
‘0001
CHAR
SCM
*1001
¥-1
SOM

*=4
FORM
P1
FCRM
P2
FORM
P3
P3
FORM
P3

ENTRY POINT (USED AS POINTER BY F$AT)
CALL ARGUMENT TRANSFER SUBROUTINE
FOUR ARGUMENTS TO BE TRANSFERRED
POINTER TC CHAR GOES HERE

POINTER TC P1 GOES HERE

POINTER TC P2 GGES HERE

POINTER TC P3 GOES HERE

PICK UP COMMGON POINTER

STORE IN TEMPORARY LOCATION

TURN ON PAPER TAPE READER

PICK UP START OF MESSAGE CHARACTER
SAVE IT

CLEAR A AND INPUT CHARACTER

JELAY UNTIL READY

IS IT START-OF-MESSAGE CHARACTER?
IGNORE IF IT IS NOT

NOPE», TRY ANOTHER ONE

FORM A WORD FROM THE NEXT TWC CHARACTERS
THIS IS P13 RETURN IT TC CALLING PROGRAM
FORM ANOTHER WORD

THIS IS P23 RETURN IT

FORM ANOTHER WCRD

THIS IS THE FIRST WORD OF P3

POINT TGO THE SECOND WORD

FORM THE SECCNO WORD OF P3

STORE IT

NOW GET THE FCUR WGRDS OF THE COMPLEX VARIABLE

==4
FORM
CMN1
CMN1
0
LooP
'0101
TAPE

% %
"1001
*=

*0001
*=1
FORM
8

CN

1

0

Figure 4-6.

FOUR WORDS TO BE FORMED
FORM A WORD
STORE IN COMMON LOCATION
PGINT TO NEXT COMMON LOCATION
UPDATE INDEX
LOCP UNTIL 4 WORDS TAXKEN CARE OF
NOW TURN OFF THE TAPE READER
AND RETURN TO CALLING PROGRAM

ENTRY POINT

CLEAR A AND INPUT CHARACTER
DELAY UNTIL READY

INTERCHANGE AND CLEAR RIGHT HALF
INPUT CHARACTER

INPUT SECOND CHARACTER

RETURN WITH WORD IN A REGISTER

PCINTER TO FIRST WORD OF COMPLEX BLOCK

TEMPORARY LOCATION FOR POINTER
STORAGE FOR START OF MESSAGE CHARACTER

DAP-16 Subroutine READT

TAPE

FRAME

© 0 N o a b~ W N

- e e e e e e
D O W N = O

17

SOM

INTEGER

INTEGER

REAL

COMPLEX

Paper Tape Input Format (for Figures 3-4 and 3-5)

READT,» TAPE

Figure 4-T7.
SUBR

REL

DAC * %
LDAx TAPE
JST IND
STA CHAR
IRS TAPE
LDA¥x TAPE
JST IND
STA P1
IRS TAPE
LDA* TAPE
JST IND
STA P2
IRS TAPE
LDA¥x TAPE
JST IND
STA P3
IRS TAPE
LDA*x TAPE
SZE

JMP *=3
IRS TAPE
LDA CMPT
STA CMN1
ccpP ‘0001
LDAx CHAR
STA SOM
INA 1001
Figure 4-8,

ENTRY POINT (USED AS POINTER BY F$AT)
PICK UP FIRST ARGUMENT (CHAR)

RUN DOWN INDIRECT LINKS

POINTER TO SOM CHARACTER

PCINT TC NEXT ARGUMENT (P1)

PICK IT UP

RUN DOWN INDIRECT LINKS

STORE IT

PCINT TO NEXT ARGUMENT (P23

PICK IT UP

RUN DCWN INDIRECT LINKS

STORE IT

PCINT TO NEXT ARGUMENT (P3)

PICK IT UP

RUN DOWN INDIRECT LINKS

STORE IT

POINT TO NEXT ARGUMENT OR ZERC
PICK IT UP

DONE IF IT IS ZERC

KEEP INCREMENTING UNTIL ZERO REACHED
POINT TO RETURN POINT

PICK UP COMMCN POINTER

STORE IN TEMPORARY LOCATICN

TURN CN PAPER TAPE READER

PICK UP START OF MESSAGE CHARACTER
SAVE IT

CLEAR A AND INPUT CHARACTER

DAP-16 Subroutine READT, Transferring Arguments
Without Calling F$AT

Jvip *=]
ERA SOM
SZE
JMP *=4
JST FORM
STA*x P1
JST FORM
STAx P2
JST FCRM
STA* P13
IRS P3
JST FCRM
STax P3
*
LDX ==4
LCCP JST FORM
STA* CMN1
IRS CMN1
IRS 0
JMP Locp
CcCP 0101
JMP* TAPE
*
FORM DAC * %
INA ‘1001
JMP ¥=1
ICR
INA '0001
Jup *= 1
JMP% FCRM
%
IND DAC * ok
*
SHMI
JMP * IND
sSSP
STaA TEMP
LDA* TEMP
Jvp IND+1
*
CN CCyvN 8
CMPT DAC CN
CMN1 BSZ 1
SCM OCT 0
TEMP BSZ 1
CHAR DAC * %
P1 NAC * %
P2 DAC * A
P3 DAC * &
END
Figure 4-8,

DELAY UNTIL READY

IS IT START-CF-MESSAGE CHARACTER?

IGNORE IF IT IS NCT

NOPE» TRY ANGTHER ONE

FCRM A WORD FROM THE NEXT TWC CHARACTERS
THIS IS P13 RETURN IT TO CALLING PROGRAM
FCRM ANOTHER WCRD

THIS IS P23 RETURN IT

FORM ANOTHER WCRD

THIS IS THE FIRST WCORD OF P3

PCINT TO THE SECOND WORD

FORM THE SECOND WORD OF P3

STORE IT

NCW GET THE FOUR WCRDS OF THE COMPLEX VARIABLFE

FOUR WCRDS TO BE FORMED
FGRM A WORD
STORE IN COMMCN LOCATION
POINT TG NEXT COMMON LOCATION
UPDATE INDEX
LCCP UNTIL 4 WORDS TAKEN CARE OF
NCW TURN OFF THE TAPE READER
AND RETURN TO CALLING PROGRAM

ENTRY POINT

CLEAR A AND INPUT CHARACTER
DELAY UNTIL READY

INTERCHANGE AND CLEAR RIGHT HALF
INPUT CHARACTER

INPUT SECOND CHARACTER

RETURN WITH WCRD IN A REGISTER

ENTRY PCINT FCR REMCOVING ALL
INDIRECT LINKS
INDIRECT PCINTER?
NO==-RETURN
YES--REMOVE INDIRECT FLAG AND TRY AGAILN
SAVE IT
PICK UP WHAT IT PCINTS TC
AND CHECK IT FOR INDIRECT

PCINTER TC FIRST WORD CF COMPLEX BLOCK

TEMPORARY LOCATION FOR POINTER

STCRACE FOR START OF MESSAGE CHARACTER

STORAGE USED FOR RUNNING DOWN INDIRECTS
PCINTER TO CHAR GOES HERE

POINTER TO P1 GOES HERE

POINTER TO P2 GOES HERE

POINTER TO P3 GOES HERE

DAP-16 Subroutine READT, Transferring Arguments
Without Calling F$AT (Cont.)

SECTION V
PERFORMING AN ASSEMBLY (DAP-16 MOD 2)

Initially, the Assembler along with the proper IOS (Input/Output Supervisor) subroutines
must be loaded. Normally a system is generated rather infrequently and a reloadable core
dump (binary record) made for general use. The core dump is loaded from paper tape, cards,
disc, etc. whenever an assembly is to be performed.

The source (tape, deck, or disc file) is loaded on the proper input device and the bits
of the A-Register are set to indicate the mode of assembly and the devices being used for
input and output (see Figure 5-1), Some Input/Output Supervisors also require a B-Register
setting. Set the P-Register to '400 and push the START button (see Table 5-1 for other
starting addresses).

At the end of the first pass the computer will halt. If a two-pass assembly is being
performed, press the START button when the source has been repositioned. When the
source is on magnetic tape or disc, automatic positioning can be specified and the computer

in this case does not halt.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I l | l J A 1 | 1 14 I
L J
—~

(SEE INPUT/OUTPUT
SUPERVISORS FOR DETAILS)

[- 0 if no halts should be made before punching object
text blocks

=1 if a halt should be made before and after the
output of each block of object text. This is to
allow manual punch control on an ASR - 33 so that

the object tape is not cluttered with the Assembly
Listing

-~

=0 to print Symbol Table at the end of the assembly
=1 to inhibit printing of the Symbol Table

=0 to list all statements
=1 to list only statements with warning or error flags

=0 to inhibit listing of conditional pseudo-operations
and statements skipped as a result of inhibited
assembly

=1 to list conditional pseudo-operations and statements
skipped as a result of inhibited assembly

=0 for one-pass assembly
=1 for two-pass assembly

Figure 5-1, A-Register Settings for Assembler Initialization

TABLE 5-1. ASSEMBLER STARTING ADDRESSES

'400 | Start normal assembly

401 Continue assembly (used after halts for read errors etc.)

'402 Start subroutine assembly (no end-of-file will be placed in the object text)
'403 | Terminate assembly (place end-of-file in the object text)

'404 | Restart second pass for additional listing or additional object text (A-Register
bit changes accepted).

ESTIMATION OF SYMBOL TABLE SIZE

The Symbol Table occupies the core area above the Assembler System. If this table
overflows, the assembly cannot be performed. Each entry occupies three words, and as
a general rule one entry is produced for every four or five lines of source text (2/3 words
in the Symbol Table per line of text). The programmer may minimize the number of entries

by use of displacements from symbolic values or the asterisk element.

ASSEMBLER SUPPORT PROGRAMS

The following programs must be linked to the Assembler for proper operation. The

Input/Output Supervisors are described following discussion of these programs.

0O16-DECS, O16-DECL

These programs, Ol6-DECS and O16-DECL, provide the ASCII-to-binary conversion
capability of the Assembler. Ol6-DECS must be used for systems with up to 4K memory
locations. However Ol16-DECS does not provide floating-point or double-precision con-
versions. Ol6-DECL may be used with any system having more than 4K memory locations,
The full range of conversions as described under DEC, DBP, OCT, and HEX is available
with O16-DECL.

SYMLIST, Symbol Table Printer

The program SYMLIST performs an alphabetic sort of all entries in the Symbol Table
and prints out these entries, four per line, following the assembly. The last value printed
is the one for symbols established by SET. Following the value of each symbol is a blank
if the symbol is relocatable, an A if it is absolute, and an E if it is external (external
symbols always equal zero). The Symbol Table may be suppressed by entering a 1 in bit 4
of the A-Register when starting the Assembler. Figures 3-6 and 3-7 show two assemblies

with Symbol Tables.

TABLESIZ

The last Assembler support program loaded must be TABLESIZ. This program is called
at the start of the first assembly by the Input/Output Supervisor. Functionally, TABLESIZ

derives the top of memory and returns this location and the COMMON base ('177 locations

below the top of memory) to the supervisor., The symbol table overlays TABLESIZ, and it
is not called for subsequent assemblies, If Sense Switch 1 is set during execution of
TABLESIZ, the computer will halt with the highestmemory location inthe A-register. This
location may then be changed manually. The computer will thenhalt againwith the COMMON
base displayed for the operator to change if desired,

INPUT/OUTPUT SUPERVISORS

DAP-16 input/output supervisors are designed to operate with standard Honeywell
drivers (using their calling sequences and their expected results), These drivers are
described in the Programmers Reference Manuals for the specific peripheral devices.

One I0S program and the appropriate driver programs must be linked within an
assembler system along with the programs listed in the previous section. TABLESIZ

must be the last program (highest core address) in the system following the drivers,

NOTE

This section generally indicates the features available to
the programmer in the assembler system as generated
from standard software. An installation that performs

a large number of assemblies will normally find it worth-
while to tailor an IOS to the installation standard. This
tailoring may include card-to-tape or card-to-disc trans-
fer on the first pass, source blocking, simultaneous
peripheral transfer and computation, and operating system
interfaces. Some of these features are available on a
standard item basis,

Dedicated IOS Programs

Computer systems with 4K memory locations must use one of the dedicated input/
output supervisors. Fach of these IOS programs uses a fixed set of peripheral devices.
Therefore, no bits need to be set for device selection when starting the assembly, Table

5-2 lists the programs and the devices to which they are dedicated.

TABLE 5-2. DEDICATED INPUT/OUTPUT SUPERVISORS

Name Symbolic Input Object Text Listing
IOS-OAAA ASR ASR ASR
10S-ORAA High-Speed ASR ASR

Paper Tape
Reader
I0S-ORPA High-Speed High-Speed ASR
Paper Tape Paper Tape
Reader Punch

With any of these dedicated supervisors Sense Switches 3 and 4 respectively may be
used to suppress the object text and listing., If Sense Switch 3 is set during the assembly,

no object will be produced, If Sense Switch 4 is set, no listing will be produced.

1I0S-016D

I0S-016D is the supervisory program that permits a choice of input and output de-
vices, This program must be used only on computer systems with 8K or more memory
locations. Table 5-3 lists the options available for input and output with this supervisor,
The octal numbers are entered in the A-register before starting the assembly. Table 5-4
lists the B-register settings used when magnetic tape is specified, These settings define
the file more fully for the supervisor,

When I0S-016D is used with a disc or drum the appropriate DOP (Disc Operating
Program) must be present, There is a DOP for each standard disc and drum in the Honey-
well product line, DOP asks the operator which files (by name) are to be attached as

pseudo-devices for the current assembly. Access to these files is handled by DOP.

TABLE 5-3. DEVICE SELECTION WITH 10S-016D

I0S-016D
Symbolic Input
Bits 8-10
0 Undefined
1 ASR
2 High-Speed Paper

Tape Reader
3 Card Reader

4 Magnetic Tape
5 Disc or Drum

6-7 Undefined
Object Text Outputs
Bits 11-13

0 No object text

1 ASR

2 High-Speed Paper

Tape Punch

3 Card Punch

4 Magnetic Tape

5 Disc or Drum

6-7 Undefined

Listing Output
Bits 14-16

0 No listing

1 ASR

2 High-Speed Paper

Tape Punch

3 Line Printer

4 Magnetic Tape

5 Disc or Drum

6-7 Undefined

TABLE 5-4.

B-REGISTER SETTINGS FOR MAGNETIC TAPE INPUT/OUTPUT

Bits 1-2
Bits 3-4
Bits 5-6
Bit 7

Bits 9-16

Logical Tape Unit Number for source. Default is logical unit 1.
Logical Tape Unit Number for object. Default is logical unit 2.
Logical Tape Unit Number for listing. Default is logical unit 3.

=0 Normal operation.

=1 Continuous mode operation. The computer will immediately
halt. At this time the operator should enter the number of
files to be processed into the B-Register. Zero means all
files until a double EOF (blank file) is encountered. The
computer will not stop again until the indicated number of
assemblies have been performed. Operative only with
magnetic tape input.

How many files to skip before starting the assembly.

SECTION VI
PERFORMING AN ASSEMBLY (DAP-16)

Initially, the Assembler along with the proper IOS (Input/ Output Supervisor) subroutines
must be loaded. Normally a system is generated rather infrequently and a reloadable core
dump (binary record) made for general use. The core dump is loaded from paper tape, cards,
disc, etc., whenever an assembly is to be performed.

The source (tape, deck, or disc file) is loaded on the proper input device and the bits
of the A-Register are set to indicate the mode of assembly and the devices being used for
input and output (see Figure 6-1). Some Input/ Output Supervisors also require a B-Register
setting. Set the P-Register to '400 and push the START button (see Table 6-1 for other
starting addresses).

At the end of the first pass the computer will halt. If a two-pass assembly is being
performed, press the START button when the source has been repositioned. When the
source is on magnetic tape or disc, automatic positioning can be specified and the computer

in this case does not halt.

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

||l|||1|||L|||I
—?
~
SEE INPUT/OUTPUT
SUPERVISORS FOR DETAILS

=0 for one - pass assembly
=1 for two - pass assembly

Figure 6-1. A-Register Settings for Assembler Initialization

TABLE 6-1. ASSEMBLER STARTING ADDRESSES

'400 Start normal assemble
'401 Continue assembly (used after halts for read errors etc.)

1402 Start subroutine assembly (no end-of-file will be placed in the object
text)

'403 Terminate assembly (place end-of-file in the object text)

'404 Restart second pass for additional listing or additional object text
(A-Register bit changes accepted).

ESTIMATION OF SYMBOL TABLE SIZE

The Symbol Table occupies the core area above the Assembler System. If this table
overflows, the assembly cannot be performed. Each entry occupies three words, and as a
general rule one entry is produced for every four or five lines of source text (2/3 words in
the symbol table per line of text). The programmer may minimize the number of entries by

use of displacements from symbolic values or the asterisk element.

ASSEMBLER SUPPORT PROGRAMS

The following programs must be linked to the Assembler for proper operation. The

Input/Output Supervisors are described following the discussion of these programs.

DECCS, DECCL

DECCS and DECCL provide the ASCII-to-binary conversion capability of the Assembler.
DECCS must be used for systems with up to 4K memory locations. DECCS does not provide
floating-point or double-precision conversions. DECCL may be used with any system having
more than 4K memory locations. The full range of conversions as described under DEC,

DBP, and OCT is available with DECCTL..

MEMSIZ, SETSIZ

One of these programs (MEMSIZ or SETSIZ) must be the last assembler support
program loaded (MEMSIZ for 4K systems; and SETSIZ for systems with more than 4K
memory locations). MEMSIZ or SETSIZ is called at the start of the first assembly by the
Input/Output Supervisor. Functionally MEMSIZ or SETSIZ derives the top of memory and
returns this location and the COMMON base ('177 locations below the top of memory) to the
Supervisor. The Symbol Table overlays MEMSIZ or SETSIZ and the pertinent program is

not called for subsequent executions.

INPUT/OUTPUT SUPERVISORS

DAP-16 Input/Output Supervisors are designed to operate with the standard Honeywell
drivers (using their calling sequences and their expected results). These drivers are
described in the Programmers Reference Manuals for specific peripheral devices.

One IOS program and the appropriate driver programs must be linked within an
Assembler system along with the programs listed in the previous section. TABLESIZ

must be the last program (highest core address) in the system, following the drivers.

NOTE

This section generally indicates the features available to
the programmer in the Assembler System as generated
from standard software. An installation which performs

a large number of assemblies will normally find it worth-
while to tailor an IOS to the installation standard. This
tailoring may include card-to-tape or card-to-disc transfer

6-2

on the first pass, source blocking, simultaneous peripheral
transfer and computation, and operating system interfaces,
Some of these features are available on a standard item
basis,

Dedicated IOS Programs

Computer systems with up to 4K memory locations must use one of these dedicated
input/output supervisors., FEach of these IOS programs uses afixed set of peripheraldevices.
Therefore, nobits needtobe set for device selection when starting the assembly. Table 6-2

lists the programs and the devices to which they are dedicated.

TABLE 6-2. DEDICATED INPUT/OUTPUT SUPERVISORS

Name Symbolic Input Object Text Listing
I0S-5AAA ASR ASR ASR
I0S-5RAA High-Speed ASR ASR

Paper Tape
Reader
I0S-5CAA Card Reader ASR ASR
I0S-5RPA High-Speed High-Speed ASR
Paper Tape Paper Tape
Reader Punch
10S-5CPA Card Reader High-Speed ASR
Paper Tape
Punch

10S-516X, 105-516D

I05-516X and IOS-516D are supervisory programs that permit a choice of input and
output devices. These programs must be used only on computer systems with 8K or more
memory locations, Table 6-3 lists the options available for input and output with these
supervisors, The indicated bits are filled in the A-register before starting the assembly.
Table 6-4 lists the B-register settings used when magnetic tape is specified. These
settings define the file more fully for the supervisor,

When I0S-516D is used, the appropriate DOP (Disc Operating Program) must be
present. There is a DOP for each standard disc and drum in the Honeywell product line.
DOP asks the operator which files (by name) are to be attached as pseudo-devices for the

current assembly., Access to these files is handled by DOP,

6-4

TABLE 6-3.

DEVICE SELECTION WITH I0S-516X AND I0S-516D

I0S-516X

I0S8-516D

Symbolic Input
Bit 2
Bit 3

Bit 4
Bit 5
Bit 6

Teletypewriter
High-Speed Paper
Tape Reader
Card Reader
Magnetic Tape
Teletypewriter with
program halts for
manual action

Teletypewriter
High-Speed Paper
Tape Reader
Card Reader
Magnetic Tape
Teletypewriter with
program halts for
manual action

Bits 2-6 all = 0 Undefined Disc
Object Text Output
Bit 7 Teletypewriter Teletypewriter
Bit 8 High-Speed Paper High-Speed Paper
Tape Punch Tape Punch
Bit 9 Undefined Undefined
Bit 10 Magnetic Tape Magnetic Tape
Bit 11 No object text No object text
Bits 7-11 all = 0 Undefined Disc
Listing Output
Bit 12 Teletypewriter Teletypewriter
Bit 13 High-Speed Paper High-Speed Paper
Tape Punch Tape Punch
Bit 14 Magnetic Tape Magnetic Tape
Bit 15 Line Printer Line Printer
Bit 16 No listing No listing
Bits 12-16 all = 0 Undefined Disc

Table 6-4. B-Register Settings for Magnetic Tape Input/Output

Bits 1-2
Bits 3-4
Bits 5-6

Logical Tape Unit Number for source.
Logical Tape Unit Number for object.
Logical Tape Unit Number for listing.

Bit 7 =0 Normal operation.

Bits 9-16

=1 Continuous mode operation.
halt.

Default is logical unit 1.
Default is logical unit 2.

Default is logical unit 3.

The computer will immediately
At this time the operator should enter the number of
files to be processed into the B-Register. Zero means all
files until a double EOF (blank file) is encountered. The
computer will not stop again until the indicated number of
assemblies have been performed.
magnetic tape input.

Operative only with

How many files to skip before starting the assembly.

SECTION VII
GENERATING AN ASSEMBLER SYSTEM

This section describes the process of generating a DAP-16 Mod 2 Assembly System
from paper tape objects. Most systems (notably conventional DAP—lZ)) are generated anal-
ogously, With conventional DAP-16, however, care must be taken to avoid filling the base
sector beyond '377, which would overwrite the assembler, To avoid filling that portion of
the base sector, as many programs as possible should be loaded starting on a sector
boundary.

The system described in this section was generated on a computer with 12K memory
locations, To generate this system on an 8K computer, at least one driver package must
be left out, Ol6-DECL is used for decimal conversion, and the input/output supervisor
used is I0S-016D.

LOADING LOADER

1,DR-APM must be loaded into high sectors of memorybefore starting. A self-loading
form is available which loads in sectors 4 through 7. This programmay be usedto load the

loader object starting at any even sector boundary.

LOADING ASSEMBLER

The starting location of the cross-sector references must be set as low as possible
in order to provide enough room. The lowest possible address is '40, In this example,
160 was used, This address should be entered in the B-register before loading the assem-
bler. If no B-register entry is made, '100 is assumed, If DMC, Real-Time Clock,
Memory Lockout, Standard Interrupt, or Priority Interrupt/Memory Increment are used,
their needs must be taken into account when making this setting.

Enter relative location '3000 into the P-register. If the loader, for example, starts
at the beginning of sector '24, '27000 is relative location '3000, Mount the assembler ob-
ject text on the proper input device and press START. The computer will halt to receive
the input device selection in the A-register. After the proper code is entered, press

START again and the assembler will load.

Generating Map

Start the loader at relative location '3002, If the computer is allowed to print the en-
tire map, MR will be printed and the computer will halt, Usually, the first six lines of the
map (especially *HIGH and *BASE) are all that are pertinent, The remaining lines tell what
additional routines are needed. The computer may be halted during a map with the MA /S1/
RUN Switch and the map printer reinitialized by again starting at relative location '3002.

A ‘map (or the first six lines of a map) taken after almost every load step is helpful,

After the assembler has been loaded, *HIGH should be in sector 5 and *BASE should
be not far above the value initialized in the B-register, The next routine loaded will load

at *HIGH and start its cross-sector links at *BASE,

LOADING I0S-016D

To conserve cross-sector references, the selected IOS should start at the beginning
of sector 6 rather than at the current value of *HIGH. Set '6000 in the A-register, mount
the IOS object, and start the computer at relative location '3003, From then on, the input

device for the loader does not need to be reselected.

LOADING Olé6-DECL

This routine (or O16-DECS) need not start on a sector boundary. Therefore, it may

be loaded simply by starting the computer at relative location '3003,

LOADING SYMLIST

This routine (if desired) may also be started at the current value of *HIGH. Start

the computer at relative location '3003,

LOADING IOS DRIVERS

The following IOS driver packages can be loaded: ASR, Paper Tape Reader and Punch,
Card Reader, Card Punch, Line Printer, and Magnetic Tape. Fach of these packages in-
cludes several routines, some of which are not used by the assembler system. For some
input libraries, START must be pressed for reading each routine, whether or not it is
actually loaded. Other libraries do not have stop codes other than the physical end of tape,
which is a real convenience,

When using magnetic tape, routine M$UNIT must be configured to the installation
standard. See the appropriate magnetic tape programmers reference manual for details,

Maps should be taken at this time to ensure that there is still room in the base sector,
If the number of remaining locations is critical, specific routines should be loaded on
sector boundaries., To do this, set the loading location in the A-register and start the
loader at relative location '3003.

The calls to any omitted packages should be satisfied by a dummy, which is an object
text with entry points for each external name called, The safest waytohandle these entries
istopoint each one toa halt or generate anerror message. Dummytexts (e.g., DUMY-X16)
are available from Honeywell upon request,

Figure 7-1 shows the source of a duminy that satisfies calls to the card punch routines.
Normally one dummy with a lengthy list of SUBR statements is used to avoid wasting opera-

tor time and core space.

SUBR C3C3,DUMY
SU3R CHCSs DUMY

REL RELOCATA3ZLE SUBROUTINE

nDuUMY DAC * % ALL CALLS TO CARD PUNCH CCME HERE
HLT HALT TC ALERT CPERATCR
JMP *-1 DC NCT ALLCW RESTART FRCM HERE
END

Figure 7-1. Dummy Example

LOADING TABLESIZ
After all other routines and the dummy have been loaded, the object for TABLESIZ

should be loaded. This must be the last (highest in memory) routine loaded.

PRODUCING SE LF-LOADING CORE IMAGE

Figure 7-2 shows the result in core for this example. This result may be preserved
and reused if a self-loading (binary) core image text is made. For disc or drum systems,
DOP can store the binary image on the disc or drum. A paper tape image may be made
using PAL-AP. An 8K version of PAL-AP may be used as shown in Figure B-2.2
PAL-C is the proper program for producing a core image in binary cards. Either of these
programs must load on a sector boundary. Both are started at their relative location

'000.

2 An 8K version of PAL-AP may be generated by the following steps. Use any Loader to
load the object text of PAL-AP into sector 7 (the Loader is no longer needed and can be
overwritten). Change the contents of location '7575 (for Rev. E of PAL-AP) from 7600
to '17600. Execute PAL-AP starting at '7000 to dump the other version from '17000 to
r17577. This dump is a version of PAL-AP that will load into, and execute properly from
the uppermost sector of an 8K memory. It may be used to dump core from '70 to 16777.

SECTOR

CROSS-SECTOR LINKS

= DAP - 16M2

4
5
/(1111 SNCSEBTTTTTTTTTTIT
6 108 - 016D
7 016 - DECL
10 SYMLIST

- ASR PACKAGE
11

- PAPER TAPE PACKAGE
12

L CARD READER PACKAGE
-4 LINE PRINTER PACKAGE

13 MAGNETIC TAPE

= PACKAGE

14 TABLES |

1

17 PAL - AP

LTI

20
-

21

22

23

24

25

26

27

LDR - APM

Figure 7-2. Core Map, After Generating Assembler System

2000 FORMAT (19H ARITHMETIC MEAN

STG «2000
000213 JMP 000000
000214 ocT 124261
000215 OCT 134710
000216 oCT 120301
000217 oCT 151311
0092220 OCT 152310
000221 OCT 146705
000222 CCT 152311
000223 OCT 141640
000224 CCT 146705
000225 CCT 140716
000226 CCT 120275
000227 OCT 120254
000230 OCT 142661
Q00231 oCT 132256
000232 OCT 132654

1/722H STANDARD DEVIATION

000233 oCcT 127662
000234 OCT 131310
000235 CCT 120323
000236 oCT 152301
000237 OCT 147304
000240 OCT 140722
000241 oCT 142240
000242 OCT 142305
000243 OCT 153311
000244 oCcT 140724
000245 OCT 144717
000246 OCT 147240
000247 CCT 136640
000250 OoCT 126305
000251 CCT 130661
000252 oCT 127265
000253 oCT 1246 40

STG 000213

RETURN

000254 JMP*x 000000

Figure A-1.

sE1445,

+sE11.5)

000255
000003
000004
000005
000006
000007

000256
000257

0002690

000261
000262

000042
000263
000264
000265
000266
000000

000267
000270

000271
000272

000273
000274
000155

000275
000213

$0

END

Expanded Listing of STDDEV (Cont.)

STG
CCT
DAC
DAC
DAC
DAC
DAC
STG
OoCT
oCcT
STG
oCT
STG
OCT
cCcr
DAC
STG
OCT
STG
oCT
STG
CCT
oCT
DAC
STG
OCT
OCT
STG
OCT
oCT
STG
ocT
oCcT
DAC
STG
OCT
DAC

='000001
000001
NRUN
NPT

PT

DEV
AMEAN
SX
120240
120240
='000000
000000
SX2
120240
131240
«100

1
004640
T$1000
012244
ANPT
120240
150324
SART
T$2000
130260
131260
T$2001
130261
131260
T$2002
130262
131260
«1000
J
005240
«2000

APPENDIX A
EXPANDED STDDEV LISTING

SUBRCUTINE STDDEV (NRUNs NPTs PT» DEV»

000000
000001
000002
000003
000004
000003
000006
000007

CCT 000000
CALL FSAT

CCT 000005
CCT 000000
oCT 000000
CCT 000000
CCT 000000
CCT 000000

DIMENSICN PTC100)

SX 0

000010 JMP 000000
STG 000010

000011 LDA ='000000
000012 CALL Cs12
000013 CALL Hs$22
000014 DAC SX

sX2 = 0
000015 LDA ='000000
000016 CALL (G512
000017 CALL H$22
000020 DAC SX2

DC 100 I = 1-NPT
000021 LDA ='000001
000022 STA I

§X2 = SX2 + (PTCI)I*(PTCI))
000023 LDA 1
000024 ALS1 000000
000025 ADD PT
000026 ADD 000030
000027 JMP 000031
000030 GCT 177776
000031 STA T$1000
000032 CALL L%22
000033 DAC* TS$1000
000034 CALL Ms22
000035 pACx TH1000
000036 CALL As22
000037 DAC SX2
000040 CALL H$22
000041 DAC SX2

Figure A-1. Expanded Listing of STDDEV

AMEAN)

100 SX = SX + PTCD)

000042 LDA I
000043 ALS1 000000
000044 ADD PT
000045 ADD 000047
000046 JMP 000050
000047 CCT 177776
000050 STA T51000
000051 CALL Ls22
000052 DAC* TS$1000
Q000053 CALL As22
000054 DAC SX
000055 CALL Hs22
000056 DAC SX
000057 LDA I
000060 ADD ='000001
000061 CAS* NPT
000062 JMP 000065
000063 JMp 000022
000064 JMP 000022
ANPT = NPT
000065 LDA* NPT
000066 CALL Cs12
000067 CALL Hs22
000070 DAC ANPT
DEV = SARTCSX2/ANPT=(SX/ANPT)*(SX/ANPT)Y)
0020071 CALL Ls22
000072 DAC SX
000073 CALL D322
000074 DAC ANPT
000075 CALL Hf22
000076 DAC T$2000
000077 CALL Ms322
000100 DAC T$2000
000101 CALL H%22
000102 DAC T$2001
000103 CALL L322
000104 DAC SX2
000105 caLL D522
000106 DAC ANPT
000107 CALL S$22
000t10 DAC T$2001
000111 CALL Hs22
000112 DAC T$2002
000113 CALL SQRT
000114 DAC r$2002
000115 CALL Hs22
000116 DAC* DEV
AMEAN = SX/ANPT
000117 CALL Lsg22
000120 DAC SX
000121 CALL D322
000122 DAC ANPT
000123 CALL H%22
000124 DAC* AMEAN

Figure A-1. Expanded Listing of STDDEV (Cont.)

WRITE (15,1000 NRUN» (PTC(J)s J = 1,NPTO

000125 CALL FSW1
000126 DAC «1000
000127 CALL F3AR
000130 CCT 000001
000131 DAC* NRUN
000132 LDA ='000001
000133 STA J
000134 LDA J
000135 ALS1 000000
000136 ADD PT
000137 ADD 0001 41
000140 JMP 0001 42
000141 CCT 177776
0001 42 STA T$1000
000143 CALL F%AR
000144 CCT 000002
000145 DAC* T$1000
000146 LDA J
000147 ADD ='000001
000150 CAS¥ NPT
000151 JMP 000154
000152 Jup 000133
000153 JMP 000133
000154 CALL F$CB

1000 FCRMAT (//77712H RUN NUMBER » I5/7 (Elle4s4E14+4))
STG «1000

000155 JMpP 000000
000156 CCT 124257
000157 OCT 127657
000160 ocT 127661
200161 CCT 131310
a00162 CCT 120322
000163 CCT 152716
000164 CCT 120316
000165 ceT 152715
0001645 CCT 141305
020167 oCT 151240
Q00170 CCT 126211
00017t OCT 132657
000172 CCT 127650
000173 CCT 142661
000174 OCT 130656
000175 cCT 132254
000176 oCT 132305
000177 oCcT 130664
000200 oCT 127264
000201 OCT 124651

STG 000155

WRITE (1.2000) AMEAN, DEV

000202 CALL FSWl
000203 DAGC «2000
000204 CALL F3AR
000205 CcCT 000002
000206 DAC* AMEAN
000207 CALL FS3AR
000210 ocr 000002
000211 DAC* DEV
000212 CALL FsCB

Figure A-1. Expanded Listing of STDDEV (Cont.)

CUTALONG LINE -~~~

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

TITLE: [SERIES 16 DAP-16 AND DAP-16 MOD 2 ORDER No.:|BY09, REV, 0___.|
ASSEMBLY LANGUAGE DATED: | JUNE 1971 |

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME DATE:
COMPANY
TITLE

/

*vour comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check here.D

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS, 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

FOLD ALONG LINE

FOLD ALONG LINE

	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	A-
	A-1
	A-2
	A-3
	replyA
	replyB

