Honeywell

FORTRAN MATH LIBRARY

SERIES 16

SOFTWARE

SERIES 16

SUBJECT:

Conventions, Loading Information, Library Use, Programming Information, Description of Intrinsic and External Functions and Subroutines and of Compiler Support Subroutines, and Error Messages.

DATE:

December 1973

ORDER NUMBER:

AM74, Rev. 0

PREFACE

The FORTRAN Math Library consists of FORTRAN-callable subroutines. Section I introduces the library. Section II contains information for a programmer using the various subroutines. Section III shows how to call them from a DAP-16 Mod 2 assembly program and gives examples. Section IV describes the standard ANSI and ISA FORTRAN subroutines in the library, and Section V describes the compiler support subroutines. Section VI presents run-time and control subroutines. There are five appendices, included to facilitate access to the library.

Additional information may be obtained from the following manuals:

DAP-16 and DAP-16 Mod 2 Assembly Language, Order Number BY09. 316/516 Programmers' Reference Manual, Order Number BX47. Series 16 FORTRAN IV, Order Number BX32. Series 16 Equipment Operators' Manual, Order Number BX48.

The FORTRAN Math Library consists of coded programs designed to extend the power of Series 16 in the area of program preparation and maintenance. They are supported by comprehensive documentation and training; periodic program maintenance is furnished for the current version of the programs, in accordance with established Honeywell specifications, provided they are not modified by the user.

©1973, Honeywell Information Systems Inc.

File No.: 1A23

CONTENTS

.

		Page
Section I	Introduction	1 - 1
	Subroutine Descriptions	1 - 1
	Appendices	1 - 1
	Symbols	1 -2
	Naming Conventions	1 -2
	Loading Information	1 - 3
Section 11	Use of FORTRAN Math Library	2 1
	Data Types and Representations	
	Integer	
	Real	2 - 1
	Double-Precision	2 - 1
	Complex	
	Logical	2-2
	Normalization	2-2
		2-3
	Register Use	2-3
	Accumulators	2 - 3
	Integer Accumulator	2 - 3
	Real Accumulator	2 - 3
	Complex (pseudo) Accumulator	2 - 3
	,	2 - 3
	Results ·····	2 - 3
Section III	DAP-16 Mod 2 Programming Information	3-1
	Library Calls	3-1
	Examples of Calls to Library	3 - 2
Section IV	Intrincic and Fraternal Franctions and C. L	
beenon iv	Intrinsic and External Functions and Subroutines	4-1
		4-2
	AIMAG	4-3
	AINT	4-4
	ALOG	4-5
	ALOGX	4-6
	ALOG10	4-8
	AMAX0	4-9
	AMAX1	4-10
	AMINO ·····	4-11
	AMIN1	4-12
	AMOD	4-13
	ATAN	4-14
	ATAN2	4-16
	CABS	4-17
	CCOS	4-18
	CEXP	4-19
	CLOG	4-20
		4-21

Section IV (cont)

Section V

		4-22
		4-23
		4-24
		4-24
	• • • • • • • • • • • • • • • • • • • •	4-25
		4-20
	• • • • • • • • • • • • • • • • • • • •	4-28
		4-29
		4-30
		4-31
DIM		4-32
DINT		4-33
DLOG		4-34
DLOG2		4-35
DLOG10		4-36
DMAX1		4-37
		4-38
		4-39
		4-40
		4-41
		4-42
		4-43
	· · · · · · · · · · · · · · · · · · ·	4-44
		4-45
		4-46
		4-47
		4-48
		4-49
		4-50
	· · · · · · · · · · · · · · · · · · ·	4-51
	· · · · · · · · · · · · · · · · · · ·	4-52
		4-53
		4-54
		4-55
		4-56
		4-57
		4-58
		4-59
		4-60
	••••••	4-60 4-61
		4-61
	•••••	4-63
	•••••••••••••••••••••••••••••••••••••••	4-64
SQRT		4-65
	•••••••••••••••••••	4-66
		4-67
TANH		4-68
Compiler Support Subroutines	3	5-1
•		5-2
		5-3
		5-4
		5-5
A\$62		5-6
A\$66		5-7
A\$66X		5-9

Page

CONTENTS (cont)

Section V (cont)

		Page
A\$81	•••••••••••••••••••••••••••••••••••••••	5-10
AC1		5-11
ARG\$		5-12
C\$12		5-13
C\$16		5-14
C\$21		5-15
C\$25		5-16
C\$26	•••••••••••••••••••••••••••••••••••••••	5-10
C\$61	•••••••••••••••••••••••••••••••••••••••	5-18
C\$62	•••••••••••••••••••••••••••••••••••••••	5-19
C\$81	•••••••••••••••••••••••••••••••••••••••	5-19
D\$11	•••••••••••••••••••••••••••••••••••••••	5-20
D\$11X		5-21
D\$22	•••••••••••••••••••••••••••••••••••••••	5-22
D\$22X		5-23
D\$52	•••••••••••••••••••••••••••••••••••••••	5-24
D\$55	•••••••••••••••••••••••••••••••••••••••	5-26
D\$62	•••••••••••••••••••••••••••••••••••••••	5-20
D\$66	•••••••••••••••••••••••••••••••••••••••	5-27
E\$11	•••••••••••••••••••••••••••••••••••••••	5-28
E\$11X		5-29
E\$21	•••••••••••••••••••••••••••••••••••••••	5-30
E\$22	•••••••••••••••••••••••••••••••••••••••	5-31
E\$26	•••••••••••••••••••••••••••••••••••••••	5-32
E\$51		5-35
E\$61	•••••••••••••••••••••••••••••••••••••••	5-34
E\$62		5-36
E\$66		5-36
H\$22		5-37
H\$55		5-38
H\$66		5-40
L\$22		5-41
L\$33		5-42
L\$55		5-43
L\$66	· · · · · · · · · · · · · · · · · · ·	5-44
M\$11		5-45
M\$11X		5-46
M\$22		5-40 5-47
M\$22X		5-48
M\$52		5-49
M\$55		5-50
M\$62		5-51
M\$66		5-51 5-52
N\$22		5-52 5-53
N\$33		5 - 54
N\$55		5-55
N\$66		5 - 56
S\$22		5-57
S\$22X		5-58
S\$52		5-59
S\$55		5-60
S\$62		5-61
S\$66		5-62
SNGL		5-62 5-63
SUB\$		5-64 5-64
•		5-66 5-66

CONTENTS (cont)

		Page
Section VI	Run-Time and Control Subroutines	6-1
	F\$AR	6 - 2
	F\$AT	6 - 3
	F\$B5-9	6-4
	F\$CB	6-5
	F\$D5-9	6-6
	F\$ER	6-7
	F\$F5-9	6 - 8
	F\$GA	6-9
	F\$GC	6-10
	F\$HT	6-11
	F\$IO	6-12
	F\$R1	6-13
	F\$R2	6-14
	F\$R3	6-15
	F\$R5-9	6-16
	F\$Rn	6-17
	F\$TR	6-18
	F\$W1	6-20
	F\$W2	6-21
	F\$W3	6-22
	F\$W4	6-23
	F\$W5-9	6-24
	F\$Wn	6-25
Appendix A	Magnetic Tape 70182805000 Tape Contents (Library	
	Sources Coded in FORTRAN)	A-1
Appendix B	Mathematical Routines	B-1
FF		
Appendix C	Subroutine Functions	C - 1
Appendix D	Library Index	D-1
Appendix E	Error Messages	E-1

ILLUSTRATIONS

Figure 2-1.	Format of Integer	
Figure 2-2.	Format of Real and Double-Precision Numbers	2 -2

SECTION I

INTRODUCTION

The FORTRAN Math Library consists of an extensive assortment of subroutines to aid the programmer in performing mathematical and trigonometric operations and functions, conversions between data types, bit string operations, logical relations, and other functions. The math routines included are for single-(real) and double-precision, complex, integer, and logical calculations.

This library may be loaded in either normal or extended mode and will run in the same mode.

SUBROUTINE DESCRIPTIONS

The descriptions, in Sections IV and V, of the FORTRAN external and intrinsic functions and the compiler support subroutines give the name of the subroutine, its purpose, the DAP-16 Mod 2 calling sequence, the FORTRAN calling sequence (where appropriate), the method used to compute the result, the data types of the arguments and the result (where applicable), error messages generated by the subroutine, if any, and other routines used by the subroutines, if any.¹

APPENDICES

There are five appendices to this manual. Appendix A lists the contents of the library tapes. There are four magnetic tapes and eight paper tapes available. The first two magnetic tapes are source tapes and contain the sources for the Statistical Library, FORTRAN Library, and Fixed Point Math Library. The third magnetic tape contains the objects for the software version of the three libraries; the fourth tape contains the objects for the hardware version of the three libraries.

¹The list of "Other Routines Used" is given in the order in which they are called. If a routine is called more than once, it is listed only once, the first time it is called.

The eight object paper tapes contain the FORTRAN Library and are labeled:

LTCFI	Tape 1 of 6	
LTCF2	Tape 2 of 6	
LTCF3S	Tape 3 of 6	Software Version
LTCF3H	Tape 3 of 6	Hardware Version
LTCF4	Tape 4 of 6	
LTCF5S	Tape 5 of 6	Software Version
LTCF5H	Tape 5 of 6	Hardware Version
LTCF6	Tape 6 of 6	

The tapes are order dependent, as many of the subroutines call other subroutines which appear later in the library. The digits 1 through 6 on the label indicate the loading order.

Appendix B lists the math routines by argument type.

Appendix C lists the library subroutines by function.

Appendix D is an alphabetical list of all the subroutines with their entry points, approximate storage required, subroutines referenced and the number of times referenced, the library tape on which they are located, and the page in this manual on which they are described.

Appendix E lists the error messages produced by the subroutines and the interpretation of these messages.

SYMBOLS

The following symbols and letters are used in many of the subroutine descriptions:

*	multiplication
/	division
**n	raised to the exponential power of n
С	complex
D	double-precision
I	integer
L	logical
R	real

NAMING CONVENTIONS

The intrinsic and external functions are named according to the American National Standards Institute (ANSI) or the Instrument Society of America (ISA) naming rules.

The compiler support subroutines are named, for the most part, according to the following naming convention: The first letter of the name denotes the operation to be performed (see the list below). It is followed by a dollar sign having no significance and then by two numbers. The first number (see the list below) represents the operand initially in the accumulator (except in load operations) and the second number represents the second operand or the type of result. If there is a High-Speed Arithmetic Option version of these subroutines, an X is appended to the name.

Operation	Argument Type
 A - Add C - Convert D - Divide E - Exponential H - Hold (store) L - Load M - Multiply N - Negate S - Subtract Z - Zero (clear) 	 Integer Real Logical Complex Double-precision Double-precision exponent

Examples

A\$22	- add two real numbers
D\$52	- divide a complex number by a real number
E\$61	 calculate the value of a double-precision number to an integer power
M\$22X	 multiply two real numbers, using the High-Speed Arithmetic Option

LOADING INFORMATION

There are two sets of library subroutines, one for installation with the High-Speed Arithmetic Option and one for those systems without this hardware option. Each set is contained on six rolls of paper tape. Customers who purchase the library in source form (on magnetic tape) receive both sets of library subroutines.

The organization of the library is modular, thus making it possible to load only those routines which will be used. This concept of modularity extends to the paper tape. If complex or double-precision variables are not used, the first two paper tapes are not required.

Each paper tape has been assembled via the DAP-16 Mod 2 assembly language and should be loaded by the Series 16 Loader, LDR-APM. Refer to the <u>Series 16 Equipment</u> <u>Operators' Manual</u>, Order Number BX48, for information concerning loading object paper tapes.

SECTION II USE OF FORTRAN MATH LIBRARY

DATA TYPES AND REPRESENTATIONS

The representation of a negative number in any of the following formats (excluding logical) is the TWOs complement of the equivalent positive number. The complement is taken for the entire representation, including all subfields. The TWOs complement is taken by reversing all bits in the representation (ONEs complement) and adding one to the low-order position, propagating carries as required.

Integer

This is a 16-bit (single-precision only) word with an implied decimal point after bit 16; bit 1 is a sign bit (see Figure 2-1). An integer value may range from -32,768 to +32,767.

Example: $+5 = 0\ 000\ 000\ 000\ 000\ 101 = \ 000005^{1}$ $-5 = 1\ 111\ 111\ 111\ 111\ 011 = \ 177773$

Figure 2-1. Format of Integer

Real

This is a 32-bit word in the format shown in Figure 2.2. Bit 1 is the sign bit (0 for positive, 1 for negative). Bits 2-9 contain a binary number (N) with a maximum decimal value of 255 (377 octal) representing the 8-bit characteristic. This number is "biased" by 128 (200 octal). The remaining 23 bits represent a binary fraction (F) with a value less than 1. The value represented is F*2**(N-128). A number is considered "normalized" when the fraction F is at least 1/2 (i.e., the leading bit is set for a positive number). Within this representation the largest representable number in normalized form is just under 2**127, or approximately 10**(38.5). The smallest number is 2**(-129), or approximately 10**(-38.5). The 23 magnitude bits give a precision of one part in 2**23, or approximately 6.9 digits of accuracy. Zero

The apostrophe before a number indicates octal code.

is shown by all zeros in these 23 bits. (Throughout this manual the word "real" is used to reference real single-precision numbers.)

Double-Precision

This three-word format is identical to the real number format with the exception of an additional 16 magnitude bits (see Figure 2-2). The 39 magnitude bits give a precision of one part in 2**39, or approximately 11.7 digits of accuracy. This data type should not be confused with hardware double-precision.

Complex

This is represented by two real number pairs, each having the format of a real number (see Figure 2-2). A real number takes two words of storage; the complex format requires four words. The first two words represent the real portion of the complex number, and the last two words represent the imaginary portion.

Logical

A logical value is shown as a word of all zeros for false and a value of one for true. In logical operations, any nonzero value is interpreted as true. The complement of a logical value changes it from 0 to 1 or 1 to 0.

Figure 2-2. Format of Real and Double-Precision Numbers

NORMALIZATION

A real, double-precision, or complex number is defined as normalized when the fractional part has a value between 1/2 and 1. For instance, $3/8 \ge 2^3$ and $3/4 \ge 2^2$ both have the same value, but the latter is the normalized form.

REGISTER USE

All registers are presumed to be available to the subroutine library. and the user is cautioned not to expect any of them to be preserved, whether or not the arguments or results are stored in them. That is, any registers not specifically described as containing a particular result upon exit from the subroutine must be considered as having become undefined by the execution of the subroutine.

ACCUMULATORS

Integer Accumulator

The A-register is used in all integer operations.

Real Accumulator

The A- and B-registers are used in all real operations.

Complex (pseudo) Accumulator

This four-word area in memory (AC1-AC4) is provided by the library to be used in all complex operations. The real portion of the complex number is stored in locations AC1 and AC2; the imaginary portion is stored in locations AC3 and AC4.

Double-Precision (pseudo) Accumulator

This three-word area in memory (AC1-AC3) is provided by the library to be used in all double-precision operations.

RESULTS

Results are stored according to their data types. Complex numbers are found in the complex accumulator upon exit from any of the compiler support subroutines; double-precision numbers are found in the double-precision accumulator; real numbers are found in the A- and B-registers; and integer and logical values are found in the A-register.

SECTION III

DAP-16 MOD 2 PROGRAMMING INFORMATION

LIBRARY CALLS

The DAP-16 Mod 2 calling sequences for entry into the subroutines are shown in the descriptions in Sections IV, V and VI. When the FORTRAN compiler encounters either a function reference or a call to a subroutine, the following steps are performed:

- 1. A call to the function or subroutine is generated.
- 2. The address of each argument is determined and saved, in the order in which it is retrieved. In the case of expressions, this address is the location containing the current value of the expression.
- 3. If there are two or more arguments, the final address is followed by a word of zeros to serve as an argument list terminator.

The code generated by a subprogram definition written in FORTRAN includes a call to the special subroutine F\$AT (Argument Transfer; refer to Section VI). This call immediately follows the entry point and in turn is followed by a word containing a count of the number of arguments as defined in the definition statement, followed by that number of words. The F\$AT subroutine fills in those words with the argument addresses (from the call to the subprogram) and sets the return to the word following the argument terminator word (zeros). All levels of indirect addressing are removed in passing these addresses. In the case of a single argument, the terminator word is eliminated, the argument to F\$AT shows a single argument, and the search for the terminator is not performed.

Null arguments may be included in a calling sequence by use of DAC *0 as the address in the call. Subroutines serviced by F\$AT find the address DAC *0 placed in the list of addresses and therefore know that the parameter was null. It is equally effective to use a DAC *PTR, where PTR is a DAC *0. This permits a dummy argument to be null, i.e., an argument passed through an intermediate subroutine call.

The DAP-16 Mod 2 programmer can generate his own code, performing the same functions as the F\$AT subroutine.

Some of the FORTRAN Math Library subroutines have additional arguments in the A- and B-registers, or the C-register, or the pseudo-accumulators AC1-AC4. When this is the case, the description references an "implicit" argument, i.e., one whose address is not explicitly part of the calling sequence.

Compiler support subroutines are those which are not normally explicitly called by the FORTRAN programmer. For example, the statement

$$Z = X + Y$$

produces the following DAP-16 Mod 2 code:

CALL DAC	$\left\{ \begin{array}{c} {}^{L\$22} \\ {}^{X} \end{array} \right\}$	loads the value of X in the A- and B-registers
CALL DAC	$\left. \begin{array}{c} A \$ 22 \\ Y \end{array} \right\}$	adds the value of Y to the A- and B-registers
CALL DAC	$\left. \begin{smallmatrix} H\$22 \\ z \end{smallmatrix} \right\}$	stores the result in the A- and B-registers in location ${f Z}$

Subroutines L\$22, A\$22, and H\$22 are compiler support subroutines. They may be called explicitly by the FORTRAN programmer, if desired, as follows:

CALL	L\$22(X)
CALL	A\$22(Y)
CALL	H\$22(Z)

To perform the same function as the statement Z = X + Y and to generate the same code.

Any of the compiler support subroutines may be called by the FORTRAN programmer in the following manner:

CALL <u>ROUTINE NAME</u> (ARG1) CALL <u>ROUTINE NAME</u> (ARG1, ARG2) CALL ROUTINE NAME (ARG1, ARG2, ..., ARGn)

EXAMPLES OF CALLS TO LIBRARY

CALL	M\$55
DAC	ARG1
Return	

This call enters the complex multiplication subroutine, multiplying the contents of the complex pseudo-accumulator by the complex value in locations ARG1-ARG1+3 in the standard format for complex numbers. The result is stored in the complex accumulator (AC1-AC4), and any of the other registers should be presumed to have become undefined.

CALL	AMIN0
DAC	I
DAC	J
DAC	K
OCT	0
Return	

This subroutine compares the three integer arguments I, J, and K (no implicit arguments) and returns with the value of the smallest of these, converted to data type real, in the A- and B-registers. Other registers are now presumed to be undefined.

SECTION IV

INTRINSIC AND EXTERNAL FUNCTIONS AND SUBROUTINES

This section describes the mathematical and trigonometric functions and special FORTRAN subroutines, arranged in alphabetical order by subroutine name.

•

Purpose	To generate the absolute value of a real number.
DAP Calling Sequence	CALL ABS DAC ARG1 (a real number) (Return)
FORTRAN Reference	ABS(R)
Method	This subroutine checks the real agrument, ARG1, for its algebraic sign. If the sign is negative, the TWOs complement of ARG1 is calculated. If the sign is positive, the number remains unchanged.
Data Type of Arguments and Results	This absolute value function of a real number gi ves a real result.
Other Routines Used	L\$22, N\$22

Purpose	To obtain the imaginary part of a complex argument and convert it to real format.
DAP Calling Sequence	CALL AIMAG DAC ARG1 (a complex number) (Return)
FORTRAN Reference	AIMAG(C)
Method	The complex argument, ARG1, is placed in the complex accumu- lator. The imaginary part of the complex number (AC3 and AC4) is then loaded into the A- and B-registers.
Data Type of Arguments and Results	The imaginary part of the complex argument, ARG1, is converted to a real number and placed in the A- and B-registers.
Other Routines Used	L\$55, L\$22, AC3

Purpose	To truncate the fractional bits of a real number.
DAP Calling Sequence	CALL AINT DAC ARG1 (a real number) (Return)
FORTRAN Reference	AINT(R)
<u>Method</u>	A constant (2**22) is successively added and subtracted from ARG1. The available precision of real numbers is such that the fractional part of this result is lost. If ARG1 is negative, its TWOs complement is taken before the addition and subtraction take place and it is recomplemented before the subroutine exits. The resultant value is effectively the largest integer $\leq ARG1 $ with the sign of ARG1.
Data Type of Arguments and Results	The real argument remains a real number.
Other Routines Used	L\$22, N\$22, A\$22, S\$22

Purpose	To calculate the natural (base e) or common (base 10) logarithm of a real number.
DAP Calling Sequence	CALL ALOG (or ALOG10) DAC ARG1 (a real number) (Return)
FORTRAN Reference	ALOG(R) or ALOG10(R)
<u>Method</u>	The log ₂ of the argument, ARG1, is computed. This value is then converted to the desired base by multiplication by an appro- priate constant. $log_2 ARG1 = F^{1}*(C1+T(C3+T(C5+T(C7+T(C9)))))+B5$ where T = $F^{1}*F^{1}$ and C1 = .28853901E1 C3 = .96179665E0 C5 = .57708664E0 C7 = .41153510E0 C9 = .34280712E0 $F^{1} = \frac{F-\frac{\sqrt{2}}{2}}{F+\sqrt{2}}$ F is the fractional part of the normalized argument and B is the binary exponent of the original argument which has been converted to a real number.
Data Type of Arguments and Results	The argument and the results are both real numbers.

Error Messages

The message "LG" is reported if a negative or zero-valued argument is used, and the result is undefined.

Other Routines Used

ARG\$, C\$12, A\$22, M\$22, S\$22, F\$ER, H\$22, L\$22, D\$22

ALOGX

Purpose	To calculate the natural (base e) or common (base 10) logarithm of a real number.
DAP Calling Sequence	CALL ALOGX (or ALOG or ALOG10) DAC ARG1 (a real number) (Return)
FORTRAN Reference	ALOG(R) or ALOG10(R)
Method	$\log_A Z = (\log_2 Z)*(\log_A 2)$, where Z=ARG1. Thus for the natural logarithm,
	$\ln Z = (\log_2 Z)*(\log_2 2);$ for the common logarithm,
	$\log_{10} Z = (\log_2 Z)^* (\log_{10} 2)$. The calculation simplifies in both
	cases to a computation of $\log_2 Z$. Remembering that the floating-
	point number Z can be expressed as Z = $F*2**B$, where F is the
	fractional part and B the binary exponent of the normalized argu-
	ment Z,
	$\log_2 Z = (\ln(F)/\ln(2)) + B.$
	Now, let F = F*K/K, where K may be the product t T K i
	such that $F * K = 1 + G$; where G is positive
	$\log_2 X = \frac{\ln(F * K/K)}{\ln(2)} + B$
	$= \frac{\ln(F * K) - \ln(K)}{\ln(2)} + B \text{then } \ln(K) \text{ is } \underset{i=1}{\overset{t}{\underset{i=1}{\sum}} \ln(K_i)}$
	$=\frac{\ln(F*K)}{\ln(2)} - \frac{\ln(K)}{\ln(2)} + B$
	$= \frac{\ln(1+G)}{\ln(2)} - \frac{\ln(K)}{\ln(2)} + B$
	$= \frac{G - 1/2G^{2} + 1/3G^{3}}{\ln(2)} + B$
	Since $\ln(2) = .69314718$,
	$\log_2 X = 1.442695141 \text{ G}7213475704 \text{ G}^2 + .4808984995 \text{ G}^3$
	$\cdots \frac{\ln(K)}{\ln(2)} + B$

ALOGX cont.

Data Type of Arguments and Results	This function with a real argument results in a real number.
Error Messages	The message "LG" is reported if a negative or zero-valued argu- ment is used, and an undefined result is returned.
Other Routines Used	ARG\$, C\$12, A\$22X, M\$22X, S\$22X, F\$ER

Purpose

To calculate the common (base 10) logarithm.

See ALOG or ALOGX.

Purpose

To find the maximum real value in a list of integers.

See MAX0.

-

Purpose To find the maximum real value in a list of real arguments.

See MAX1.

Purpose

To find the minimum real value in a list of integers.

See MIN0.

_

Purpose

To find the minimum real value in a list of real arguments.

See MIN1.

Purpose	To compute the remainder resulting from the division of two real numbers.		
DAP Calling Sequence	CALL AMOD DAC ARG1 (real dividend) DAC ARG2 (real divisor) OCT 0 (end of arguments flag) (Return)		
FORTRAN Reference	AMOD(R, R)		
Method	This subroutine divides ARG1 by ARG2 by calling D\$22. The function AMOD (ARG1, ARG2) is defined as:		
	Al - $(Al/A2) * A2$, where Al=ARG1 and A2=ARG2		
	(A1/A2) is the integer whose magnitude does not exceed the magni- tude of A1/A2 and whose sign is the same as that of A1/A2.		
Data Type of Arguments and Results	This function with two real arguments results in a real number for a remainder.		
Other Routines Used	L\$22, D\$22, AINT, M\$22, N\$22, A\$22		

ATAN

Purpose	To calculate the principal value of the arctangent (i.e., 1st or 4th quadrant angle) of a real number or to compute and adjust for quadrant the arctangent of a real number expressed as a ratio (X/Y) .			
DAP Calling Sequence	CALL ATAN or CALL ATAN2 DAC ARG1 (a real number) DAC ARG1 (both arguments (Return) DAC ARG2 are real numbers OCT 0 (end of arguments flag) (Return)			
FORTRAN Reference	ATAN(R) or ATAN2(R, R)			
Method	For ATAN, let N = ABS(ARG1). The arctangent of N is evaluated by dividing the total range $0 \le N \le 10 * *75$ into three intervals:			
	If $N \leq 10**(-B)$, ATAN(N) = N			
	If N >10**10, ATAN(N) = $pi/2$			
	If 10^{**} (-8) < N $\leq 10^{*}$ *10,			
	ATAN(N) = base angle + P(Z)			
	= base angle + C1*Z+C3*Z**3+C5*Z**5			
	If $N \le 1/2$, Z = N and base angle $\neq 0$			
	If $N \le 2$, Z = $(N-1)/(N+1)$ and base angle = $pi/4$			
	If N<2, Z = $(-1/N)$ and base angle = $pi/2$			
	For ATAN2, the arctangent of the quotient of ARG1/ARG2 (ARG1 = side opposite, ARG2 = side adjacent, or sin/cos) is computed as			

side opposite, ARG2 = side adjacent, or sin/cos) is computed as in ATAN and adjusted for quadrant by examination of the signs of the numerator and denominator.

Results	Quadrant	ARG1	ARG2	Quotient	Results (radians)
	1	+	+	0 to 00	0 to pi/2
	2	+	-	- to 0	pi/2 to pi
	3	-	-	0 to 00	-pi to -pi/2
	4	-	+	- to 0	-pi/2 to 0

ATAN cont.

Data Type of Arguments and Results This arctangent function of a real number results in a real number.

Other Routines Used ARG\$, D\$22, N\$22, M\$22, A\$22, S\$22

-

Purpose To calculate the arctangent as the quotient of two real numbers.

See ATAN.

Purpose	To generate the absolute value of a complex number.
DAP Calling Sequence	CALL CABS DAC ARG1 (a complex number) (Return)
FORTRAN Reference	CABS(C)
Method	The argument is squared and its square root is taken to arrive at
	its absolute value; e.g., if ARG1 = X+IY, CABS(ARG1) = SQRT (X**2+Y**2).
Data Type of Arguments and Results	its absolute value; e.g., if ARG1 = X+IY,

Purpose	To calculate the cosine of a complex number with the real part in radian measure.		
DAP Calling Sequence	CALL CCOS DAC ARG1 (a complex number) (Return)		
FORTRAN Reference	CCOS(C)		
Method	The cosine function is transformed into the sine function by use of the trigonometric identity COS (Z) = SIN (Z +pi/2), where Z =Y+IY. SIN (Z +pi/2) is then evaluated.		
Data Type of Arguments and Results	This cosine function of a complex number results in a complex number.		

Other Routines Used

F\$AT,L\$55, A\$55, H\$55, CSIN

Purpose	To calculate the exponential of a complex number with the imaginary part in radian measure.
DAP Calling Sequence	CALL CEXP DAC ARG1 (a complex number) (Return)
FORTRAN Reference	CEXP(C)
<u>Method</u>	The following algorithm is used to calculate the value of e**ARG1, where ARG1 is a complex number: If ARG1 = X+IY, e**(X+IY) = (e**X) * (e**IY) = (e**X) *COS(Y) + I * (e**X) *SIN(Y)
Data Type of Arguments and	This function raises e to a complex power and gives a complex result.

Arguments and Results

Other Routines	F\$AT,	SUB\$,	EXP,	H\$22,	COS,	M\$22,	SIN,	L\$55
Used								

CLOG

Purpose	To calculate a particular value of the natural logarithm (base e) of a complex number.
DAP Calling Sequence	CALL CLOG DAC ARG1 (a complex number) (Return)
FORTRAN Reference	CLOG(C)
<u>Method</u>	The following algorithm is used to calculate ln(ARG1), where ARG1 = X + IY: ln (X+IY) = B+I(\uparrow) where R = ln (X**2+Y**2)**.5 = 1/2 ln (X**2+Y**2) ϕ = (TAN**-1)(Y/X) = ϕ + 2Kpi where K = 0, ± 1, ± 2, A particular value for ϕ is chosen such that -pi $\leq \phi \leq$ pi by enter- ing the arctangent routine ATAN2.
Data Type of Arguments and Results	This logarithm function of a complex number gives a complex result.
Other Routines Used	F\$AT, L\$22, M\$22, H\$22, A\$22, ALOG, ATAN2, L\$55, SUB\$

Purpose	To combine two real numbers into one complex quantity.				
DAP Calling Sequence	CALL CMPLX DAC ARG1 (a real number) DAC ARG2 (a real number) OCT 0 (end of arguments flag) (Return)				
FORTRAN Reference	CMPLX(R, R)				
Method	The first real argument (ARG1) is stored in the real portion of the complex accumulator (AC1 and AC2). The second real argument (ARG2) is stored in the complex portion of the complex accumulator (AC3 and AC4).				
Data Type of Arguments and Results	The two real arguments are combined into one complex number and stored in the complex accumulator.				

Other Routines	F\$AT,	SUB\$,	L\$22,	H\$2 2 ,	L\$55
Used					
CONJG

Purpose	To obtain the conjugate of a complex number.
DAP Calling Sequence	CALL CONJG DAC ARG1 (a complex number) (Return)
FORTRAN Reference	CONJG(C)
Method_	This subroutine reverses the sign of the imaginary part of the complex argument (ARG1).
Data Type of Arguments and Results	The complex argument in this function remains a complex number.
Other Routines Used	F\$AT, SUB\$, L\$22, H\$22, N\$22, L\$55

Purpose

To calculate the cosine of a real number expressed in radians.

See SIN.

CSIN

Purpose	To calculate th radian measur	ne sine of a complex number with the real part in e.	
DAP Calling Sequence	CALL CSIN DAC ARG1 (Return)	(a complex number)	
FORTRAN Reference	CSIN(C)		
Method	The sine function of the complex number ARG1 (X+IY) is computed as follows: SIN (X+IY) = SIN(X) * COSH(Y) + I * (COS(X) * SINH(Y))		
	where	SINH(Y) = 1/2 * (E**Y - E** - Y)	
		COSH(Y) = 1/2 * (E**Y+E**-Y)	
Data Type of Arguments and Results	The argument	and the result of this function are complex numbers.	
Other Routines Used	F\$AT, SUB\$, L\$55	EXP, H\$22, L\$22, D\$22, A\$22, SIN, M\$22, S\$22, COS,	

Purpose	To calculate the square root of a complex number.
DAP Calling Sequence	CALL CSORT DAC ARGI (a complex number) (Return)
FORTRAN Reference	CSQRT(C)
Method	If the complex argument is positive, $(A+B)**.5 = C+DI$ is determined as follows:
	C = (((A**2+B**2)**.5+A)/2)**.5
	D = B/(2*C)
	If the argument is negative, $ABS(D) = (((A**2+B**2) - A)/2)**.5$.
	The sign of the real part of the result will be positive and the sign of the imaginary part of the result will be the same as the sign of the imaginary part of the argument. That is, the results will lie in quadrants I or IV of the complex plane.
Data Type of Arguments and Results	This square root function of a complex number results in a complex number.
Other Routines Used	F\$AT, SUB\$, CABS, H\$22, ABS, A\$22, M\$22, SQRT, L\$22, D\$22, L\$55

Purpose	To generate the absolute value of a double-precision number.		
DAP Calling Sequence	CALL DABS DAC ARG1 (a double-precision number) (Return)		
FORTRAN Reference	DABS(D)		
<u>Method</u>	This subroutine checks the double-precision argument, ARG1, for its algebraic sign. If the sign is negative, the TWOs complement o ARG1 is calculated. If the sign is positive, the number remains unchanged.		
Data Type of Arguments and Results	This function with a double-precision argument results in a double-precision number.		

Other Routines Used F\$AT, L\$66, N\$66

Purpose	To calculate the arctangent of a double-precision number.		
DAP Calling Sequence	CALL DATAN DAC ARG1 (a double-precision number) (Return)		
FORTRAN Reference	DATAN(D)		
<u>Method</u>	The principal value is computed. See "Method" for ATAN.		
Data Type of Arguments and Results	This function with a double-precision argument results in a double- precision number.		
Other Routines Used	F\$AT, DABS, H\$66, C\$81, L\$66, A\$66, D\$66, M\$66, N\$66		

Purpose	To calculate the arctangent of the quotient of two double-precision numbers.		
DAP Calling Sequence	CALL DATAN2 DAC ARG1 (a double-precision number (X)) DAC ARG2 (a double-precision number (Y)) OCT 0 (end of arguments flag) (Return)		
FORTRAN Reference	DATAN2(D,D)		
Method_	The arctangent of the quotient (X/Y) is adjusted for the quadrant by examining the signs of the numerator and denominator. See "Method" for ATAN.		
Data Type of Arguments and Results	This arctangent function of a double-precision quantity gives a double-precision result.		
Error Messages	The error message "DT" is reported if the second argument is zero. The result in the double-precision accumulator is undefined.		
Other Routines Used	F\$AT, L\$66, H\$66, F\$ER, D\$66, DATAN, S\$66, A\$66		

Purpose	To convert a real number to double-precision format.
DAP Calling Sequence	CALL DBLE DAC ARG1 (a real number) (Return)
FORTRAN Reference	DBLE(R)
Method	This subroutine stores the real argument, ARG1, in AC1 and AC2. A word of zeros is appended to the real number as the least signifi- cant word of the double-precision fraction and stored in AC3.
Data Type of Arguments and Results	The real argument is converted to a double-precision number.
Other Routines Used	F\$AT, L\$22, C\$26

DCOS

Purpose	To calculate the cosine of a double-precision number expressed in radians.			
DAP Calling Sequence	CALL DCOS DAC ARG1 (a double-precision number) (Return)			
FORTRAN Reference	DCOS(D)			
<u>Method</u>	The cosine function is transformed into the sine function using the trigonometric identity COS (X) = SIN ($pi/2+X$). SIN ($pi/2+X$) is then evaluated, with X = ARG1.			
Data Type of Arguments and Results	This function with a double-precision argument gives a double- precision result.			
Other Routines Used	F\$AT, L\$66, A\$66, H\$66, DSIN			

Purpose	To calculate e^{**x} , where x is a double-precision number.		
DAP Calling Sequence	CALL DEXP DAC ARGI (a double-precision number) (Return)		
FORTRAN Reference	DEXP(D)		
Method	In calculating e**ARG1, the following method is used: e**ARG1 = 2**(ARG1*log ₂ (e)) = 2**(I+F), where I and F are the integer and fractional portions, respectively, of the product ARG1*log ₂ (e).		
Data Type of Arguments and Results	This function raises e to the power of a double-precision argument and gives a double-precision result.		
Other Routines Used	F\$AT, L\$66, M\$66, H\$66, C\$61, C\$16, N\$66, A\$66, S\$66, D\$66, A\$81		

DIM

Purpose	To compute the positive difference between two real arguments.		
DAP Calling Sequence	CALL DAC DAC OCT (Retur	DIM ARG1 ARG2 0 n)	(a real number) (a real number) (end of arguments flag)
FORTRAN Reference	DIM(R,	R)	
Method	ARG1 - ARG2 is computed. If the result is positive, this value is the result given. If ARG1 - ARG2 is a negative quantity, the result of this function is zero.		
Data Type of Arguments and Results	This routine to calculate the difference between two real numbers results in a real number.		
Other Routines Used	L\$22, S\$22		

Purpose	To truncate the fractional bits of a double-precision number.			
DAP Calling Sequence	CALL DINT DAC ARGI (a double-precision number) (Return)			
FORTRAN Reference	DINT(D)			
<u>Method</u>	A constant (2**38) is successively added and subtracted from the argument, ARG1. The available precision of double-precision numbers (39 bits) is such that the fractional part of this result is lost. If ARG1 is negative, its TWOs complement is taken before the addition and subtraction take place and it is recomplemented before the subroutine exits. The resultant value is effectively the largest integer \leq ARG1 with the sign of ARG1.			
Data Type of Arguments and Results	The double-precision argument after truncation remains a double- precision number.			
Other Routines Used	L\$66, N\$66, A\$66, S\$66, AC1			

DLOG

Purpose	To calculate the natural (base e) logarithm of a double-precision number.
DAP Calling Sequence	CALL DLOG DAC ARG1 (a double-precision number) (Return)
FORTRAN Reference	DLOG(D)
<u>Method</u>	This routine is also used by DLOG2 and DLOG10. Log A (X), where X = ARG1, is calculated as $\log_2(X)/\log_2(A)$. To calculate $\log_2(X)$, X is considered as the number $F^1*(2**B)$, where $1/2 \le F < 1$. Log ₂ (X) = $\log_2(F^1)$ + the binary exponent of F^1 , and $\log_2(F^1) = 1/2 + C1*Z + C3(Z**3) +$ where $Z = \frac{(F^1 - \sqrt{2})}{(F^1 + \sqrt{2})} \qquad C1 = 2.885390081845024D0$ $C3 = .9617966484737566D0$ $C5 = .577086624639535D0$ $C7 = .4115350984570017D0$ $C9 = .3428071228932386D0$
Data Type of Arguments and Results	This natural logarithm function of a double-precision argument results in a double-precision number.
Error Messages	The message "DL" is reported if a negative or zero-valued argu- ment is found. The result in the double-precision accumulator is undefined.
Other Routines Used	F\$AT, DLOG2, M\$66

DLOG2

Purpose	To calculate the common (base 2) logarithm of a double-precision number.		
DAP Calling Sequence	CALL DLOG2 DAC ARG1 (a double-precision number) (Return)		
FORTRAN Reference	DLOG2(D)		
Method	This routine is used by DLOG and DLOG10 to calculate $\log_2(X)$, where X is equal to $F^1*(2**B)$ and $1/2 \le F \le 1$. See "Method" for DLOG.		
Data Type of Arguments and Results	This common logarithm function with a double-precision argument results in a double-precision number.		
Error Messages	The message "DL" is reported if a negative or zero-valued argu- ment is found. The result is undefined.		
Other Routines Used	F\$AT, L\$66, F\$ER,C\$81, C\$16, H\$66, Z\$80, A\$66, S\$66, D\$66, M\$66		

DLOG10

Purpose	To calculate the common (base 10) logarithm of a double-precision number.		
DAP Calling Sequence	CALL DLOG10 DAC ARG1 (a double-precision number) (Return)		
FORTRAN Reference	DLOG10(D)		
Method	See ''Method'' for DLOG.		
Data Type of Arguments and Results	This logarithm function with a double-precision argument results in a double-precision number.		
Error Messages	The message "DL" is reported if a negative or zero-valued argu- ment is found. The result is undefined.		
Other Routines Used	F\$AT, DLOG2, M\$66		

DMAX1

Purpose	To find	the larges	t value in a list of double-precision arguments.
DAP Calling Sequence	CALL DAC DAC •	DMAX1 ARG1 ARG2	(first double-precision argument) (a double-precision number)
	DAC OCT (Retur	ARGn 0 m)	(last double-precision argument) (end of arguments flag)
FORTRAN Reference	$DMAX1 (D, D, \ldots, D)$		
Method	Compare the arguments and retain the largest value.		
Data Type of Arguments and Results	The largest double-precision argument is stored in the double- precision accumulator.		
Other Routines Used	L\$66, H	\$66 , S\$66	

DMIN1

Purpose	To find the smallest value in a list of double-precision arguments.		
DAP Calling Sequence	CALL DAC DAC	DMIN1 ARG1 ARG2	(a double-precision argument) (a double-precision argument)
	DAC OCT (Retur	ARGn 0 n)	(last double-precision argument) (end of arguments flag)
FORTRAN Reference	DMINI	(D,D,	,D)
Method	Compare the arguments and retain the smallest value.		
Data Type of Arguments and Results	Both of the arguments are double-precision and the result of this function is a double-precision number.		
Other Routines Used	L\$66 ,]	H\$66, S\$66	

DMOD

Purpose	To compute the remainder resulting from the division of two double- precision numbers.		
DAP Calling Sequence	CALL DMOD DAC ARG1 DAC ARG2 OCT 0 (Return)	(a double precision number) (a double-precision number) (end of arguments flag)	
FORTRAN Reference	DMOD(D,D)		
Method	This subroutine divides ARG1 by ARG2 by calling D 66 . The function DMOD (A1, A2) is defined as A1-(A1/A2)*A2, where (A1, A2) is the integer whose magnitude does not exceed the magnitude of A1/A2 and whose sign is the same as that of A1/A2.		
Data Type of Arguments and Results	This function with two double-precision arguments results in a double-precision number for a remainder.		
Other Routines Used	F\$AT, L\$66, D\$6	6, H\$66, DINT, M\$66, S\$66, N\$66	

AM 74

DSIGN

Purpose	To generate a value consisting of the sign of the second double- precision argument and the magnitude of the first double-precision argument.		
DAP Calling Sequence	CALLDSIGNDACARG1(a double-precision number)DACARG2(a double-precision number)OCT0(end of arguments flag)(Return)		
FORTRAN Reference	DSIGN(D, D)		
Method	ARG2 is tested for its algebraic sign and, depending on the sign of ARG1, the procedure is as follows:		
	$\frac{\text{ARG1}}{-} + \frac{\text{ARG2}}{+} + \frac{\text{Result}}{-}$		
	ARG1		
	+ + + ARG1 + - ARG1		
Data Type of Arguments and Results	Both arguments for this call are double-precision numbers and the result is a double-precision number.		
Other Routines Used	F\$AT, L\$66, N\$66		

Purpose	To calculate the sine of a double-precision number expressed in radians.
DAP Calling Sequence	CALL DSIN DAC ARG1 (a double-precision number) (Return)
FORTRAN Reference	DSIN(D)
Method	An arbitrary angle X expressed in radian measure can be reduced to the range $0 \le Y \le \frac{p_1}{2}$ through the relation X = Y + N(pi/2). Adjustment is made for quadrant before using a modified Taylor's expansion.
Data Type of Arguments and Results	This sine function with a double-precision argument results in a double-precision number.
Other Routines Used	F\$AT, DABS, M\$66, H\$66, C\$61, C\$16, N\$66, A\$66, MOD, L\$66, S\$66

,

Purpose	To calculate the square root of a double-precision number.		
DAP Calling Sequen ce	CALL DSQRT DAC ARG1 (a double-precision number) (Return)		
FORTRAN Reference	DSQRT(D)		
<u>Method</u>	A first approximation to the double-precision square root of the double-precision argument is obtained by calling the real square root routine (SQRT). One more Newton-Raphson iteration is the made to achieve full double-precision accuracy.		
Data Type of Arguments and Results	This square root function of a double-precision argument result in a double-precision number.		
Other Routines	F\$AT, L\$66, C\$62, H\$22, SQRT, C\$26, H\$66, D\$66, A\$66, A\$81		

Purpose	To calculate e*	**x, where	e x is a rea	al number.	
DAP Calling Sequence	CALL EXP DAC ARG1 (Return)	(a r eal n	umber)		
FORTRAN Reference	EXP(R)				
Method	and F is the fra	ctional po	ortion of th	**(I+F), where I is the integer e product ARG1 $\log_2(e)$. The htities I', F(1), and F(2):	
	F	<u>I</u> '	<u>F(1)</u>	<u>F(2)</u>	
	-l < F < -l/2				
	-1/2 < F < 0	I - I	3/4	F + 1/4	
	0 < F < 1/2	I	1/4	F - 1/4	
	1/2 < F < 1	I	3/4	F - 3/4	
	From the above table, $e^{**}ARGl=2**(I'+Fl+F2) = 2**(I'+F1) * (2**F2)$				
	where	w1 (2))			
	2**F2 = e**(F2*ln(2)) = e**F = (A(F))/(A(F)-B(F)) A(F) = C1+(F*F), B(F) = C2*F				
Data Type of Arguments and Results	This exponentia number.	l function	with a rea	l argument (e^{R}) results in a real	
Error Message	answer returned	l is the m	aximum va	essage "EX" is reported and the lue possible (1.7E38). When urned without an error message.	
Other Routines Used	ARG\$, N\$22, M	\$22, S\$22	, A\$22, D	\$22, F\$ER	

Ŷ,

Purpose	To convert an integer argument to real format.
DAP Calling Sequence	CALL FLOAT DAC ARG1 (an integer value) (Return)
FORTRAN Reference	FLOAT(I)
Method	This routine extracts the integer and converts it to real format, leaving the result in the A- and B-registers.
Data Type of Arguments and Results	This routine converts an integer argument to a real number.
Other Routines Used	C\$12

Purpose	To generate the absolute value of an integer.		
DAP Calling Sequence	CALL IABS DAC ARGl (an integer value) (Return)		
FORTRAN Reference	IABS(I)		
Method	This subroutine checks the integer argument, ARG1, for its algebraic sign. If the sign is negative, the TWOs complement of ARG1 is cal- culated. If the sign is positive, the number remains unchanged.		
Data Type of Arguments and Results	This absolute value function with an integer argument results in an integer.		

i

Purpose	To compute the positive difference between two integer arguments.		
DAP Calling Sequence	CALL IDIM DAC ARG1 (an integer value) DAC ARG2 (an integer value) OCT 0 (end of arguments flag) (Return)		
FORTRAN Reference	IDIM(I,I)		
Method	Compute DIF = ARG1-ARG2. If DIF is positive, the result of this function is the value of DIF. If DIF is negative, the result of this function is zero. DIF = ARG1 - MIN(ARG1, ARG2)		
Data Type of Arguments and Results	The result of this function with two integer arguments is an integer.		

IDINT

Purpose

To truncate the fractional bits from a double-precision argument, thus converting it to integer format.

See IFIX.

IFETCH

Purpose	To fetch the contents of the memory location specified by ARG1.		
DAP Calling Sequence	CALL IFETCH DAC ARG1 (Return)		
FORTRAN Reference	IFETCH(ARG1)		
Method_	The A-register is loaded with the contents of the location specified by ARG1.		
Other Routines Used	ARG\$		

Purpose	To truncate the fractional bits from a real or double-precision argument, thus converting it to integer format.		
DAP Calling Sequence	CALL IFIX (or CALL INT) DAC ARG1 (a real number) (Return) or		
	CALL IDINT DAC ARGI (a double-precision number) (Return)		
FORTRAN Reference	IFIX(R), INT(R), IDINT(D)		
Method	This subroutine truncates the fractional bits of ARG1, shifts it to the right until the binary point is at the end of the register, and normalizes the result. It then uses the characteristic to scale the value to an integer.		
Data Type of Arguments and Results	If either IFIX or INT is called, the argument is a real number and the result is an integer. If IDINT is called, the argument is a double- precision number and the result is an integer.		
Other Routines Used	L\$22, C\$21		

<u>Purpose</u> To truncate the fractional bits from a real argument, thus converting it to integer format.

See IFIX.

ISIGN

Purpose	To generate a value consisting of the sign of the second integer argument and the magnitude of the first integer argument.		
DAP Calling Sequence	CALL ISIC DAC ARC DAC ARC OCT 0 (Return)	l (an integer valu	e)
FORTRAN Reference	ISIGN(I, I)		
<u>Method</u>	ARG2 is tested for its algebraic sign and, depending on the sign of ARG1, the procedure is as follows:		
	ARG	<u>1 ARG2</u>	Result
	+	+	+ ARG1
	+	-	- ARG1

+ - |ARG1| - + + |ARG1| - - - |ARG1|

. .

Data Type of Arguments and Results

Both arguments and the result are integers.

ISTORE

Purpose	To store the contents of the second argument in the location speci- fied as the first argument.		
DAP Calling Sequence	CALLISTOREDACARG1(target word address)DACARG2(word to be stored)OCT0(end of arguments flag)(Return)		
FORTRAN Reference	ISTORE(ARG1, ARG2)		
<u>Method</u>	Fetch the target word address (ARG1) and save it. Fetch the word to be stored (ARG2) and use it to replace the contents of the target location. Effectively, the contents of ARG2 are stored in location ARG1.		
Other Routines	F\$AT		

Other	Routines	F\$AT
Used		

Purpose

To determine the address of the argument.

DAP Calling Sequence

CALL LOC DAC ARG1 (Return)

FORTRAN Reference LOC(ARG1)

Method Fetch the argument address (direct or indirect) and load it into the A-register.

Purpose	To find the largest value in a list of integer arguments and exit with this value or convert it to real format $(AMAX0)$ and exit.		
DAP Calling Sequence	CALL MAX DAC ARG DAC ARG2	(integer value)	
	DAC ARG OCT 0 (Return)	(last integer argument) (end of arguments flag)	
FORTRAN Reference	MAX0(I,I,,	I) or AMAX0(I,I,,I)	
Method_	This subroutine compares the arguments and retains the largest value. If AMAX0 is called, the result is converted to real by calling FLOAT before the subroutine exits.		
Data Type of Arguments and Results	The arguments are integers in either call (MAX0 or AMAX0). The result is integer if MAX0 is called; the result is a real number if AMAX0 is called.		
Other Routines Used	FLOAT		

MAX1

Purpose	To find the largest value in a list of real arguments and exit with this value or convert it to an integer (MAX1) and exit.		
DAP Calling Sequence	CALL MAX1 DAC ARG1 DAC ARG2	(or AMAX1) (a real number) (a real number)	
	DAC ARGn OCT 0 (Return)	(last real argument) (end of arguments flag)	
FORTRAN Reference	$MAX1(R,R,\ldots,R)$ or $AMAX1(R,R,\ldots,R)$		
<u>Method</u>	This subroutine compares the arguments and retains the largest value. If MAX1 is called, the result is converted to integer by calling IFIX before the subroutine exits.		
Data Type of Arguments and Results	The arguments are real numbers in either call (AMAX1 or MAX1). The result is real if AMAX1 is called; the result is an integer if MAX1 is called.		
Other Routines Used	L\$22, H\$22, S\$22, IFIX		

MINO

Purpose	To find the smallest value in a given set of integers and exit with this value or convert this value to a real number and exit.		
DAP Calling Sequence	CALL MIN0 DAC ARG1 DAC ARG2	(or AMIN0) (an integer value) (an integer value)	
	DAC ARGn OCT 0 (Return)	(last integer a r gument) (end of arguments flag)	
FORTRAN Reference	MIN0(I,I,,I) or AMINO(I,I,,I)	
<u>Method</u>	This subroutine compares the arguments and retains the smallest value. If AMIN0 is called, the result is converted to a real number before the subroutine exits.		
Data Types of Arguments and Results	The arguments are integers in either call (MIN0 or AMIN0). The result is integer if MIN0 is called; the result is a real number if AMIN0 is called.		
Other Routines_ Used_	FLOAT		

Purpose	To find the smallest value in a list of real arguments and exit with this value (AMIN1) or convert it to an integer (MIN1) and exit.		
DAP Calling Sequence	CALL MIN1 DAC ARG1 DAC ARG2 DAC ARGn OCT 0	(or AMIN1) (a real number) (a real number) (last real argument) (end of arguments flag)	
FORTRAN Reference	(Return) MIN1(R,R,,	R) or AMIN1(R,R,,R)	
Method	Compare the arguments and retain the smallest value.		
Data Type of Arguments and Results	The arguments are real numbers for either call (MIN1 or AMIN1). The result is real if AMIN1 is called; the result is integer if MIN1 is called.		
Other Routines Used	L\$22, H\$22, S\$22, IFIX		
MOD

1

Used

Purpose	To compute the remainder resulting from the division of two integers.
DAP Calling Sequence	CALLMODDACARG1(an integer value)DACARG2(an integer value)OCT0(end of arguments flag)(Return)
FORTRAN Reference	MOD(I, I)
<u>Method</u>	This subroutine divides ARG1 by ARG2 by calling D\$11. The function $MOD(A1, A2)$ is defined as A1-(A1/A2)*A2, where (A1/A2) is the integer whose magnitude does not exceed the magnitude of A1/A2 and whose sign is the same as that of A1/A2.
Data Type of Arguments and Results	This function with two integer arguments results in an integer for a remainder.
Other Routines	D\$11, M\$11

Purpose	To check for an error condition.
DAP Calling Sequence	CALL OVERFL DAC J (an integer value) (Return)
FORTRAN Reference	OVERFL(J)
Method	This subroutine checks error flag AC5 for a nonzero value, which indicates that an entry to the error subroutine, F\$ER, was made since the last call to OVERFL. If AC5 is nonzero, the variable J is set to 1 and AC5 is cleared. If AC5 is zero, J is set to 2.

Other Routines AC5 Used

REAL

Purpose	To load the register.	e real portio	n of a complex number into the A- and B-
DAP Calling Sequence	CALL DAC (Return)	REAL ARG1	(a complex number)
FORTRAN Reference	REAL(C)		
Method	into the ine	dex register the complex	ARG\$ to place the complex argument, ARG1, The real portion, i.e., the first two argument is then loaded into the A- and B-
Data Type of Arguments and Results	This funct	ion of a com	plex number results in a real number.
Other Routines Used	ARG\$		

.

Purpose		ralue consisting of th agnitude of the first	ne sign of the second real argu- real argument.
DAP Calling Sequence	CALL SIGN DAC ARG1 DAC ARG2 OCT 0 (Return)	(a real number) (a real number) (end of arguments	flag)
FORTRAN Reference	SIGN(R, R)		
Method		for its algebraic signedure is as follows:	n and, depending on the sign of
	ARG1	ARG2	Result
	+	+	+ ARG1
	+	-	- ARG1
	-	+	+ ARG1
	-	-	- ARG1

Data Type of Arguments and	Both arguments are real numbers and the result is a real number.	,
Results		

Other	Routines	L\$22,	N\$22
Used			•

SIN

Purpose	To calculate the sine or cosine of a real number expressed in radians.
DAP Calling Sequence	CALL SIN (or COS) DAC ARG1 (a real number) (Return)
FORTRAN Reference	SIN(R) or COS(R)
Method	The angle is reduced to the first quadrant by the use of the relation $X = Y + N*(pi/2)$ and the identities $SIN(Y) = COS(pi/2-Y)$ and $COS(Y) = SIN(pi/2-Y)$. A modified Taylor's expansion is then used to calculate the sine of the first quadrant angle.
	The cosine function is transformed into the sine function by the use of the identity $COS(X) = SIN(pi/2-X)$; $SIN(pi/2-X)$ is then evaluated, where X = ARG1
Data Type of Arguments and Results	This sine function with a real argument results in a real number.
Other Routines Used	ARG\$, N\$22, M\$22, S\$22, A\$22

Purpose	To set or reset the pseudo sense lights and switches.
DAP Calling Sequence	CALLSLITEDACARG1(where ARG1 is the address of the variable con- taining the sense light number).
	CALLSLITET (or CALLSSWTCH)DACARG1(where ARG1 is the address of the variable con- taining the sense light or switch (SSWTCH)DACARG2taining the sense light or switch (SSWTCH)OCT0number to be interrogated, and ARG2 is the address of the location in which to store the "set or reset" indicator; (l=set, 2= reset).
FORTRAN Reference	CALL SLITE (I), CALL SLITET(I,J), CALL SSWTCH(I,J)
Method	<u>SLITE</u> The ARG\$ routine is used to place the variable address in the index register. The argument (I) is tested for zero. If zero, all sense light positions are reset; otherwise, the sense light specified is shifted to its appropriate position and INCLUSIVELY ORed with current settings, leaving them undisturbed.
	<u>SLITET</u> The ARG\$ routine is used to place the sense light number in the A-register and the location of the variable in the index register. If the sense light number is 0, a 2 is inserted into the variable J, signifying a reset condition. Otherwise, the sense light bit is moved to its proper position in the A-register. A logical AND is executed with the sense light register. If the result of the AND is zero, the sense light is reset and a 2 is placed in J. If the result of the AND is not zero, an EXCLUSIVE OR is carried out with the sense light register, resetting the sense light specified and storing a 1 in J to signify that the sense light was set on entry.
	<u>SSWTCH</u> - The ARG\$ routine is used to place the sense switch number in the A-register and the variable location in the index register. If the sense switch number is 0 (no real switch), J is set to 1. If the sense switch number is valid (1 to 4), J is set to 1 if the external switch is set and set to 2 if the external switch is not set.
Other Routines Used	ARG\$, L\$33

Purpose To set or reset the pseudo sense lights and switches.

· See SLITE.

SQRT

Purpose	To calculate the square root of a real number. (This subroutine has a high-speed version, SQRTX.)
DAP Calling Sequence	CALL SQRT DAC ARG1 (a real number) (Return)
FORTRAN Reference	SQRT(R)
Method	Given the argument N = $F(2**e)$, the mantissa is adjusted so that e is even and $1/4 \le e < 1$. An initial approximation to the square root (Y) is chosen as follows:
	Y = 7/8(F) + 9/32 if $e < 1/2$
	$Y = 9/16(F) + 7/16$ if $e \ge 1/2$
	Two Newton-Raphson iterations are then made to obtain full single- precision accuracy.
Data Type of Arguments and Results	This square root function of a real number results in a real number.
Error Messages	The error message $"SQ"$ is reported if a negative argument is found. An undefined result is returned in the A-and B-registers.
Other Routines Used	ARG\$, DIV\$, D\$22, A\$22, F\$ER

SQRTX

Purpose	To calculate the square root of a real number. (This routine re- quires the High-Speed Arithmetic Option.)
DAP Calling Sequence	CALL SQRTX (or SQRT) DAC ARG1 (a real number) (Return)
FORTRAN Reference	SQRT(R)
<u>Method</u>	Given the argument N=F*(2**e), the mantissa is adjusted so that e is even and $1/4 \le e < 1$. An initial approximation to the square root of ARG1 is chosen as follows: ARG1 = $7/8(F) + 9/32$ if $e < 1/2$
	ARG1 = $9/16(F) + 7/16$ if $e \ge 1/2$
	Two Newton-Raphson iterations are then made to obtain full single- precision accuracy.
Data Type of Arguments and Results	This square root function of a real number results in a real number.
Error Messages	The error message "SQ" is reported if a negative argument is found. An undefined result is returned in the A-and B-registers.
Other Routines Used	ARG\$, D\$22X, A\$22X, F\$ER

SSWTCH

Purpose

To set or reset the pseudo sense switches.

See SLITE.

TANH

Purpose	To calculate the hyperbolic tangent of a real number.
DAP Calling Sequence	CALL TANH DAC ARG1 (a real number) (Return)
FORTRAN Reference	TANH(R)
Method	TANH = $(e^{**}(2^{X})-1)/(e^{**}(2^{X})+1)$, where X = ARG1.
Data Type of Arguments and Results	This tangent function with a real argument results in a real number.
Other Routines Used	L\$22, EXP, A\$22, H\$22, D\$22

SECTION V

COMPILER SUPPORT SUBROUTINES

This section describes the compiler support subroutines, i.e., those subroutines which are not normally explicitly called by the FORTRAN programmer. These subroutines perform conversions between data types, logical relationals, arithmetic operations, and miscellaneous functions.

.

A\$22

Purpose	To add or subtract real numbers. (This subroutine has a high-speed version, A $22X$.)
DAP Calling Sequence	CALL A\$22 (or S\$22) DAC ARG2 (a real number) (Return)
Method	A\$22 (Add) - The contents of ARG2 are added to the contents of the A- and B-registers after both numbers are unpacked and scaled. The result is normalized and the characteristic is adjusted.
	S\$22 (Subtract) - The value contained in ARG2 is negated and the add routine, A \$22, is entered.
Data Type of Arguments and Results	< implicit real argument> ± < real argument> < real result>
Error Messages	The error message "SA" is reported if an arithmetic overflow occurs, i.e., the result is $\geq 2**127$. An undefined result is returned.
Other Routines Used	ARG\$, N\$22, F\$ER

Purpose	To add or subtract real numbers. (This routine requires the High-Speed Arithmetic Option.)
DAP Calling Sequence	CALL A\$22X (A\$22, S\$22 or S\$22X) DAC ARG2 (a real number) (Return)
Method	A\$22 (Add) - The contents of ARG2 are added to the contents of the A- and B-registers after both numbers are unpacked and scaled. The result is normalized and the characteristic is adjusted.
	S 22 (Subtract) - The value contained in ARG2 is negated and the add routine, A 22 , is entered.
Data Type of Arguments and Results	< implicit real argument> ± < real argument> 🛶 < real result>
Error Messages	The error message "SA" is reported if an arithmetic overflow occurs, i.e., the result is $\geq 2^{**127}$. An undefined result is returned.
Other Routines Used	N\$22, F\$ER

A\$52

Purpose	To add a real argument to a complex number.
DAP Calling Sequence	CALL A\$52 DAC ARG2 (a real number) (Return)
Method	The following is the algorithm used to compute the operation of adding a real argument (ARG2) to the contents of the complex accumulator (Y):
	Y + ARG2 = A + B * I + ARG2 = (A + ARG2) + B * I) where Y = A + B * I
Data Type of Arguments and Results	< implicit complex argument> + < real argument> \rightarrow < complex result>
Other Routines Used	F\$AT, H\$55, L\$22, A\$22, H\$22, L\$55

A\$55

Purpose

To add complex numbers.

DAP Calling Sequence

CALL A\$55 DAC ARG2 (a complex number) (Return)

Method

The following is the algorithm used in the addition of two complex numbers (the contents of ARG2 and the complex accumulator):

X+ARG2 = (A+B*I) + (M+N*I) = (A+M) + (B+N) * Iwhere X = A+B*I and ARG2 = M+N*I

< implicit complex argument> + < complex argument> ---< complex result>

Other Routines Used

Data Type of

Results

Arguments and

F\$AT, H\$55, SUB\$, L\$22, A\$22, H\$22, L\$55

A\$62

Purpose	To add a real number to a double-precision number.
DAP Calling Sequence	CALL A\$62 DAC ARG2 (a real number) (Return)
Method	This subroutine calls DBLE to convert the real argument to a double-precision number and calls A\$66 to perform the double-precision addition.
Data Type of Arguments and Results	< implicit double-precision argument> + < real argument>
Other Routines Used	F\$AT, H\$66, DBLE, A\$66

Purpose	To add, subtract, multiply, or divide normalized, double- precision numbers. (This subroutine has a high-speed version, A\$66X.)
DAP Calling Sequence	CALL A\$66 (or S\$66, M\$66, or D\$66) DAC ARG2 (a double-precision number) (Return)
Method	The contents of ARG2 are added to, subtracted from, multiplied by, or divided into the contents of the double-precision accumu- lator (X).
	Add (A\$66) - The numbers are unpacked and scaled to coincident places. The addition process takes place (X+ARG2), and the result is normalized.
	Subtract (S\$66) - The numbers are unpacked and scaled to coincident places. The subtraction process takes place (X-ARG2), and the result is normalized.
	$\frac{\text{Multiply} (M\$66) - X*ARG2 = (X*2**E1) * (Y*2**E2)}{= X*ARG2*2** (E1+E2)}$ $\text{Let } X = (A+B*2** (-N))$ $\text{and } ARG2 = (C+D*2** (-N))$ $X*ARG2 = A*C+((A*D+B*C) * 2**(-N))$
	The term B*D*2** (-2N) is ignored.
	The least significant bits of the product are:
	L*(A*C)+H*(A*D)+H*(B*C)
	<u>Divide</u> (D\$66) - The quotient X/ARG2 is obtained by the binomial expansion of $1/X = X^{**}(=1)$. The high-order and low-order parts (H and L) of the quotient are computed as follows:
	(A+B*2**(-N))/(C+D*2**(-N)) = (A+B-A*D/C)/C H = (A+B-A*D/C)/C L = remainder (H)/C
Data Type of Arguments and Results	< implicit double-precision argument > $\begin{cases} + \\ - \\ * \\ / \end{cases}$ < double-precision
	$argument > \longrightarrow < double - precision result >$
Error Messages	1. The error message "AD" is printed if an addition or subtraction over/underflow occurs.
	2. The error message "PZ" is printed if a division by zero is attempted.
	 The error message "MD" is printed if a multiplication or division over/underflow occurs.

A\$66 cont.

After an error message is reported, the double-precision accumulator is loaded with the maximum ((2**128)-1) or minimum (2**(-128)) value (as determined by the correct sign) before returning to the calling program.

Other Routines Used N\$66, F\$ER, H\$66, L\$66, ARG\$, AC1, AC2, AC3

A\$66X

Purpose	To add, subtract, multiply, or divide normalized, double-precision numbers. (This routine requires the High-Speed Arithmetic Option.)
DAP Calling Sequence	CALL A\$66X (or A\$66, S\$66, S\$66X, M\$66, M\$66X, D\$66, D\$66X) DAC ARG2 (a double-precision number) (Return)
Method	The contents of ARG2 are added to, subtracted from, multiplied by, or divided into the contents of the double-precision accumulator. See A\$66, described on the preceding pages, for a detailed description of the methods used.
Data Type of Arguments and Results	< implicit double-precision argument> $\begin{cases} +\\ -\\ *\\ / \end{cases}$ < double-precision
	$argument > \rightarrow < double-precision result >$
Error Messages	See Error Messages for A\$66.
Other Routines Used	N\$66, F\$ER, H\$66, L\$66, ARG\$, AC1, AC2, AC3

A\$81

Purpose	To add an integer value (I) to the characteristic of the variable in the double-precision accumulator (effectively, multiplication by 2^{I}).
DAP Calling Sequence	CALL A\$81 DAC ARG2 (an integer value) (Return)
Method	The characteristic (base 2) of the value in the double-precision accumulator is increased (or decreased) by an integral value, ARG2. For example, if ARG2 = 2 and the value in the double-precision accumulator is 8.0 ($2^{3.0}$), the result of this call would be $2^{3.0+2}$ or $2^{5.0}$ = 32.0 (8.0*2 ²). If the absolute value of the result is less than 2**(-128), a value of zero is returned.
Data Type of Arguments and Results	< implicit double-precision argument> * (2**< integer argument>) < double-precision result>
Error Messages	If there is exponent overflow, an "EQ" error message is reported and external locations AC1 and AC2 are loaded with the maximum value possible ((2**128)-1) with the sign of ARG2.
Other Routines Used	N\$22, F\$ER, AC1, AC2

(AC2, AC3, AC4, AC5)

Purpose

Use

To assign locations to be used as a double-precision or complex accumulator by the FORTRAN library routines.

AC1, AC2, AC3: double-precision accumulator.AC1, AC2:complex accumulator, real portion.AC3, AC4:complex accumulator, imaginary portion.AC5:error flag.

ARG\$

Purpose	To convert the indirect address of an argument to its corresponding direct address.
DAP Calling Sequence	CALL ARG\$ DAC* ARG2 (usually a subroutine entry) (Return)
Method	The address of the argument is returned in the index register. This subroutine may be used upon entering a subroutine to set up the return address.

Purpose	To convert an integer to a real number.
DAP Calling Sequence	CALL C\$12 (Return)
<u>Method</u>	The integer value in the A-register is placed in the B-register and the A-register is set to 045600 (octal), representing a characteristic such that the number fits the description given for a real number ex- cept that it is not "normalized." A\$22 (with argument = 0 (040000,000000), also unnormalized) is called to normalize the result.
Data Type of Arguments and Results	The integer value in the A-register is converted to a real number and placed in the A- and B-registers.
Other Routines Used	A\$22, N\$22

Purpose	To convert an integer to a double-precision number.
DAP Calling Sequence	CALL C\$16 (Return)
Method	The integer in the A-register is normalized and converted to real by calling C\$12. This real value is then converted to a double-precision number by calling C\$26. The result is placed in the double-precision accumulator. ACl contains the contents of the B-register (the real exponent), AC2 contains the contents of the A-register (the most significant word of the fraction), and AC3 contains a word of zeros.
Data Type of Arguments and Results	The integer value in the A-register is converted to a double-precision number and placed in the double-precision accumulator.
Other Routines Used	C\$12, C\$26

i

Purpose	To convert a real number to an integer.
DAP Calling Sequence	CALL C\$21 (Return)
Method	This subroutine scales the real number in the A- and B-registers to 23 bits by adding the octal value 045700 (2**22) to truncate the fractional part of the real number. The result is in the A-register.
Data Type of Arguments and Results	The real number in the A- and B-registers is converted to an integer and returned in the A-register.
<u>Error Messages</u>	The message "RI" is reported if the integer (I) is too large when converted from real to integer. The integer must be in the following range: $-2^{15} \le I \le 2^{15}$ -1. An undefined result is returned in the A-register.
Other Routines Used	N\$22, A\$22, F\$ER

Purpose	To convert a real number to a complex number.
DAP Calling Sequence	CALL C\$25 (Return)
Method	The A- and B- registers are stored in AC1 and AC2, respectively (the real part of the complex number), and AC3 and AC4 (the imagin- ary part of the complex number) are set to zeros.
Data Type of Arguments and Results	The real argument in the A- and B- registers is converted to a com- plex number and stored in the complex accumulator (AC1, AC2, AC3, and AC4).
Other Routines Used	H\$22, CMPLX

Purpose	To convert a real number to a double-precision number.
DAP Calling Sequence	CALL C\$26 (Return)
Method	The number in the A- and B-registers is placed in AC1 and AC2. AC3 is cleared and the routine exits.
Data Type of Arguments and Results	The real number in the A- and B-registers is converted to double- precision and placed in the double-precision accumulator.
Other Routines Used	AC1, AC2, AC3

Purpose	To convert a double-precision number to an integer.
DAP Calling Sequence	CALL C\$61 (Return)
Method	This subroutine calls C\$62 to convert the number in the double- precision accumulator to real and calls C\$21 to convert the real number to integer.
Data Type of Arguments and Results	The double-precision value in the double-precision accumulator is converted to an integer and placed in the A-register.
Other Routines Used	C\$62, C\$21

.

Purpose	To convert a double-precision number to a real number.
DAP Calling Sequence	CALL C\$62 or CALL SNGL (Return) DAC ARG1 (a double-precision (Return) number)
Method	AC1 and AC2 (the exponent and the most significant part of the fraction of the number in the double-precision accumulator) or the first two words of ARG1 (if SNGL is called) are loaded into the A- and B-registers. The least significant part of the fraction (AC3. word 3) is not considered in the result.
Data Type of Arguments and Results	The double-precision value in the double-precision accumulator or in ARG1 is converted to a real number and placed in the A- and B- registers.
Other Routines Used	L\$22, N\$66, N\$22, L\$66, AC1, AC2

Purpose	To convert the exponent of the value in the double-precision accumu- lator to an integer.
DAP Calling Sequence	CALL C\$81 (Return)
Method	Extract the characteristic (base 2) from the value in the double- precision accumulator (AC1) and convert it to an integer.
Data Type of Arguments and Results	The characteristic of the double-precision argument is converted to an integer.
Other Routines Used	AC1

Purpose	To divide two integers. (This subroutine has a high-speed version, D\$11X.)
DAP Calling Sequence	CALL D\$11 DAC ARG2 (integer divisor) (Return)
Method	The numerator (an integer value) should be in the A-register upon entrance to this subroutine. If the denominator, ARG2, is zero, an overflow occurs and an error message is reported. If both arguments are nonzero, the numerator is positioned in the A- and B-registers and the division is performed. The results are ex- amined for the special case $(-32, 768/-1)$ which is treated as an over- flow. If the results are in the range of $-32, 768$ to $+32, 767$, D\$11 returns to the calling program with the quotient in the A-register and the remainder in the B-register. The integer answer is in the A-register.
Data Type of Arguments and Results	< implicit integer argument> / < integer argument> < integer result>
Error Messages	The error message "IZ" is reported if a division by zero is at-, tempted. The maximum value is output (-32,768 if negative or +32,767 if positive). A division of -32,768 by -1 also causes "IZ" to be reported; D\$11 returns a value of +32,767, the maximum value possible.
Other Routines Used	ARG\$, F\$ER

D\$11X

Purpose	To divide two integers. (This routine requires the High-Speed Arithmetic Option.)
DAP Calling Sequence	CALL D\$11X (or D\$11) DAC ARG2 (integer divisor) (Return)
Method	See "Method" for D\$11.
Data Type of Arguments and Results	< implicit integer argument> / < integer argument> < integer result>
Error Messages	See "Error Messages" for D\$11.
Other Routines Used	ARG\$, F\$ER

Purpose

To divide two real numbers. (This subroutine has a high-speed version, D\$22X.)

See M\$22.

D\$22X

Purpose	To divide two real numbers. (This subroutine requires the High- Speed Arithmetic Option.)
DAP Calling Sequence	CALL D\$22X (or D\$22) DAC ARG2 (the real divisor) (Return)
Method	This subroutine divides the real number in the A- and B-registers (X) by the real argument, ARG2 (Y). The division is performed by multiplying X by the reciprocal of Y, i.e., $X*1/Y$. Newton's method for $1/Y$ is: R(1) = R(0) * (2-R(0)*Y) where R(0) = 1/H(Y), $H(Y)$ being the high-order 15 bits of Y X * (1/Y) = X * R(1) = X * R(0) * (2-R(0)*Y)
Data Type of Arguments and Results	< implicit real argument> / < real argument> < real result>
Error Messages	A ''DZ'' error message is typed if division by zero is attempted. A value of 0 is returned if the dividend is also 0. The signed maximum value (±1.7E38) is returned if the dividend is nonzero.
	An ''SM'' error message is reported if an arithmetic overflow occurs. The signed maximum value (±1.7E38) is returned.
	A value of 0 is returned for an overflow.
Other Routines Used	N\$22, F\$ER

Purpose	To divide a complex number by a real number.
DAP Calling Sequence	CALL D\$52 DAC ARG2 (a real number) (Return)
<u>Method</u>	This subroutine divides the complex value in the complex accumulator (Y) by the real argument, ARG2. Y/ARG2 = (A+B*I)/ARG2 = A/ARG2+B*I, where Y = A+B*I
Data Type of Arguments and Results	< implicit complex argument> / < real argument> <complex result></complex
Other Routines Used	F\$AT, H\$55, SUB\$, L\$22, D\$22, H\$22, L\$55
D\$55

Purpose	To divide two complex numbers.
DAP Calling Sequence	CALL D\$55 DAC ARG2 (complex divisor) (Return)
Method	The following algorithm is used to compute the operation of dividing two complex numbers. The contents of the complex accumulator (X) are divided by the contents of ARG2 (Y).
	X/Y = (A+B*I)/(M+N*I)
	where $X = A + B*I$ and $Y = M + N*I$ = $(A + B*I)*(M - N*I)/(M + N*I)*(M - N*I)$ = $(A + B*I)*(M - N*I)/(M**2 + N**2)$ = $(A*M + B*N + B*M*I - A*N*I)/(M**2 + N**2)$ = $(A*M + B*N)/(M**2 + N**2) + (B*M*I - A*N*I)/(M**2 + N**2)$ = $(A*M + B*N)/(M**2 + N**2) + (I*(B*M - A*N))/(M**2 + N**2)$
Data Type of Arguments and Results	< implicit complex argument> / < complex argument>
Other Routines Used	F\$AT, H\$55, SUB\$, L\$22, M\$22, H\$22, A\$22, D\$22, S\$22, N\$22, L\$55

Purpose	To divide a double-precision number by a real number.
DAP Calling Sequence	CALL D\$62 DAC ARG2 (a double-precision number) (Return)
Method	This subroutine calls DBLE to convert the real divisor (ARG2) to a double-precision number and calls the double-precision divide routine (D\$66).
Data Type of Arguments and Results	< implicit double-precision argument> / < real argument> < double-precision result>
Other Routines Used	F\$AT, H\$66, DBLE, L\$66, D\$66

Purpose

To divide normalized double-precision numbers.

See A\$66.

E\$11

Purpose		alue of an integer raised to as a high-speed version, E	
DAP Calling Sequence	CALL E\$11 DAC ARG2 (Return)	(the integer exponent)	
Method	The implicit integer argument in the A-register and the integer exponent, ARG2, are first examined for the combinations listed below. If one of these combinations is found, the answer is loaded in the A-register for return to the calling program.		
	Value in A-Registe	er Exponent	Answer
		0	
	0	0	1
	0	-	+32767
	0	+	0
	1	J	j I
	-1	even	1
	-1	odd	-1
	1	-	0
	Otherwise, the value of the expression is calculated and returned in the A-register. The maximum or minimum value computed may not exceed +32,767 or -32,768.		
Data Type of Arguments and Results	< implicit integer argument> **< integer argument> -> < integer result>		
<u>Error Messages</u>	overflow occurs or	e "II" is reported and $+32$, if I = 0 and J is negative d if I \leq -2, J is odd, and o	(1/0). The value
Other Routines Used	ARG\$, M\$11, F\$E	R	

E\$11X

Purpose	To calculate the value of an integer raised to an integer power. (This subroutine requires the High-Speed Arithmetic Option.)
DAP Calling Sequence	CALL E\$11X (or E\$11) DAC J (the integer exponent) (Return)
Method	See "Method" for E\$11.
Data Type of Arguments and Results	< implicit integer argument> ** <integer argument=""> -> < integer result></integer>
Error Messages	See "Error Messages" for E\$11.
Other Routines Used	ARG\$, F\$ER

Purpose	To calculate the value of a real number raised to an integer power.
DAP Calling Sequence	CALL E\$21 DAC ARG2 (the integer exponent) (Return)
Method	A**ARG2 is evaluated by multiplying A by itself ARG2-1 times. The sign is determined by the sign of the number in the A- and B- registers and whether I is odd or even.
Data Type of Arguments and Results	< implicit real argument> ** < integer argument> < real result>
Other Routines Used	ARG\$, M\$22, D\$22

Purpose	To calculate the value of a real argument raised to a real power.
DAP Calling Sequence	CALL E\$2 2 DAC ARG2 (the real exponent) (Return)
Method	X**ARG2 is evaluated as e**(ARG2*log(X)).
Data Type of Arguments and Results	< implicit real argument> $**$ < real argument> \rightarrow < real result>
Other Routines Used	ARG\$, ALOG, M\$22, EXP

Purpose	To calculate the value of a real number raised to a double-precision power.
DAP Calling Sequence	CALL E\$26 DAC ARG2 (the double-precision exponent) (Return)
Method	B**ARG2 is evaluated as e**ARG2*log(B)).
Data Type of Arguments and Results	< implicit real argument> **< double-precision argument> < double-precision result>
Other Routines Used	F\$AT, C\$26, H\$66, DLOG, M\$66, DEXP

Purpose	To calculate the value of a complex quantity raised to an integer power.
DAP Calling Sequence	CALL E\$51 DAC ARG1 (the integer exponent) (Return)
Method	The number in the complex accumulator is multiplied by itself ARG1-1 times.
Data Type of Arguments and Results	<implicit argument="" complex=""> **< integer argument> \rightarrow < complex result></implicit>
Other Routines Used	F\$AT, H\$55, IABS, L\$55, M\$55, D\$55

Purpose	To calculate the value of a double-precision number raised to an integer power.
DAP Calling Sequence	CALL E\$61 DAC ARG2 (the integer exponent) (Return)
Method	This routine checks for an even-numbered exponent, squares the number in the double-precision accumulator, and divides the integer argument (the exponent) by 2 until the exponent divided by $2 = 1$. If the exponent is odd, the computed value (D ^{I-1}) is multiplied by the original double-precision number before exiting.
Data Type of Arguments and Results	< implicit double-precision argument> **< integer argument>
Other Routines Used	F\$AT, H\$66, L\$66, D\$66, D\$11, M\$11, M\$66

E\$62

Purpose	To calculate the value of the number in the double-precision accumu- lator raised to a real power.
DAP Calling Sequence	CALL E\$62 DAC ARG2 (the real exponent) (Return)
Method	$B**ARG2$ is evaluated as $e^{**}(ARG2*DLOG(B))$, where $B =$ the contents of the double-precision accumulator.
Data Type of Arguments and Results	< implicit double-precision argument> **< real argument> < double-precision result>
Other Routines Used	F\$AT, H\$66, DLOG, M\$62, DEXP

E\$66

Purpose	To calculate the value of a double-precision value raised to a double-precision result.
DAP Calling Sequence	CALL E\$66 DAC ARG2 (the double-precision exponent) (Return)
Method	$B**ARG2$ is evaluated as $e^{**}(ARG2*LOG(B))$, where $B = the contents of the double-precision accumulator.$
Data Type of Arguments and Results	< implicit double -precision argument> **< double -precision argument>
Other Routines Used	F\$AT, H\$66, DLOG, M\$66, DEXP

H\$22

}

Purpose	To store (hold) the contents of the A- and B-registers in memory.
DAP Calling Sequence	CALLH\$22DACARG1(location in which the contents of the A- and B- (Return)(Return)registers are to be stored)
Method	The contents of memory at the location specified by the argument address, ARGI, are replaced by the contents of the A- and B- registers. The contents of the A- and B-registers remain un- changed.
Data Type of Arguments and Results	This subroutine stores a real number in the argument address.
Other Routines Used	ARG\$

Purpose	To hold (store) the	e contents of the complex accumulator in memory.
DAP Calling Sequence	CALL H\$55 DAC ARG1 (Return)	(location in which the contents of the complex accumulator are to be stored)
Method	address, ARG1, a	emory at the location specified by the argument re replaced by the contents of the complex accumu- ts of the accumulator remain unchanged.
Data Type of Arguments and Results	This subroutine st	ores a complex number in the argument address.
Other Routines Used	ARG\$, AC1, AC2,	AC3, AC4

H\$66

Purpose	To hold (store) the in memory.	e contents of the double-precision accumulator
DAP Calling Sequence	CALL H\$66 DAC ARG1 (Return)	(location in which the contents of the double- precision accumulator are to be stored)
Method	are replaced by th	emory specified by the argument address, ARG1, ne contents of the double-precision accumulator. e accumulator are unchanged.
Data Types of Arguments and Results	This subroutine st address.	tores a double-precision number in the argument
Other Routines Used	ARG\$, AC1, AC2	, AC3

Purpose	To load a real number into the A- and B-registers.
DAP Calling Sequence	CALL L\$22 or CALL REAL DAC ARGI (a real number) (Return)
Method	This subroutine calls ARG\$ to place the address of the argument, ARG1, into the index register. ARG1 is then loaded into the A-and B-registers.
Other Routines Used	ARG\$

L\$33

Purpose	To form an INCLUSIVE OR from memory with the value in the A-register.
DAP Calling Sequence	CALL L\$33 DAC ARG1 (an integer value) (Return)
Method	The value in the A-register is EXCLUSIVELY ORed, ANDed, and EXCLUSIVELY ORed again with the argument, ARG1.

Purpose	To load a complex number into the complex accumulator.
DAP Calling Sequence	CALL L\$55 DAC ARGI (a complex number) (Return)
Method	This subroutine calls ARG\$ to place the address of the argument, ARG1, into the index register. ARG1 is then loaded into the complex accumulator.
Other Routines Used	ARG\$, AC1, AC2, AC3, AC4

~

L\$66

Purpose	To load a double-precision number into the double-precision accumulator.
DAP Calling Sequence	CALL L\$66 DAC ARGI (a double-precision number) (Return)
Method	This subroutine calls ARG\$ to place the address of the argument, ARG1, into the index register. ARG1 is then loaded into the double-precision accumulator.

ARG\$, AC1, AC2, AC3

Other Routines Used

Purpose	To multiply two integers. (This subroutine has a high-speed version, M\$11X.)
DAP Calling Sequence	CALL M\$11 DAC ARG2 (integer multiplier) (Return)
Method	This subroutine multiplies the value in the A-register by the integer argument, ARG2. If either or both are negative, a sign counter is incremented and the negative value(s) are made positive. The multi- plier, ARG2, is loaded into the B-register and shifted to place the low-order bit of the multiplier in the C-register. The C-bit is tested and if it is set, the multiplicand is added to the A-register. The A- and B-registers are shifted together 1 bit, with the new low- order bit going into the C-register, and so forth, for 16 shifts. When these right shifts are completed, the bits are shifted back into the A-register, one at a time, checking for overflow. The positive or negative result is returned in the A-register.
Data Type of Arguments and Results	< implicit integer argument> *< integer argument> 🛶 < integer result>
Error Messages	When an over/underflow occurs, the error message "IM" is reported. The subroutine returns with +32,767 in the A-register if the answer is positive, or -32,768 if it is negative.
Other Routines Used	ARG\$, F\$ER

M\$11X

Purpose	To multiply two integers. (This subroutine requires the High-Speed Arithmetic Option.)
DAP Calling Sequence	CALL M\$11X (or M\$11) DAC ARG2 (an integer value) (Return)
Method	This subroutine multiplies the value in the A-register by ARG2. The result is then examined for over/underflow (see "Error Messages"). If the result is in the proper range, the signed result is returned to the calling program in the A-register.
Data Type of Arguments and Results	<implicit argument="" integer=""> * <integer argument=""> <integer result=""></integer></integer></implicit>
Error Messages	See "Error Messages" for M\$11.
Other Routines Used	ARG\$, F\$ER

Purpose	To multiply or divide two real numbers. (This subroutine has a high-speed version, M\$22X.)
DAP Calling Sequence	CALL M\$22 (or D\$22) The multiplicand (M\$22) or dividend DAC ARG2 (multiplier (D\$22) must be in the A- and B- (Return) or divisor) registers. The sign, exponent, and most significant bits will be in the B-register.
Method	X*Y = (X*2**B)*(Y*2**C), where X = the value in the A- and B- registers Y = ARG2
	= $ABS(X)*ABS(Y)*2**(B+C)$ ABS(X)*ABS(Y) = X(1)*Y(1)+(X(1)*Y(2)+X(2)*Y(1))*2**-15 The most significant part of the product is $H(X(1)*Y(1))$ and the least significant part is $L(X(1)*Y(1))+H(H(1)*Y(2))+H(X(2)*Y(1))*2**-15$. Newton's method for 1/Y is $R(1) = R(0)*(2-R(0)*Y)$, where R(0) = 1/H(Y), $H(Y)$ being the high-order 15 bits of Y. X(1/Y) = X*R(1) = X*R(0)*(2-R(0)*Y).
Data Type of Arguments and Results	< implicit real argument> * < real argument> 🛶 < real result>
Error Messages	Multiplication - If there is underflow, a value of zero is returned with no error message.
	If there is overflow, an "SM" error message is reported and the maximum value ((2**128)-1) is returned in the A- and B-registers.
	Division - If division by zero is attempted, a "DZ" error message is reported and the result in the A- and B-registers is undefined.
	If the divisor is unnormalized, an "SD" error message is reported and the result in the A- and B-registers is undefined.
Other Routines Used	N\$22, ARG\$, F\$ER

M\$22X

Purpose	To multiply two real numbers.
DAP Calling Sequence	CALL M\$22 DAC ARG2 (a real number) (Return)
Method	X*Y = (X*2**B)*(Y*2**C), where X = the value in the A- and B- registers Y = ARG2
Data Type of Arguments and Results	= ABS(X)*ABS(Y)*2**(BC) ABS(X)*ABS(Y) = X(1)*Y(1)*(X(1)*Y(2)+X(2)*Y(1))*2**-15 The most significant part of the product is $H((X(1)*Y(1))$ and the least significant part is $L(X(1)*Y(1))+H(H(1)*Y(2))+H(X(2)*Y(1))$ *2**-15, where $H(X(1)*Y(1))$ is the most significant part of the product $X(1)*Y(1)$ and $L(X(1)*Y(1))$ is the least significant part of that product. < implicit real argument> *< real argument> \rightarrow < real result>
Error Messages	Underflow - A value of zero is returned with no error message. Overflow - An "SM" error message is reported and a signed maxi- mum value (±1.7E38) is returned.
Other Routines Used	F\$ER

Purpose	To multiply a complex number by a real number.
DAP Calling Sequence	CALL M\$52 DAC ARG2 (a real number) (Return)
Method	Y*X = (A+B*I)*X = A*X+(B*X)*I where Y = A+B*I (in the complex accumulator) X = ARG2
Data Type of Arguments and Results	< implicit complex argument> $*$ < real argument> \rightarrow < complex result>
Other Routines Used	F\$AT, H\$55, SUB\$, L\$22, M\$22, H\$22, L\$55

M\$55

Purpose	To multiply complex numbers.
DAP Calling Sequence	CALL M\$55 DAC ARG 2 (a complex value) (Return)
Method	This routine multiplies the contents of the complex accumulator (X) by the value in ARG2 (Y). X*Y = (A+B*I) (M+N*I) = A*M-B*N+(A*N+B*M)*I where X = A+B*I and Y = M+N*I.
Data Type of Arguments and Results	< implicit complex argument> *< complex argument> - < complex result>
Other Routines Used	F\$AT, H\$55, SUB\$, L\$22, M\$22, H\$22, S\$22, N\$22, A\$22, L\$55

Purpose	To multiply a double-precision number by a real number.
DAP Calling Sequence	CALL M\$62 DAC ARG2 (real multiplier) (Return)
Method	This subroutine calls DBLE to convert the real multiplier to a double-precision number and calls the double-precision multiply routine (M\$66).
Data Type of Arguments and Results	< implicit double-precision argument> *< real argument> < double-precision result>
Other Routines Used	F\$AT, H\$66, DBLE, M \$ 66

-

M\$66

Purpose To multiply normalized, double-precision numbers.

See A\$66.

Purpose	To determine the TWOs complement of a real number.
DAP Calling Sequence	CALL N\$22 DAC ARGI (a real number) (Return)
Method	The C-bit is preset on entrance to this routine to provide a true TWOs complement if the low-order word is found to be zero. The C-bit is reset when this is not the case, and the A- and B-registers are TWOs complemented normally.
Data Type of Arguments and Results	The TWOs complement of the real argument is computed and the routine exits with the the real result in the A- and B-registers.

N\$33

Purpose	To obtain the complement of a logical value.
DAP Calling Sequence	CALL N\$33 (Return)
Method	The least significant bit of the argument in the A-register is logically complemented, changing its value from true to false (1 to 0) or false to true (0 to 1).

Purpose	To negate a complex quantity.
DAP Calling Sequence	CALL N\$55 (Return)
Method	The signs of the real part and the complex part of the complex number are negated. The result is in the complex accumulator.
Data Type of Arguments and Results	The complex argument is negated and the subroutine exits, with the complex result in the complex accumulator.
Other Routines Used	H\$55, SUB\$, L\$ 22 , N\$ 22 , H\$ 22 , L\$55

N\$66

Purpose	To negate a double-precision number.
DAP Calling Sequence	CALL N\$66 (Return)
Method	This subroutine negates the value in the double-precision accumu- lator. The double-precision word is effectively TWOs complemented as follows:
	 The lowest order word, AC3, word 3, is tested for zero. If it is not zero, the word is TWOs complemented. If it is zero, the C-bit is set.
	 AC2, word 2, is tested for zero. If it is not zero, the word is ONEs complemented and the C-bit is added. If it is zero and the C-bit is set, no action is taken. If the C-bit is not set, the word is ONEs complemented.
	3. AC1, word 1, is ONEs complemented, and the C-bit, if set, is added. The negated result is left in the double-precision accumulator.
Data Type of Arguments and Results	The double-precision argument is negated and the routine exits with a double-precision result in AC1, AC2, and AC3.
Other Routines	AC1, AC2, AC3

Other Routines Used Purpose

To subtract real numbers. (This subroutine has a high-speed version, S\$22X.)

See A\$22.

PurposeTo subtract real numbers. (This subroutine requires the
High-Speed Arithmetic Option.)

See A\$22X.

Purpose	To subtract a real number from a complex number to obtain a com- plex result.
DAP Calling Sequence	CALL S\$52 DAC ARG2 (a real number) (Return)
Method	Y-X = A+B*I-X = (A-X)+B*I where $Y = A+B*I$, $X = ARG2$
Data Type of Arguments and Results	< implicit complex argument> — < real argument> → < complex result>
<u>Other Routines</u> <u>Used</u>	F\$AT, H\$55, L\$22, S\$22, H\$22, L\$55

Purpose	To subtract two complex numbers.
DAP Calling Sequence	CALL S\$55 DAC ARG2 (the complex subtrahend) (Return)
Method	This subroutine subtracts $ARG2(Y)$ from the value in the complex accumulator (X): X - Y = (A+B*I) - (M+N*I) = A*M+(B*N)*I where X = A+B*I, Y = M+N*I
	where $X = A + D + 1$, $1 = M + 1 + 1$
Data Type of Arguments and Results	<implicit argument="" complex=""> — < complex argument> — < complex result></implicit>
Other Routines Used	F\$AT, H\$55, SUB\$, L\$22, S\$22, N\$22, H\$22, L\$55

Purpose	To subtract a real argument from a double-precision number.
DAP Calling Sequence	CALL S\$62 DAC ARG2 (a real number) (Return)
Method	This subroutine calls DBLE to convert the real argument to a double- precision number and enters the double-precision subtraction routine (S\$66).
Data Type of Arguments and Results	< implicit double-precision argument> - < real argument> - < double-precision result>
Other Routines Used	F\$AT, H\$66, DBLE, S\$66, N\$66

ς.

,

Purpose

To subtract normalized, double-precision numbers.

See A\$66.

Purpose

To convert a double-precision number to a real number.

See C\$62.

SUB\$

Purpose	To calculate the address of a referenced array element or to calcu- late the array size.				
DAP Calling Sequence	CALL SUB\$ DAC or DAC* ARRAY TABLE1 DAC or DAC* SUBSCRIPT 1 DAC or DAC* SUBSCRIPT 2				
	DAC or DAC* SUBSCRIPT N (Return)				
	or				
	CALL SIZ\$ DAC or DAC* ARRAY TABLE2 (Return)				
Method	ARRAY TABLE1 Layout				
	DAC or DAC* ARRAY OCT L (number of words per array element) DEC DIMENSION 1 DEC DIMENSION 2				
	DEC DIMENSION N OCT O (end of dimension list)				
	ARRAY TABLE2 Layout				
	DAC or DAC* ARRAY OCT KEY OCT or DAC* DIMENSION 1 OCT or DAC* DIMENSION 2				
	OCT or DAC* DIMENSION N or OCT ARRAY SIZE or omitted				
	The KEY bit pattern is CVDDDDDDDDDDDLLL, where				
	C = 0 - no array bounds checking C = 1 - array bounds checking V = 0 - last word of array table is array size V = 1 - last word of array table is dimension				
	If C = 0 and V = 0, the last dimension word of the array table is omitted.				
	D = dimensionality - limited to 2047 L = number of words per array element				

SUB\$ cont.

Note that L is determined by the data type of the array as follows:

Data Type of Array

- L = l integer or logical
 - 2 real
 - 3 double-precision
 - 4 complex

Let S denote the array starting address, L the number of words per array element, S(I) the Ith subscript value, and D(I) the Ith dimension for an N-dimensional array A where $N \geq 1$.

The address of the array element A(S(1), S(2), ..., S(N)) is given by S + L(..., (S(N)-1)*D(N-1) + ... + (S(2)-1)*D(1) + (S(1)-1))

Error Messages The error message "AO" (array overflow) is reported if the array element referenced is outside the bounds of the array. Only the final array element referenced is checked for legality, not individual subscript values.

Other Routines M\$11, F\$ER Used

Z\$80

Purpose	To clear (zero-out) the exponent of the variable in the double- precision accumulator.
DAP Calling Sequence	CALL Z\$80 (Return)
Method	Extract the value in AC1 and replace the characteristic (base 2) in bits 2-9 with zeros.
Other Routines	AC1

Other Routines Used

5-66

•

SECTION VI RUN-TIME AND CONTROL SUBROUTINES

This section describes the routines which: control input and output by selecting and activating the proper device drivers; provide buffers; and edit and trace all I/O.

Purpose	To transfe:	r an array	from or to the input or output data list.
DAP Calling Sequence	CALL OCT DAC (Return) or CALL OCT DAC (Return)	F\$AR m a F\$Lx m a	For use with DAP Number of words in array Location of first word As used by the compiler x = 1 for integer = 2 for real = 3 for logical = 5 for complex = 6 for double precision
FORTRAN Reference	DIMENSIO READ (x, f WRITE (x,) list or	(f - FORTRAN statement number)
<u>Method</u>	or data to F\$10 to th list may b Mode may precision. are assum appropria	be stored e next loca e variable be integer For easi ned to be a te format o	st requires data from the internal source in the internal source, exit is made from ation in the data list. Elements of the data s, subscripted variables, or array names. c, real, logical, complex, or double er data transmission, all list elements rrays; the mode is determined by descriptors. For each item in the list, ng sequence (above) is generated.
Other Routines Used	F\$10, F\$(CB, F\$ER	

Purpose	To transfer a variable number of arguments from the calling routine to the called routine.		
DAP Calling Sequence	DAC CALL DEC DAC	** F\$AT n ARG1	Entry point Number of arguments to be transferred Address at which first argument is stored
	DAC (Return)	ARGn	Address at which last argument is stored
FORTRAN References	CALL	SUB1	(ARG1, ARG2,, ARGn) Where SUB1 is any subroutine and ARG1 through ARGn are any constants, variables, arrays, etc.
<u>Method</u>	When arguments are to be transferred from a calling routine to a subroutine, a call to F\$AT is generated by the compiler. The number of arguments specified by the first pseudo- operation following the call are transferred from the calling routine to the subroutine. All levels of indirect addressing are removed before an argument is transferred. ARG1 is the beginning location of the block into which the arguments are to be placed.		
Data Type of Arguments	Arguments	are direc	t relative addresses.

Purpose	To connect rewind rou		g program with the magnetic tape
DAP Calling Sequence	CALL	F\$Bx	x = 5,6,7,8,9 or the previously defined variable n (n = 5,6,7,8, or 9)
FORTRAN Reference	REWIND	x	x = 5,6,7,8,9 or the variable n
Method	(5,6,7,8 o unit numbe	r 9) to the er (1,2,3,4	s the logical magnetic tape unit number corresponding physical magnetic tape , or 5) and then calls the REWIND tape on that unit to the beginning of tape.
Other Routines Used	C\$MR		

Purpose	To close the buffers used for input or output.			
DAP Calling Sequence	CALL F\$CB			
FORTRAN Reference	READ (n, m) list READ (n, m) READ (n) list READ (n) WRITE (n, m) list WRITE (n, m) WRITE (n) list	n = device number; m = format statement number		
<u>Method</u>	or when the format stateme is issued to F\$CB to close t buffer was determined by F and immediately closes the buffer is formatted output,	oom a READ or WRITE statement, nt is exhausted (non-list), a call the buffer. The address of the \$IO. F\$CB checks for I/O mode buffer if mode is input. If the F\$CB fills the remainder of the . If output is binary, the end of o 120 zeros.		
Other Routines Used	F\$IO			

Purpose			g of an end-of-file mark on magnetic as an end-of-file on paper tape punch.
DAP Calling Sequence	CALL CALL CALL	F\$D2 F\$Dx F\$Dn	<pre>2 = paper tape punch x = logical tape unit number 5 through 9 n = dummy device number and the A- register contains the value 2,5,6, 7,8, or 9</pre>
FORTRAN References	END FILE	x	x = 2,5,6,7,8,9 or the variable n
Method	(5,6,7,8, c unit numbe write an en	or 9) to the $r (1, 2, 3, 4)$ d-of-file r calls the	a the logical magnetic tape unit number e corresponding physical magnetic tape , or 5). It then calls the driver to mark on the specified magnetic tape. driver to punch a STOP code on the e punch.
Other Routines	O\$ME, O\$1	PS	

Used

Purpose	To cause a mnemonic error indicator to be typed on the ASR-33 when an object-time error is encountered in a specified routine.		
DAP Calling Sequence	CALL DAC	F\$ER ARG1	ARG1 is the address of the indicator to be typed. The routine types the error indicator and halts if Sense Switch 3 is not set. Pressing START after the halt causes the program to continue.
			If Sense Switch 3 is set, F\$ER exits with no typeout and no halt.
FORTRAN References	CALL F\$E	CR (2Hxx)	xx = two ASCII characters to be typed
<u>Method</u>	is extracted then loaded Switch 3 is return and then printed at this poir	d from its d with the of tested. I line feed a d, and the ht, a norm vitch 3 is s	oject-time error mnemonic indicator relocatable address, AC5. AC5 is error mnemonic indicator and Sense f the switch is not set, a carriage are issued. The error mnemonic is routine halts. If START is pressed al return is made to the calling routine. et, return is made immediately to
Data Type of Argument	The argum	ent is the a	address of any two ASCII characters.
Other Routines Used	AC5, F\$H]	<u>-</u>	

Purpose	To control back spacing of a record on magnetic tape.			
DAP Calling Sequence	CALL F\$Fx	x = 5, 6, 7, 8, 9 or the previously defined variable n.		
FORTRAN References	BACKSPACE x	x = 5,6,7,8,9 or the variable n.		
Method	(5,6,7,8, or 9) to the unit number (1,2,3,4	s the logical magnetic tape unit number e corresponding physical magnetic tape , or 5) and then calls the driver to back the specified magnetic tape.		
Error Message	An error message BF is reported if an end-of-file is encountered.			
Other Routines Used	C\$BR, F\$ER			

Purpose	To proce	ess FORTR	AN run-time assigned GO TO statements.
DAP Calling Sequence	LDA CALL DEC DAC DAC	PTR F\$GA n S1 S2	Transfer address in A-register Number of statements in list Address of first statement Address of second statement
	DAC	Sn	Address of last statement
FORTRAN Reference	ASSIGN (GO TO I,	J TO I (K1, K2,	J = statement number .Kn) I = integer variable name Ks = statement numbers
Method	the stater is found i a GO err possible.	ment addre in that list, or is repor	the address passed in the A-register against ss list that follows the call. If the address control passes to that statement. If not, ted. No recovery from this error is tement address list is empty (n = 0), the ted.
Data Type of Argument	An addre trol is pa	ss is passe ssed to the	d to this routine in the A-register. Con- statement number at that address.
Other Routines Used	F\$ER		

F\$GC

Purpose	To process	FORTRA	N run-time computed GO TO statements.
DAP Calling Sequence	LDA CALL DEC DAC DAC DAC	PTR F\$GC n S1 S2 Sn	Index to statement list Number of statements in list Address of first statement Address of second statement Address of last statement in list
FORTRAN Reference	GO TO (KI	, K2 , K	n),I I = integer value in the range 1 to n Ks = statement numbers
Method	index num from that if I = 3 the above exam	ber; F\$GC position in en control : mples. If	I or the content of PTR is treated as an uses it to select the statement number the calling sequence. For example, is shifted to statement K3 or S3 in the the index (I) is < 1 or $>n$, the computed treated as a NOP.
Data Type of Argument	An integer Control is	value is passed to	passed to this routine in the A-register. the statement at the computed address.

Purpose	statement	has been e	er to stop and print PA if a PAUSE encountered, or to print ST if a STOP encountered.
<u>DAP Calling</u> <u>Sequence</u>	CALL DAC CALL DAC	F\$HT '151724 F\$HT '150301	Octal notation for ST Octal notation for PA
FORTRAN Reference	STOP or PAUSE		
Method	STOP or P. PA is place ASR. The	AUSE verb ed in reloc A-registe	e is generated by the compiler when the o is encountered. The mnemonic ST or atable address AC5 and printed on the r is restored and the program halts. program may be made by pressing START.
Data Type of Argument	The binary	equivalen	t to the specified ASCII characters.
Other Routines Used	AC5		

F\$10

Purpose	To perform input/output conversion, to edit input/output information, to accommodate the appropriate input/output device, and to provide buffers.		
DAP Calling Sequence	DAC CALL DAC	a F\$IO BUF	a = location of the format list from the READ statement BUF = buffer location
	DAC* CALL DAC	a F\$IO BUF	The calling sequence for a FORTRAN WRITE with a and BUF as above
FORTRAN References	READ (n, x WRITE (n, x FORMAT	x) list	n = device number x = format statement number
Method	A FORTRAN READ/WRITE statement starts with a device number and a reference to a format statement, followed by an optional argument list. The first instruction generated by the READ/WRITE statement is a coupling to the appro- priate device driver. The device driver then calls on F\$IO passing the location of the format list, setting the entry location for the device driver and setting a flag to indicate input or output. F\$IO then interprets the format list, character-by-character, taking whatever actions are required. Whenever data is required from or is to be stored in the internal source, exit is made from F\$IO to the next location in the data list.		
Oll Dentine a	<u> </u>	CB F\$ER	

Other Routines Used

F\$AR, F\$CB, F\$ER

Purpose	To ${f c}$ ontrol the typewriter keyboard input routine.		
DAP Calling Sequence	CALL F\$R1 DAC n (Return)	n = location of the format descriptor list	
FORTRAN References	READ(1, f) list READ(1, f)	f = FORTRAN statement number	
Method	This subroutine connects the calling program with the I/O control subroutine (F\$IO). Included in F\$R1 is the driving logic needed to transmit input from the typewriter keyboard. When F\$IO is called, the location of the format descriptor list (if any), the entry location of the driver subroutine, and a flag indicating input are transmitted.		
	Whenever the F\$IO subroutine requires data, return is made to the driver input entry of this subroutine, at which time up to 120 characters (terminated by a carriage return) are entered into the input buffer.		
Data Type	Information is in ASCII format.		
Other Routines Used	F\$IO, I\$AA		

,

.

F\$R2

Purpose	To control the paper tape input routine.			
DAP Calling Sequence	CALL F\$R2 DAC n (Return)	Location of the format descriptor list (or 00000 if input is in binary format)		
FORTRAN References	READ(2, f) list READ(2, f) READ(2) list READ(2)	Formatted READ where f is a format statement number Unformatted paper tape read		
Method	This subroutine connects the calling program with the I/O control subroutine (F\$IO). Included in F\$R2 is the driving logic needed to transmit input from the paper tape reader.			
	When F\$IO is called the location of the format descriptor list (if any), the entry location of the driver subroutine, and a flag indicating input are transmitted.			
	Whenever the F\$IO subroutine requires data, it calls on the F\$R2 driver subroutine, which assembles data into a 60-word buffer, three characters per word, if the input mode is binary. If the input mode is BCD, 80 characters are assembled, two per word, into a 40-word buffer. A carriage return character is replaced with as many blanks as needed to fill the rest of the input buffer. A tab character is replaced with as many blanks as needed to reach the next predetermined tab position.			
	A STOP code read in either binary or BCD mode causes the characters ST to be typed followed by a halt. Press START to continue.			
Data Type	Information is in ASCII if formatted, or in binary if unformatted.			
Other Routines Used	F\$IO, I\$PA, I\$PB			

Purpose	To c ontrol the card input routine.		
DAP Calling Sequence	CALL F\$R3 DAC n (Return)	Location of format descriptor list (00000 if input is binary)	
FORTRAN References	READ(3, f) list READ(3, f) READ(3) list READ(3)	f = FORTRAN Statement number Unformatted read from a punch card	
Method	This subroutine connects the calling program to the I/O control subroutine F\$IO. Included in this subroutine is the driving logic required to input from the card reader. When F\$IO is called, this subroutine transmits the location of the driver subroutine and a flag indicating input.		
	When the F\$IO subroutine requires data, it calls upon the F\$R3 driver subroutine, which assembles 80 characters (two per word) into a 40-word buffer, if mode is Hollerith (formatted), or into a 60-word buffer in column binary format (three words for every four columns) if binary. Return is made to F\$IO where the buffer is processed.		
Data Type	Information is in Hollerith if formatted, or in column binary if unformatted.		
Other Routines Used	F\$10, I\$CA, I\$CB		

Purpose	To control reading of magnetic tape.			
DAP Calling Sequence	CALL F\$Rx DAC n (Return)	x = 5,6,7,8, or 9 Location of the format descriptor list if formatted, or zero if unformatted		
FORTRAN References	READ(x, f) list READ(x, f) READ(x) list READ(x)	f = FORTRAN statement number and x = 5,6,7,8, or 9 Unformatted read where x = 5,6,7,8, or 9		
Method	This subroutine connects the calling program with I/O control routine (F\$IO) and standard magnetic tape routines.			
	When F\$IO is called, the format descriptor list and a flag indicating input are transmitted.			
	When the F\$IO routine needs a buffer of data, it calls this driver, which in turn calls the appropriate magnetic tape unit and conversion routines (for formatted READ). The number of words read is 60, equivalent to 120 characters.			
	The appropriate magnetic tape units are physical magnetic tape units 1 through 5 corresponding respectively to logical tape units, numbers 5 through 9.			
Data Type	Information is in ASCII if formatted, or in binary if unformatted.			
Other Routines Used	F\$10, I\$MA, I\$MC, C\$6T08			

Purpose	To control the input drivers for variable input device numbers.			
DAP Calling Sequence	LDA d CALL F\$Rn DAC n (Return)	Location of device number Location of Format Descriptor List = 00000 if format is binary		
FORTRAN References	READ(x, f) list READ(x, f) READ(x) list READ(x)	<pre>f = FORTRAN statement number; x = variable device number 1 through 9 unformatted read where x = 1,2,3,5,6,7,8,9</pre>		
Method	The value of d is checked for correct limits and is then used to determine the entry position of a Jump Table. The Jump Table transfers to the proper F\$R subroutine. (Note that the entire F\$R subroutine must be called into memory along with this subroutine, because there is no way of knowing in advance which drivers are required.)			
	If d does not equal a number from 1 to 9, the computer halts with a 1 in the A-register. The A-register may be changed manually to another device number; otherwise, the typewriter will be selected as the input device when START is pressed to continue processing.			
	Other errors, such as parity, end of tape, etc., cause the actions described in the appropriate F\$R subroutine.			
Data Type	Information is in ASCII if formatted, or in binary if unformatted.			
Other Routines Used	F\$R1, F\$R2, F\$R3,	F\$R5-9		

F\$TR

Purpose	being storedValues of the D0Locations of state	oles or array ele: O parameters as	ments as they are they vary as they are encountered
<u>DAP Calling</u> <u>Sequence</u>	CALL F\$TR OCT OCT (Return)	are: 000 = 0 = State 001 = 1 = Integ 010 = 2 = Real 011 = 3 = Logi 100 = 4 (Not U 101 = 5 = Com 110 = 6 = Doub The mode of a on the mode of evaluated. Th ARG1 and all	cal sed) nlex ole precision n IF statement depends f the expression being ne remaining 13 bits of the ARG2 and ARG3 are e variable, th e statement
FORTRAN References	TRACE x1,x2, x	name;	ents a variable or array a statement number
Method	The A-register is stored in location zero (index register).The location of the argument is extracted and is interchangedwith the index register, restoring the A-register. SenseSwitch 4 is interrogated and if set, return is made to thecalling program. If Sense Switch 4 is reset, trace mode isentered. The A- and B-registers are saved, and the bufferpointer is reset. The mode jump address is then set up.The 1- to 6-character name is then put in the format state-ment buffer. The return address for exit is calculated andstored. The 1- to 6-character name is interrogated to determinewhether a statement number or a variable is being processed.If a variable name is being processed, an equal sign is storedin the format buffer following the name of the variable. Anindirect jump is then taken, contingent upon whether the modeis real, integer, logical, complex, or double-precision. Thefollowing formats are moved to the format buffer, dependingon the mode, to provide maximum representation of thevariable.REALG19.7INT EGERI7LOGICALL2COMPLEXEl5.7,H, El5.7DOUBLE PRECISIOND19.11		

F\$TR cont.

The output device and format location are provided to the appropriate I/O driver and communicated to F\$IO. Then the variable name and equal sign, and its appropriate value, are printed. When an IF statement evaluation is being written the four characters IF() are printed, followed by an equal sign and the value of the expression in the parentheses.

If a statement number is being printed, the number is bracketed by opening and closing parentheses, and is printed. Upon completion of each printout, the buffer is closed and the A- and B-registers restored. Return is made to the calling program.

Data Type of Arguments

See calling sequence.

Other Routines Used F\$W1, F\$AR, F\$CB, AC1, AC2, AC3

F\$W1

Purpose	To control the typewriter output routine.			
DAP Calling Sequence	CALL DAC (Return)	F\$W1 n	Location of the format descriptor list	
FORTRAN References	WRITE(1,f WRITE(1,f		f = FORTRAN statementnumber	
Method	control sul	broutine (F	ects the calling program with the I/O [\$IO]. Included in this subroutine is the to produce output on the typewriter.	
	list (if any), the entr	, the location of the format descriptor y location of the driver subroutine, and out are transferred.	
	After the F\$IO subroutine has generated a buffer full of data (72 characters), return is made to the driver output entry of this subroutine. At that time, the first character of the buffer is analyzed for proper line feed control as follows:			
		Blank	 Type a single carriage return followed by characters (2-72) 	
		0	- Issue two carriage returns, then type characters (2-72)	
		1	- Skip to the top of the next page, then type characters (2-72)	
		+	- No line advance, type characters (2-72)	
		Others	 Same as blank, except characters (1-72) are typed 	
	to the top	of the next n the first	nts 60 lines per page and skips six lines t page. The operator should start three page in order to get correct spacing	
Data Type	Only ASC	II informat	tion is processed.	
Other Routines Used	F\$IO, O\$	AC, O\$AF		

Purpose	To control the paper tape output routine.		
DAP Calling Sequence	CALL F\$W2 DAC n (Return)	Location of format descriptor list (00000 if output mode is binary)	
FORTRAN References	WRITE(2, f) list WRITE(2, f) WRITE(2) list	f = FORTRAN statement number Unformatted WRITE to paper tape punch	
Method	This subroutine connects the calling program to the I/O control subroutine F\$IO. Included in the subroutine is the driving logic required to produce output on the paper tape punch. When F\$IO is called, this subroutine transmits the location of the format descriptor list (if any) the entry location of the driver sub- routine, and a flag indicating input.		
	After the F\$IO subroutine has generated a full buffer of data 60 words at two characters per word, or 40 words at three binary characters per word, return is made to the driver output entry of the subroutine. At that time, the buffer is punched on tape.		
Data Type	Information is in ASCII if formatted or in binary if unformatted.		
Other Routines Used	F\$IO, O\$PF, O\$PP, O\$PB		

AM74

F\$W3

Purpose	To control the card punch routines.			
DAP Calling Sequence	CALL F\$W3 DAC n (Return)	Location of format descriptor list (00000 if output mode is binary)		
FORTRAN References	WRITE(3,f) list WRITE(3,f) WRITE(3) list	f = format statement number Unformatted WRITE to the card punch		
Method	This subroutine connects the calling program (FORTRAN Object Program) to the I/O control subroutine, F\$IO, and to the card punch subroutines. When F\$IO is called, F\$W3 transmits the location of the address of the format descriptor list (if any), including a flag indicating output mode (DAC* for input), and a location for reentrance to F\$W3.			
	After the F\$IO subroutine has generated a full buffer of data (40 words at two BCD characters per word or 60 binary words), return is made to F\$W3. The appropriate card punch subroutine is called, and a card is punched.			
Data Type	Information is in Hollerith if formatted, or in column binary if unformatted.			
Other Routines Used	F\$IC, O\$CH, O\$CB			
Note	The Hollerith information can be either 026 or 029 character set, depending on the version of O\$CH selected.			

Purpose	To control the line printer output routine.		
DAP Calling Sequence	CALL DAC (Return)	F\$W4 n	Location of format descriptor list
		output, t	ro, which normally indicates binary he computer halts. Push START to a in BCD format.
FORTRAN References	WRITE(4, WRITE(4,		f = format statement number
Method	subroutine required to is called, descriptor	F\$IO. Inc o produce this routin list (if an	ects the calling program to the I/O control cluded in the subroutine is the driving logic output on the line printer. When F\$IO e transmits the location of the format y), the entry location of the driver sub- ndicating output mode.
	After the F\$IO subroutine has generated a full buffer of data (120 characters), return is made to the driver output entry of this subroutine. At that time, the first character of the buffer is analyzed for proper line feed control as follows:		
		Blank	 Advance one line and print characters 2 through 120.
		0	 Advance two lines and print characters 2 through 120.
		1	 Advance to top of next page and print characters 1 through 120.
		+	 Print characters 1 through 120 without advancing line position.
		Others	 Advance one line and print characters 1 through 120.
Data Type	Informatio	n is in ASC	CII format.
Other Routines	F\$IO, 0\$1	.P, O\$LO	

Other Routines Used

F\$IO, O\$LP, O\$LO

Purpose	To control writing on magnetic tape.			
DAP Calling Sequence	CALL DAC	F\$Wx n	x = 5,6,7,8, or 9 Address of format, if any	
FORTRAN References	WRITE(x,f WRITE(x,f WRITE(x)1)	f = FORTRAN statement number x = 5,6,7,8, or 9 Unformatted READ, x = 5,6,7,8, or 9	
Method	This program connects the calling program with the I/O control routine (F\$IO) and the standard magnetic tape routines. When F\$IO is called, the format descriptor list and a flag indicating output mode are transferred.			
	When the F\$IO routine has a buffer of data to write, it calls the driver, which in turn calls the appropriate magnetic tape and conversion routines (for formatted WRITE).			
	60 words are written, equivalent to 120 characters in either mode (formatted or unformatted).			
	The appropriate magnetic tape units (physical) are numbers l through 5 corresponding respectively to the logical tape units numbers 5 through 9 given for x above.			
Data Type	Information on the tape is in ASCII if formatted, or in binary if unformatted.			
Other Routines Used	F\$IO, O\$MC, O\$MA, C\$8TO6			

Purpose	To control the output drivers for variable output device numbers.		
<u>DAP Calling</u> Sequence	LDA d CALL F\$Wn DAC n (Return)	Location of device number n Location of format descriptor list (00000 if format is binary)	
FORTRAN References	WRITE(x, f) list WRITE(x, f) WRITE(x) list	f = FORTRAN statement number x = variable device number 1 through 9 Unformatted WRITE, where x = 1,2,3,4,5, 6,7,8, or 9	
Method	The value of d is checked for correct limits and then used to determine the entry position of a Jump Table. The Jump Table is then transferred to the proper F\$W subroutine. (Note that all F\$W subroutines must be called into memory along with this subroutine, because there is no way of knowing in advance which drivers are required.		
	If d does not equal a number from 1 through 9, the computer halts with a 1 in the A-register. The A-register may be changed manually to another device number. Otherwise, the typewriter will be selected as the output device when START is pressed to continue processing.		
	Other errors, suc actions described	ch as parity, end of tape, etc., cause the in the appropriate F\$W subroutine.	
Data Type	Information is in .	ASCII if formatted, or in binary if unformatted.	
Other Routines Used	F\$W1, F\$W2, F\$	W3, F\$W4, F\$W5-9	

APPENDIX A

TAPE CONTENTS

MAGNETIC TAPE 70182805000 - LTCSIS (LIBRARY SOURCES CODED IN FORTRAN)

This tape consists of the individual sources of the following programs in the order listed. This tape is one of two distributed and contains that portion of the FORTRAN Library that is FORTRAN-coded.

FILE NUMBER	NAME	DOC. NO.
1	STMEAN	70181386000
2	STGEOM	70181387000
3	STCORR	70181388000
4	STSPER	70181389000
5	STCRMT	70181390000
6	STMEDT	70181391000
7	STCHI2	70181392000
8	STBNPB	70181394000
9	STLNRG	70181395000
10	STCHIS	70181393000
11	STPLRG	70181396000
12	STANVI	70181397000
13	STANV 2	70181398000
14	STANVR	70181399000
15	STANVL	70181400000
16	STANVG	70181401000
17	STANVB	70181402000
18	STANVY	70181403000
19	DEFOAD	70181405000
20	DEFOMA	70181404000
21	DEFOHA	70181406000
22	DEFORK	70181407000
23	DESOAD	70181408000
24	DESOMA	70181409000
25	DESOHA	70181410000
26	DESORK	70181411000
27	PLYMUL	70181416000
28	PLYDIV	70181417000
29	PLYINT	70181420000
30	PLYIRT	70181421000
31	PLYEVL	70181422000
32	PLYDEF	70181423000
33	NACPLY	70181429000
34	NAAITK	70181418000
35	NALAGR	70181419000
36	NABAIR	70181424000
37	MATTRS	70181412000
38	MATMUL	70181413000
39	MARITH	70181414000

FILE NUMBER	NAME	DOC. NO.
40	MATEIG	70181415000
40	MATINV	70181427000
42	NAREGU	70181425000
43	NAMULL	70181426000
44	GSEID	70181428000
45	SORT	70181430000
46	SORT2	70181431000
47	CVPOLR	70181432000
48	E\$62	70180053000
49	E\$61	70180052000
50	E\$26	70182582000
51	E\$66	70180054000
52	DSQRT	70182580000
53	DCOS	70180055000
54	DSIN	70182583000
55	DEXP	70182581000
56	DLOGIO	70180051000
57	DLOG	70182579000
58	DLOG2	70182914000
59	DATAN2	70180056000
60	DATAN	70182584000
61	DMOD	70182588000
62	DSIGN	70182589000
63	DABS	70182587000
64	A\$62	70180037000
65	S\$62	70180038000
66	M\$62	70180039000
67	D\$62	70180040000
68	C\$16	70180059000
69	DBLE	701800580 00
70	CSQRT	70182592000
71	CCOS	70180066000
72	CSIN	70182595000
73	CLOG	70182591000
74	CEXP	70182593000
75	CABS	70182596000
76	E\$51	70182594000
77	A\$52	70180041000
78	S\$52	70180042000
79	M\$52	70180043000
80	D\$52	70180044000
81	A\$55	70182544000
82	S\$55	70180093000
83	M\$55	70182545000
84	D\$55	70180034000
85	CONJG	70182598000
86	C\$25	70180068000
87	CMPLX	70182597000
88	N\$55	70180069000
	END	

-

MAGNETIC TAPE 70182806000 - LTCS2S (LIBRARY SOURCES CODED IN DAP)

FILE NUMBER	NAME	DOC. NO.
1	DMAX1	70182585000
2	DMINI	70182586000
3	DINT	70180850000
4	Z\$80	70180851000
5	A\$81	70180852000
6	C\$61	70182554000
7	A\$66	70180853000
8	A\$66XRA	70180979000
9	H\$66	70180855000
10	C\$26	70180857000
11	H\$55	70180860000
12	MAX0	70182548000
13	MAX1	70182549000
14	MINO	70180649000
15	MINI	70182551000
16	TANH	70182565000
17	SQRT	70182560000
18	SQRTX	70180681000
19	SIN, COS	70182563000
20	ATAN	70182564000
21	E\$21	70182562000
22	E\$22	70180045000
23	ALOG	70182559000
24	ALOGX	70180682000
25	EXP	70182561000
26	E\$11	70182547000
27	E\$11X	70180684000
28	ABS	70182570000
29	C\$62	70180884000
30	AMOD	70182572000
31	L\$66	70180854000
32	AINT	70182571000
33	N\$66	70180856000
34	DIM	70182573000
35	SIGN	70182574000
36	AIMAG	70180858000
37	L\$55	70180859000
38	IFIX	70182553000
39	FLOAT	70180062000
40	C\$12	70182575000
41	C\$21	70182558000
42	LOC	70181962000
43	C\$81	70180882000
44	ISTORE	70181982000
45	N\$33	70180090000
46	IFETCH	70181983000
47	IABS	70182552000
48	F\$OE	70181984000
49	MOD	70182555000
50	F\$TR-RA	70180827000
51	SUB\$	70185150000

FILE NUMBER	NAME	DOC. NO.
52	FSGA	70185151000
53	FSGC	70185152000
54	IDIM	70182556000
55	A\$22	70182536000
56	M\$22	70182537000
57	A\$22X11	70181805000
58	M\$22X11	70181806000
59	D\$22X11	70181804000
60	ISIGN	70182557000
61	L\$22	70182534000
62	H\$22	70182535000
63	N\$22	70180097000
64	SLITE	70182599000
65	M\$11	70180035000
66	D\$11	70182546000
67	M\$11X	70180685000
68	D\$11X	70180686000
69	OVERFL	70180894000
70	F\$AT	70180071000
71	L\$33	70180065000
72	F\$WN	70180089000
73	FSRN	70180088000
74	F\$R1	70182610000
75	F\$W1	70182611000
76	F\$R2	70182612000
77	F\$W2	70182613000
78	F\$R3	70182614000
79	F\$W3	70181667000
80	F\$W4	70182616000
81	F\$R5 - 9	70180306000
82	F\$F5-9	70180310000
83	F\$W5-9	70180307000
84	F\$10	70182618000
85	016CHAIN	70180659000
86	ARG\$	70180072000
87	F \$D 5 - 9	70180308000
88	F\$B5-9	70180309000
89	F\$ER-RA	70181068000
90	AC1	70180717000
	END	

MAGNETIC TAPE 70182803541 - LTCM1S (LIBRARY OBJECTS - SOFTWARE VERSION)

This magnetic tape consists of the concatenation of the individual objects of the listed programs. They have been translated by the FORTRAN Translator Mod 1 if FORTRAN coded and/or assembled by the DAP-16 Mod 2 Assembler.

FILE NUMBER	NAME	DOC. NO.
1	STMEAN	70181386000
2	STGEOM	70181387000
3	STCORR	70181388000
4	STSPER	70181389000
5	STCRMT	70181390000
6	STMEDT	70181391000
7	STCH12	70181392000

FILE NUMBER	NAME	DOC. NO.
8		70101204000
8 9	STBNPB	70181394000
10	STLNRG STCHIS	70181395000
11	STPLRG	70181393000
11	STANV1	70181396000
13	STANV1 STANV2	70181397000
14	STANV Z STANV R	70181398000
15	STANVL	70181399000 70181400000
16	STANVE	70181400000
17	STANVG	70181401000
18	STANVY	70181402000
19	DEFOAD	70181405000
20	DEFOMA	70181403000
21	DEFOHA	70181406000
22	DEFORK	70181408000
23	DESOAD	70181407000
24	DESOMA	70181409000
25	DESOHA	70181410000
26	DESORK	70181411000
27	PLYMUL	70181416000
28	PLYDIV	70181417000
29	PLYINT	70181420000
30	PLYIRT	70181421000
31	OLYEVL	70181422000
32	PLYDIF	70181423000
33	NACPLY	70181429000
34	NAAITK	70181418000
35	NALAGR	70181419000
36	NABAIR	70181424000
37	MATTRS	70181412000
38	MATMUL	70181431000
39	MAŔITH	70181414000
40	MATEIG	70181415000
41	MATINV	70181427000
42	NAREGU	70181425000
43	NAMULL	70181426000
44	GSEID	70181428000
45	SORT	70181430000
46	SORT 2	70181431000
47	CVPOLR	70181432000
48	E\$62	70180053000
49	E\$61	70180052000
50	E\$26	70182582000
51	E\$66	70180054000
52	DSQRT	70182580000
53	DCOS	70180055000
54	DSIN	70182583000
55	DEXP	70182581000
56	DLOG10	70180051000
57	DLOG	70182579000
58	DLOG2	70182914000
59	DATAN2	70180056000
60	DATAN	70182584000
61	DMOD	70182588000
62	DSIGN	70182589000
63	DABS	70182587000
64	A\$62	70180037000

FILE NUMBER	NAME	DOC. NO.
65	S\$62	70180036000
66	M\$62	70180039000
67	D\$62	70180040000
68	C\$16	70180059000
69	DBLE	70180058000
70	CSQRT	70182592000
71	CCOS	70180066000
72	CSIN	70182595000
73	CLOG	70182591000
74	CEXP	70182593000
75	CABS	70182596000
76	E\$51	70182594000
77	A\$52	70180041000
78	S\$52	70180042000
79	M\$52	70180043000
80	D\$52	70180044000
81	A\$55	70182544000
82	S \$55	70180093000
83	M\$55	70182545000
84	D\$55	70180034000
85	CONJG	70182598000
86	C\$25	70180068000
87	CMPLX	70182597000
88	N\$55	70180069000
89	DMAX1	70182585000
90	DMIN1	70182586000
91	DINT	70180850000
92	Z\$80	70180851000
93	A\$81	70180852000
94	C\$61	70182554000
95	A\$66	70180853000
96	H\$66	70180855000
97	C\$26	70180857000
98	H\$55	70180860000
99	MAX0	70182548000
100	MAX1	70182549000 70180649000
101	MIN0	70180549000
102 103	MIN1 TANH	70182565000
103	SQRT	70182560000
104	SIN, COS	70182563000
105	ATAN	70182564000
107	E\$21	70182562000
108	E\$22	70180045000
109	ALOG	70182559000
110	EXP	70182561000
111	E\$11	70182547000
112	ABS	70182570000
113	C\$62	70180884000
114	AMOD	70182572000
115	L\$66	70180854000
116	AINT	70182571000
117	N\$66	70180856000
118	DIM	70182573000
119	SIGN	70182574000
120	AIMAG	70180858000
FILE NUMBER	NAME	DOC. NO.
-------------	-------------------	----------------------------
121	L\$55	70180859000
122	IFIX	70182553000
123	FLOAT	70180062000
124	C\$12	70182575000
125	C\$21	70182558000
126	LOC	70181962000
127	C\$81	70180882000
128	ISTORE	70181982000
129	N\$33	70180090000
130	IFETCH	70181983000
131	IABS	70182552000
132	F\$DE	70181984000
133	MOD	70182555000
134	F\$TR-RA	70180827000
135	SUB\$	70185150000
136	F\$GA	70185151000
137	F\$GC	70185152000
138	IDIM	70182556000
139	A\$22	70182536000
140	M\$22	70182537000
141	ISIGN	70182557000
142	L\$22	70182534000
143	H\$22	70182535000
144	N\$22	70180097000
145	SLITE	70182599000
146	M\$11	70180035000
147	D\$11	70182546000
148	OVERFL	70180894000
149	F\$AT	70180071000
150	L\$33	70180065000
151	F\$WN	70180089000
152	F\$RN	70180088000
153	F\$R1	70182610000
154	F\$W1	70182611000
155	F\$R2	70182612000
156	F\$W2	70182613000
157	F\$R3	70182614000
158	F\$W3	70181667000
159	F\$W4	70182616000
160	F\$R5-9	70180306000
161	F\$F5-9	70180310000
162 163	F\$W5-9	70180307000
163	F\$10 016CHAIN	70182618000
164	ARG\$	70180659000 70180072000
166	F\$D5-9	70180072000
167	F\$B5-9	70180308000
168	F\$ER-RA	70180309000
169	AC1	70180717000
170	SQRX1	70188775000
171	COSX1	70188781000
172	SINX1	70188777000
173	ANTX1	70188779000
174	LGEX1	70188814000
175	LG2X1	70188784000
176	EXEX1	70188786000
177	EX2X1	70188782000

.

FILE NUMBER	NAME	DOC. NO.
178	DSQRX1	70188788000
179	DCOSX1	70188792000
180	DSINX1	70188790000
181	DATNX1	70188793000
182	DLGEX1	70188801000
183	DLG2X1	70188795000
184	DEXEXI	70188799000
185	DEX2X1	70188797000
186	DMPY	70188808 0 00
187	MPY	70188811000
188	DIV	70188810000
189	DADD	70188812000
190	DSUB	70188813000
191	ROND	70188805000
192	RODD	70188804000
193	TWOS	70188803000
	END	
Files	1-47	Statistical Library
Files	48-169	FORTRAN Library
Files	1 (0-193	Fixed Point Math Libra.

MAGNETIC TAPE 70182804541 - LTCM1H (LIBRARY OBJECTS - HARDWARE VERSION)

This magnetic tape consists of the concatenation of the individual objects of the listed programs. They have been translated by the FORTRAN Translator Mod 1 if FORTRAN code and/or assembled by the DAP-16 Mod 2 Assembler.

FILE NUMBER	NAME	DOC. NO.
1	STMEAN	70181386000
2	STGEON	70181387000
3	STCORR	70181388000
4	STSPER	70181389000
5	STCRMT	70181390000
6	STMEDT	70181391000
7	ST CH12	70181392000
8	STBNPB	70181394000
9	STLNRG	70181395000
10	STCHIS	70181393000
11	STPLRG	70181396000
12	STANV 1	70181397000
13	STANV 2	70181398000
14	STANVR	70181399000
15	STANVL	70181400000
16	STANVG	70181401000
17	STANVB	70181402000
18	STANVY	70181403000
19	DEFOAD	70181405000
20	DEFOMA	70181404000
21	DEFOHA	70181406000
22	DEFORK	70181407000
23	DESOAD	70181408000

FILE NUMBER	NAME	DOC. NO.
24	DESONA	70101400000
25		70181409000
26	DESOHA	70181410000
	DESORK	70181411000
27	PYLMUL	70181416000
28	PLYDIV	70181417000
29	PLYINT	70181420000
30	PLYIRT	70181421000
31	PLYEVL	70181422000
32	PLYDIF	70181423000
33	NACPLY	70181429000
34	NAAITK	70181418000
35	NALAGR	70181419000
36	NABAIR	70181424000
37	NATTRS	70181412000
38	NATMUL	70181413000
39	MARITH	70181414000
40	NATEIG	70181415000
41	NATINV	70181427000
42	NAREGU	70181425000
43	NAMULL	70181426000
44	GSEID	70181428000
45	SORT	70181430000
46	SORT 2	70181431000
47	CVPOLR	70181432000
48	E\$62	70180053000
49	E\$61	70180052000
50	E\$26	70182582000
51	E\$66	70180054000
52	DSQRT	70182580000
53	DCOS	70180055000
54	DSIN	70182583000
55	DEXP	70182581000
56	DLOG10	70180051000
57	DLOG	70182579000
58	DLOG2	70182914000
59	DATAN2	•
60	DATAN	70180056000 70182584000
61	DMOD	70182584000
62	DSIGN	70182589000
63	DABS	
64	A\$62	70182587000
65	S\$62	70180037000
66	M\$62	70180038000
67		70180039000
68	D\$62	70180040000
69	C\$16	70180059000
70	DBLE	70180058000
71	CSQRT	70182592000
72	CCOS	70180066000
73	CSIN	70182595000
	CLOG	70182591000
74 75	CEXP	70182593000
75 74	CABS	70182596000
76	E\$51	70182594000
77	A\$52	70180041000
78	S\$52	70180042000
79	M\$52	70180043000
80	D\$52	70180044000

FILE NUMBER	NAME	DOC. NO.
81	A\$55	70182544000
82	S\$55	70180093000
83	M\$55	70182545000
84	D\$55	70180034000
85	CONJG	70182598000
86	C\$25	70180068000
87	CMPLX	70182597000
88	N\$55	70180069000
89	DMAX1	70182585000
90	DMIN1	70182586000
91	DINT	70180850000
92	Z\$80	70180851000
93	A\$81	70180852000
94	C\$61	70182554000
95	A\$66XKA	70180979000
96	Н\$66	70180855000
97	C\$26	70180857000
98	H\$55	70180860000
99	MAX0	70182548000
100	MAX1	70182549000
101	MINO	70180649000
102	MINI	70182551000
103	TANH	70182565000
104	SQRTX	70180681000
105	SIN, COS	70182560000
106	ATÁN	70182564000
107	E\$21	70182562000
108	E\$22	70180045000
109	ALOGX	70180682000
110	EXP	70182561000
111	E\$11X	70180684000
112	ABS	70182570000
113	C\$62	70180884000
114	AMOD	70182572000
115	L\$66	70180854000
116	AINT	70182571000
117	N\$66	70180856000
118	DIM	70182573000
119	SIGN	70182874000
120	AIMAG	70180858000
121	L\$55	70180859000
122	IFIX	70182553000
123	FLOAT	70180062000
124	C\$12	70182575000
125	C\$21	70182558000
126	LOC	70181962000
127	C\$81	70180882000
128	ISTORE	70181982000
129	N\$33	70180090000
130	IFETCH	70181983000
131	IABS	70182552000
132	F\$OE	70181984000
133	MOD	70182555000
134	F\$TR-RA	70180827000
135	SUB\$	70185150000
136	F\$GA	70185151000
137	F\$GC	70185152000

FILE NUMBER	NAME	DOC. NO.
138	IDIM	70182556000
139	A\$22X11	70181805000
140 141	M\$22X11	70181806000
141 142	D\$22X11	70181804000
	ISIGN	70182557000
143 144	L\$22	70182534000
144	H\$22	70182535000
145	N\$22	70180097000
140	SLITE	70182599000
147	M\$11X	70180685000
140	D\$11X	70180686000
149	OVERFL	70180894000
150	F\$AT	70180071000
151	L\$33	70180065000
152	F\$WN F\$DN	70180089000
154	F\$RN F\$R1	70180088000
155	F \$W 1	70182610000
156	F\$R2	70182611000
157	F \$W 2	70182612000
158	F\$R3	70182613000
159	F\$W3	70182614000
160	F \$W 4	70181667000
161	F\$R5-9	70182616000
162	F\$F5-9	70180306000 70180310000
163	F\$W5-9	
164	F\$I0	70180307000
165	016CHAIN	70182618000
166	ARG\$	70180659000
167	F\$D5-9	70180072000
168	F\$B5-9	70180308000 70180309000
169	F\$ER-RA	70181068000
170	AC1	70180717000
171	SQRX2	70188776000
172	COSX2	70180761000
173	SINX2	70188778000
174	ATNX2	70188780000
175	LGEX2	70188815000
176	LG2X2	70188785000
177	EXEX2	70188787000
178	EX2X2	70188783000
179	DSQRX2	70188789000
180	DCOSX2	70180762000
181	DSINX2	70188791000
182	DATNX2	70188794000
183	DLGEX2	70188802000
184	DLG2X2	70188796000
185	DEXEX2	70188800000
186	DEX2X2	70188798000
187	DMPYH	70188809000
188	DADD	70188812000
189	DSUB	70188813000
190	ROND	70188805000
191	RODD	70188804000
192	TWOS	70188803000
	END	

Files	1-47	Statistical Library
Files	48-170	FORTRAN Library
Files	171-192	Fixed Point Math Library

PAPER TAPE 70181876000 - LTCF1 (Paper Tape 1 of 6)

This paper tape consists of the concatenation of the individual objects of the listed programs. They have been translated by the FORTRAN Translator MOD 1 and assembled by the DAP-16 Mod 2 Assembler.

FILE NUMBER	NAME	DOC. NO.
1	E\$62	70180053000
2	E\$61	70180052000
3	E\$26	70182582000
4	E\$66	70180054000
5	DSQRT	70182580000
6	DCOS	70180055000
7	DSIN	70182583000
8	DEXP	70182581000
9	DLOG10	70180051000
10	DLOG	70182579000
11	DLOG2	70182914000
12	DATAN2	70180056000
13	DATAN	70182584000
14	DMOD	70182588000
15	DSIGN	70182589000
16	DABS	70182587000
17	A\$62	70180037000
18	S \$62	70180038000
19	M\$62	70180039000
20	D\$62	70180040000
21	C\$16	70180059000
22	DBLE	70180058000
	END	

PAPER TAPE 70181877000 - LTCF2 (Paper Tape 2 of 6)

This paper tape consists of the concatenation of the individual objects of the listed program. They have been translated by the FORTRAN Translator MOD 1 and assembled by the DAP-16 Mod 2 Assembler.

FILE NUMBER	NAME	DOC. NO.
1	CSQRT	70182592000
2	CCOS	70180066000
3	CSIN	70182595000
4	CLOG	70182591000
5	CEXP	70182593000
6	CABS	70182596000
7	E\$51	70182594000
8	A\$52	70180041000
9	S\$52	70180042000
10	M\$52	70180043000

FILE NUMBER	NAME	DOC. NO.
11	D\$52	70180044000
12	A\$55	70182544000
13	S \$55	70180093000
14	M\$55	70182545000
15	D\$55	70180034000
16	CONJG	70182598000
17	C\$25	70180068000
18	CMPLX	70182597000
19	N\$55	70180069000
	END	

PAPER TAPE 70181882000 - LTCF3S (Paper Tape 3 of 6)

This is the Software Version of Paper Tape 3 $\,$

FILE NUMBER	NAME	DOC. NO.
1	DMAX1	70182585000
2	DMIN1	70182586000
3	DINT	70180850000
4	Z\$80	70180851000
5	A\$81	70180852000
6	C\$61	70182554000
7	A\$66	70180853000
8	H\$66	70180855000
9	C\$26	70180857000
10	H\$55	70180860000
11	MAX0	70182548000
12	MAX1	70182549000
13	MINO	70180649000
14	MIN1	70182551000
15	TANH	70182565000
16	SQRT	70182560000
17	SIN, COS	70182563000
18	ATAN	70182564000
19	E\$21	70182562000
20	E\$22	70180045000
21	ALOG	70182559000
22	EXP	70182561000
23	E\$11 END	70182547000

PAPER TAPE 70181878000 - LTCF3H (Paper Tape 3 of 6)

This is the Hardware Version of Paper Tape 3 $\,$

FILE NUMBER	NAME	DOC. NO.
1	DMAX1	70182585000
2	DMIN1	70182586000
3	DINT	70180850000
4	Z\$80	70180851000
5	A\$81	70180852000
6	C\$61	70182554000
7	A\$66XRA	70180979000
8	H\$66	70180855000
9	C\$26	70180857000

FILE NUMBER	NAME	DOC. NO.
10	H\$55	701808 6 0000
11	MAX0	70182548000
12	MAX1	70182549000
13	MIN0	70180649000
14	MINI	70182551000
15	TANH	70182565000
16	SQRTX	70180681000
17	SIN, COS	70182563000
18	ATAN	70182564000
19	E\$21	70182562000
20	E\$22	70180045000
21	ALOGX	70180682000
22	EXP	70182561000
23	E\$11X	70180684000
	END	

PAPER TAPE 70181879000 - LTCF4 (Paper Tape 4 of 6)

FILE NUMBER	NAME	DOC. NO.
1	ABS	70182570000
- 4	C\$62	70180884000
3	AMOD	70182572000
4	L\$66	70180854000
5	AINT	70182571000
6	N\$66	70180856000
7	DIM	70182573000
8	SIGN	70182574000
9	AIMAG	70180858000
10	L\$55	70180859000
11	IFIX	70182553000
12	FLOAT	70180062000
13	C\$12	70182575000
14	C\$21	70182558000
15	LOC	70181962000
16	C\$81	70180882000
17	ISTORE	70181982000
18	N\$33	70180090000
19	IFETCH	70181983000
20	IABS	70182552000
21	F\$OE	70181984000
22	MOD	70182555000
23	F\$TR-RA	70180827000
24	SUB\$	70185150000
25	F\$GA	70185151000
26	F\$GC END	70185152000

PAPER TAPE 70181883000 - LTCF5S (Paper Tape 5 of 6)

This is the Software Version of Tape 5

FILE NUMBER	NAME	DOC. NO.
1	IDIM	70182556000
2	A\$22	70182536000
3	M\$22	70182537000
4	ISIGN	70182557000

FILE NUMBER	NAME	DOC. NO.
FILE NUMBER 5 6 7 8 9 10 11 12 13 14 15 16	<u>NAME</u> L\$22 H\$22 N\$22 SLITE M\$11 D\$11 OVERFL F\$AT L\$33 F\$WN F\$RN F\$RN	70182534000 70182535000 70180097000 70182599000 70180035000 70182546000 70180894000 70180071000 70180065000 70180089000 70180088000
17 18 19 20 21 22 23 24 25 26	F \$W 1 F \$W 2 F \$W 2 F \$R 3 F \$W 3 F \$W 4 F \$R 5 - 9 F \$F 5 - 9 F \$F 5 - 9 F \$W 5 - 9 F \$IO E ND	70182610000 70182611000 70182612000 70182613000 70182614000 70181667000 70182616000 70180306000 70180310000 70180307000 70182618000

PAPER TAPE 70181880000 - LTCF5H (Paper Tape 5 of 6)

This is the Hardware Version of Tape 5

FILE NUMBER	NAME	DOC. NO.
1	IDIM	70182556000
2	A\$22X11	70181805000
- 3	M\$22X11	70181806000
4	D\$22X11	70181804000
5	ISIGN	70182557000
6	L\$22	70182534000
7	H\$22	70182535000
8	N\$22	70180097000
9	SLITE	70182599000
10	M\$11X	70180685000
11	D\$11 X	70180686000
12	OVERFL	70180894000
13	F\$AT	70180071000
14	L\$33	70180065000
15	F\$WN	70180089000
16	F\$RN	70180088000
17	F\$R1	70182610000
18	F\$W1	70182611000
19	F\$R2	70182612000
20	F\$W2	70182613000
21	F\$R3	70182614000
22	F\$W3	70181667000
23	F\$W4	70182616000
24	F\$R5-9	70180306000
25	F\$F5-9	70180310000
26	F\$W5- 9	70180307000
27	F\$IO END	70182618000

PAPER TAPE 70181881000 - LTCF6 (Paper Tape 6 of 6)

FILE NUMBER	NAME	DOC. NO.
1 2 3 4 5 6	016CHAIN ARG\$ F\$D5-9 F\$B5-9 F\$ER-RA AC1 END	70180659000 70180072000 70180308000 70180309000 70181068000 70180717000

APPENDIX B MATHEMATICAL ROUTINES

Function

Routine

Complex

Absolute value	CABS
Add	A\$55
Add real argument	A\$52
Conjug ate	CONJG
Convert imaginary part to real	AIMAG
Cosine	CCOS
Divide	D\$55
Divide by real argument	D\$52
Exponential, base e	CEXP
Load	L\$55
Load real part	REAL
Logarithm, base e	CLOG
Multiply	M\$55
Multiply by real argument	M\$52
Negate	N\$55
Raise to integer power	E\$51
Sine	CSIN
Square root	CSQRT
Store (hold)	H\$55
Subtract	S\$55
Subtract single-precision argument	S\$52

Double-Precision

Absolute value	DABS
Add	A\$66
Add single-precision argument	A\$62
Add integer to exponent	A\$81
Arctangent, principal value	DATAN

Function	Routine
Double-Precision	
Arctangent, X/Y	DATAN2
Clear (zero) exponent	Z\$80
Convert exponent to integer	C\$81
Convert to integer	C\$61
Convert to single-precision	C\$62
Cosine	DCOS
Divide	D\$66
Divide by real argument	D\$62
Exponential, base e	DEXP
Load	L\$66
Logarithm, base e	DLOG
Logarithm, base 2	DLOG2
Logarithm, base 10	DLOG10
Maximum value	DMAX1
Minimum value	DMIN1
Multiply	М\$66
Multiply by real argument	M\$62
Negate	N\$66
Raise to double-precision power	E\$66
Raise to integer power	E\$61
Raise to real power	E\$62
Remainder	DMOD
Sine	DSIN
Square root	DSQRT
Store (hold)	H\$66
Subtract	S\$66
Subtract real argument	S\$62
Transfer sign of second argument to first	DSIGN
Truncate fractional bits	DINT
Truncate fractional bits and convert to integer	IDINT

Real

Absolute value	ABS
Add	A\$22
Arctangent, principal value	ATAN
Arctangent, X/Y	ATAN2
Convert pair to complex	CMPLX

Function	Routine
Convert to complex format	C\$25
Convert to double-precision	C\$26
Convert to integer	C\$21
Divide	D\$22
Exponential, base e	EXP
Hyperbolic tangent	TANH
Load	L\$22
Logarithm, base e	ALOG
Logarithm, base 10	ALOG10
Maximum integer value	MAX1
Maximum value	AMAX1
Minimum integer value	MIN1
Minimum value	AMIN1
Multiply	M\$22
Positive difference	DIM
Raise to double-precision power	E\$26
Raise to integer power	E\$21
Raise to real power	E\$22
Remainder	AMOD
Sine, cosine	SIN, COS
Square root	SQRT
Store (hold)	H\$22
Subtract	S\$22
Transfer sign of second argument to first	SIGN
Truncate fractional bits	AINT
Truncate fractional bits and convert to integer	IFIX, INT
TWOs complement	N\$22

Integer

Real

Absolute value	IABS
Convert to double-precision	C\$16
Convert to real (FORTRAN-generated)	FLOAT
Convert to real	C\$12
Divide	D\$11
Maximum value	AMAX0

Integer

Maximum integer value	MAX0
Minimum value	AMIN0
Minimum integer value	MIN0
Multiply	M\$11
Positive difference	IDIM
Raise to integer power	E\$11
Remainder	MOD
Transfer sign of second argument to first	ISIGN

Logical

Complement	N\$33
OR with A-register	L\$3 3

APPENDIX C

SUBROUTINE FUNCTIONS

INTRINSIC AND EXTERNAL FUNCTIONS

Mathematical and Trigonometric Functions

Name	Argument Data Type	Result Data Type	Function
SIN	R	R	Sine (radians)
DSIN	D	D	
CSIN	C	C	
COS	R	R	Cosine(radians)
DCOS	D	D	
CCOS	C	C	
ATAN	R	R	Arctangent (radians)
DATAN	D	D	
ATAN2	R	R	
DATAN2	D	D	
TANH	R	R	Hyperbolic tangent (radians)
SQRT	R	R	Square root
DSQRT	D	D	
CSQRT	C	C	
EXP	R	R	Exponential
DEXP	D	D	
CEXP	C	C	
ALOG	R	R	Natural logarithm
DLOG	D	D	
CLOG	C	C	
ALOG10	R	R	Common logarithm
DLOG2	D	D	
DLOG10	D	D	
ABS	R	R	Absolute value
IABS	I	I	
DABS	D	D	
CABS	C	R	
AMOD	R	R	Remainder
MOD	I	I	
DMOD	D	D	
AINT	R	R	Truncate fractional bits
DINT	D	I	
IDINT	D	I	
IFIX	R	I	
INT	R	I	

Name	Argument Data Type	Result Data Type	Function
AMAX0	I	R	Choose largest argument
AMAXI	R	R	
MAX0	I	I	
MAX1	R	I	
DMAXI	D	D	
AMIN0	I	R	Choose smallest argument
AMIN1	R	R	
DMINI	D	D	
MIN10	I	I	
MIN1	R	I	
FLOAT	I	R	Change data type or argument
AIMAG	С	R	
DBLE	R	D	
CMPLX	С	R	
REAL	С	R	
SNGL	R	D	
SIGN	R	R	Value of first argument, sign of
DSIGN	D	D	second
ISIGN	I	I	
DIM	R	R	Positive difference
IDIM	I	I	
CONJG	С	С	Complex conjugate

Special Subroutines for FORTRAN Use

Name	Argument Data Type	Result Data Type	Function
IFETCH(I) ISTORE(I,J) LOC OVERFL SLITE SLITET SSWTCH			Get contents of location I Store value of J in location I Find address of argument Check for error condition Set and reset sense lights or switches

COMPILER SUPPORT SUBROUTINES

Conversion Routines

Name	Argument Data Type	Result Data Type	Function
C\$12	I	R	Convert integer to real
C\$16	I	D	Convert integer to double-precision
C\$21	R	I	Convert real to integer
C\$25	R	С	Convert real to complex
C\$26	R	D	Convert real to double-precision
C\$61	D	I	Convert double-precision to integer
C\$62	D	R	Convert double-precision to real
C\$81	D	D	Convert exponent of double-
			precision number to integer

Arithmetic Routines

Name	Function	Name	Function
A\$22	R = R + R	E\$62	D = D**R
A\$52	C = C + R	E\$66	D = D**D
A\$55	C = C + C	M\$11	I = I * I
A\$62	D = D + R	M\$22	R = R * R
A\$66	D = D+D	M\$52	C = C * R
A\$81	D = D*(2**I)	M\$55	C = C * C
D\$11	I = I/I	M\$62	D = D * R
D\$22	R = R/R	M\$ 66	D = D*D
D\$52	C = C/R	N\$22	R = -R
D\$55	C = C/C	N\$33	L = -L
D\$62	D = D/R	N\$55	C = -C
D\$66	D = D/D	N\$66	D = -D
E\$11	I = I * * I	S\$22	R = R - R
E\$21	R = R**I	S\$52	C = C - R
E\$22	R = R**R	S\$55	C = C - C
E\$26	D = R**D	S\$62	D = D - R
E\$51	C = C * I	S\$66	D = D - D
E\$61	D = D * * I	Z\$80	Replace binary exponent with zero

Miscellaneous Routines

Name	Function
AC1	Pseudo accumulators
ARG\$	Convert indirect address to direct address
H\$22 H\$55 H\$66	Store real number in memory Store complex number in memory Store double-precision number in memory
L\$22 L\$55 L\$66	Load real number into A- and B-registers Load complex number into complex accumulator Load double-precision number into double-precision accumulator
L\$33	INCLUSIVE OR with A-register
SUB\$	Calculate address of array element

.

APPENDIX D

LIBRARY INDEX

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A\$22	A\$22	ARG\$	1	150	55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S\$22	N\$22			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			F\$ER	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A\$22X	A\$22	N\$22	1	140	5H
H\$55 1 L		S\$22	F\$ER	1		
H\$55 1 L\$22 1 A\$22 1 L\$55 1 A\$55 F\$AT 1 60 2 A\$55 F\$AT 1 60 2 A\$55 1 SUB\$ 4 4 A\$22 2 4 4 4 A\$22 2 4 4 4 A\$22 2 4 4 4 A\$22 2 1 1 20 1 A\$66 1 1 20 1	A\$52	A\$52	F\$AT	1	20	2
A\$22 1 H\$22 1 L\$55 1 A\$55 A\$55 A\$55 1 A\$55 1 A\$55 1 A\$55 1 A\$55 1 A\$55 1 A\$22 2 A\$22 2 A\$22 2 L\$55 1 A\$66 1 DBLE 1 A\$66 1 DBLE 1 A\$66 1 D\$66 1 A\$66 3 A\$66 3 A\$66 1 A\$66 3 A\$66 1 A\$66 3 A\$66 1 A\$66 1 A\$66 1 A\$66 1			H\$55	1		
H\$22 1 A\$55 A\$55 F\$AT 1 60 2 H\$55 1 SUB\$ 4 1 22 2 H\$55 1 SUB\$ 4 1 22 2 A\$22 2 1 1 20 1 A\$62 A\$62 F\$AT 1 20 1 A\$66 1 DBLE 1 35 35 A\$66 11 580 35 35 A\$66 1 530 35 35 A\$66 1 530 34 A\$66 1 530 34 A\$66 1 1 530 34			L\$22	1		
A\$55 A\$55 F\$AT 1 60 2 A\$55 F\$AT 1 60 2 H\$55 1 1 50 2 SUB\$ 4 1 22 2 A\$22 2 2 1 20 1 A\$62 A\$62 F\$AT 1 20 1 A\$66 1 1 20 1 1 A\$66 1 1 580 35 A\$66 1 580 35 35 A\$66 1 530 34 A\$66 1 5566			A\$22	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			H\$22	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			L\$55	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A\$55	A\$55	F\$AT	1	60	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			H\$55	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			SUB\$	4		
H\$22 2 L\$55 1 A\$62 F\$AT 1 20 1 H\$66 1 DBLE 1 0 1 A\$66 1 0 3S 3S 3S A\$66 1 580 3S 3S A\$66 1 58 3S 3S A\$66 1 1 400 400 400 A\$66 1 1 530 3H A\$66X A\$66 1 58 3 A\$66X F\$ER 3 3 3H A\$66X F\$ER 3 3 3H A\$66X F\$ER 3 3H <td< td=""><td></td><td></td><td>L\$22</td><td>2</td><td></td><td></td></td<>			L\$22	2		
A\$62 A\$62 F\$AT 1 20 1 A\$66 1 DBLE 1 1 20 1 A\$66 1 DBLE 1 1 35 35 A\$66 N\$66 11 580 35 35 A\$66 F\$ER 3 35 35 S\$66 F\$ER 3 35 35 M\$66 H\$66 1 580 35 D\$66 L\$66 1 35 35 A\$66 S\$66 1 530 35 A\$66 S\$66 11 530 31 A\$66X F\$ER 3 35 35 A\$66X F\$ER 3 35 31 A\$66X F\$ER 3 35 31 A\$66X F\$ER 3 35 31 A\$66X L\$66 1 530 31 A\$66X L\$66 1 35 31 A\$66X L\$66 1 35 36			A\$22	2		
A\$62 A\$62 F\$AT 1 20 1 H\$66 1 1 1 1 1 1 A\$66 1 1 1 1 1 1 1 A\$66 1 1 1 580 3S 3S A\$66 N\$66 1 580 3S 3S S\$66 F\$ER 3 3S 3S M\$66 H\$66 1 1 580 3S A\$66 L\$66 1 1 580 3S A\$66 H\$66 1 1 580 3S A\$66 L\$66 1 1 1 1 AC1 1 1 1 1 1 A\$66X F\$ER 3 3H 3H 3H A\$66X L\$66 1 1 1 1 A\$66X L\$66 1 1 1 1 A\$66X L\$66 1 1 1 1 A\$66X L\$66 1			H\$22	2		
H\$66 1 DBLE 1 A\$66 1 A\$66 11 A\$66 580 S\$66 F\$ER M\$66 H\$66 D\$66 L\$66 AC1 1 AC2 1 AC3 1 A\$66 11 530 3S			L\$55	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A\$62	A\$62		1	20	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1		
A\$66 A\$66 N\$66 11 580 3S S\$66 F\$ER 3 3 M\$66 H\$66 1 1 D\$66 L\$66 1 1 AC1 1 1 1 AC2 1 1 1 AC3 1 530 3H A\$66X A\$66 N\$66 11 530 3H A\$66X A\$66 A\$66 1 1 1 A\$66X A\$66 A\$66 1 1 1 D\$66 AC2 1 1 1 1				1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			A\$66	1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A\$66		N\$66	11	580	38
D\$66 L\$66 1 ARG\$ 1 AC1 1 AC2 1 AC2 1 AC3 1 A\$66X A\$66 N\$66 11 530 3H A\$66X F\$ER 3 S\$66 H\$66 1 S\$66K L\$66 1 M\$66 ARG\$ 1 M\$66 ARG\$ 1 D\$66 AC2 1			F\$ER	3		
ARG\$ 1 AC1 1 AC2 1 AC2 1 AC3 1 A\$66X A\$66 N\$66 11 530 3H A\$66X F\$ER 3 S\$66 H\$66 1 S\$66K L\$66 1 S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66X AC1 1 D\$66 AC2 1			H\$66	1		
AC1 1 AC2 1 AC3 1 A\$66X A\$66 N\$66 11 530 3H A\$66X F\$ER 3 S\$66 H\$66 1 S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66 ARG\$ 1 M\$66 AC2 1		D\$66	L\$66	1		
AC2 1 AC3 1 A\$66X A\$66 N\$66 11 530 3H A\$66X F\$ER 3 S\$66 H\$66 1 S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66 AC2 1			ARG\$	1		
AC3 1 A\$66X A\$66 N\$66 11 530 3H A\$66X F\$ER 3 S\$66 H\$66 1 S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66X AC1 1 D\$66 AC2 1				1		
A\$66X A\$66 N\$66 11 530 3H A\$66X F\$ER 3 S\$66 H\$66 1 S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66X AC1 1 D\$66 AC2 1			AC2	1		
A\$66X F\$ER 3 S\$66 H\$66 1 S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66X AC1 1 D\$66 AC2 1			AC3	1		
A\$66X F\$ER 3 S\$66 H\$66 1 S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66X AC1 1 D\$66 AC2 1	A\$66X		-	11	530	3H
S\$66X L\$66 1 M\$66 ARG\$ 1 M\$66X AC1 1 D\$66 AC2 1			F\$ER	3		
M\$66 ARG\$ 1 M\$66X AC1 1 D\$66 AC2 1				1		
M\$66X AC1 1 D\$66 AC2 1				1		
D\$66 AC2 1				1		
				1		
				1		
		D\$66X	AC 3	1		

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
A\$81	A\$81	N\$22 F\$ER AC1 AC2	2 1 1 1	70	3
ABS	ABS	L\$22	1 1	10	4
AC1	AC1 AC2 AC3 AC4 AC5	N\$22	1	5	6
AIMAG	AIMAG	L\$55 L\$22 AC 3	1 1 1	10	4
AINT	AINT	L\$22 N\$22 A\$22 S\$22	1 2 1 1	30	4
ALOG	ALOG10 ALOG	ARG\$ C\$12 H\$22 L\$22 A\$22 S\$22 D\$22 M\$22 F\$ER	1 5 3 6 2 1 7 1	120	35
ALOGX	ALOG10 ALOG ALOGX	ARG\$ C\$12 A\$22 M\$22 S\$22 F\$ER	1 1 4 1 1	180	3H
ALOG10	See ALOG	or ALOGX			
AMAX0	See MAX0				
AMAX1	See MAX1				
AMIN0	See MIN0				
AMINI	See MIN1				4
AMOD	AMOD	L\$22 D\$22 AINT M\$22 N\$22 A\$22	1 1 1 1 1	30	4
ARG\$	ARG\$			20	6

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage ^{(Words} 10)	T ape Number
ATAN	ATAN2 ATAN	ARG\$ D\$22 N\$22 M\$22 A\$22 S\$22	3 6 7 5 11 2	340	3
ATAN2	See ATAN				
C\$12	C\$12	A\$22 N\$22	1 1	30	4
C\$16	C\$16	C\$12 C\$26	1 1	5	1
C\$21	C\$21	N\$22 A\$22 F\$ER	1 1 1	30	4
C\$25	C\$25	H\$22 CMPLX	1 1	20	2
C\$26	C\$26	AC 1 AC2 AC 3	1 1 1	10	3
C\$61	C\$61	C\$62 C\$21	1 1	4	3
C\$62	C\$62 SNGL	L\$22 N\$66 N\$22 L\$66 AC1 AC2	1 1 1 1 1	20	4
C\$81	C\$81	AC1	1	10	4
CABS	CABS	F\$AT SUB\$ L\$22 M\$22 H\$22 A\$22 SQRT	1 2 2 2 2 1 1	40	2
CCOS	CCOS	F \$AT L \$55 A \$55 H \$55 CSIN	1 1 1 1	40	2
CEXP	CEXP	F\$AT SUB\$ EXP H\$22 COS M\$22 SIN L\$55	1 7 1 3 1 2 1 1	60	2

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
CLOG	CLOG	F\$AT SUB\$ L\$22 M\$22 H\$22 A\$22 ALOG ATAN2 L\$55	1 6 3 5 1 1 1 1	90	2
CMPLX	CMPLX	F\$AT SUB\$ L\$22 H\$22 L\$55	1 2 2 1	40	2
CONJG	CONJG	F\$AT SUB\$ L\$22 H\$22 N\$22	1 4 2 2 1	40	2
COS CSIN	See SIN CSIN	L\$55 F \$AT SUB\$ EXP H\$22 L\$22 D\$22 A\$22 SIN M\$22 S\$22 COS L\$55	1 5 1 6 3 1 1 1 1 4 1 1 1	90	2
CSQRT	CSQRT	F\$AT SUB\$ CABS H\$22 ABS A\$22 M\$22 SQRT L\$22 D\$22 L\$55	1 7 1 8 1 1 2 1 6 1 1	90	2
D\$11	D\$11	ARG\$ F\$ER	1 1	80	5S
D\$11X	D\$11 D\$11X	ARG\$ F\$ER	1	40	5H
D\$22 D\$22X	See M\$22 D\$22	N\$22 F\$ER	3 2	110	5H

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
D\$52	D\$52	F\$AT H\$55 SUB\$ L\$22 D\$22 H\$22 L\$55	1 1 2 2 2 2 1	50	2
D\$55	D\$55	F\$AT H\$55 SUB\$ L\$22 M\$22 H\$22 A\$22 D\$22 S\$22 N\$22 L\$55	1 12 8 6 8 2 2 1 1 1 1	140	2
D\$62	D\$62	F\$AT H\$66 DBLE L\$66 D\$66	1 2 1 1 1	20	1
D\$66	See A\$66				
D\$66X	See A\$66X				
DABS	DABS	F\$AT L\$66 N\$66	1 1 1	10	1
DATAN	DATAN	F\$AT DABS H\$66 C\$81 L\$66 A\$66 N\$66 D\$66 M\$66	1 9 1 13 10 3 2 9	180	1
DATAN2	DATAN2	F\$AT L\$66 H\$66 F\$ER D\$66 DATAN S\$66 A\$66	1 9 3 1 1 1 1 1	70	1
DBLE	DBLE	F\$AT L\$22 C\$26	1 1 1	20	1

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	T ape Number
DCOS	DCOS	F\$AT L\$66 A\$66 H\$66 DSIN	1 1 1 1 1	20	1
DEXP	DEXP	F\$AT L\$66 M\$66 H\$66 C\$61 C\$16 N\$66 A\$66 S\$66 D\$66 A\$81	1 12 8 11 1 1 1 8 3 1 1	160	1
DIM	DIM	L\$22 S\$22	1 1	20	4
DINT	DINT	L\$66 N\$66 A\$66 S\$66 AC1	1 2 1 1 1	20	3
DIV \$	See M\$22				
DLOG	DLOG	F\$AT DLOG2 M\$66	1 1 1	10	1
DLOG2	DLOG2	F\$AT L\$66 F\$ER C\$81 C\$16 H\$66 Z\$80 A\$66 S\$66 D\$66 M\$66	1 5 1 1 6 1 6 2 1 6	100	1
DLOG10	DLOG10	F\$AT DLOG2 M\$66	1 1 1	10	1
DMAX1	DMAX1	L\$66 H\$66 S\$66	3 2 1	40	3
DMIN1	DMIN1	L\$66 H\$66 S\$66	3 2 1	40	3

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
DMOD	DMOD	F\$AT L\$66 D\$66 H\$66 DINT M\$66 S\$66 N\$66	1 1 1 1 1 1 1 1 1	20	1
DSIGN	DSIGN	F\$AT L\$66 N\$66	1 3 1	20	1
DSIN	DSIN	F\$AT DABS M\$66 H\$66 C\$61 C\$16 N\$66 A\$66 MOD L\$66 S\$66	1 9 5 1 1 3 7 1 8 2	130	1
DSQRT	DSQRT	F\$AT L\$66 C\$62 H\$22 SQRT C\$26 H\$66 D\$66 A\$66 A\$81	1 2 1 1 1 1 1 1 1 1 1	40	1
E\$11	E\$11	ARG\$ M\$11 F\$ER	1 2 1	100	3S
E\$11X	E\$11 E\$11X	ARG\$ F\$ER	1 1	110	3H
E\$21	E\$21	ARG\$ M\$22 D\$22	1 1 1	50	3
E\$22	E\$22	ARG\$ ALOG M\$22 EXP	1 1 1 1	30	3
E\$26	E\$26	F\$AT C\$26 H\$66 DLOG M\$66 DEXP	1 1 2 1 1 1	30	1

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
E\$51	E\$51	F\$AT H\$55 IABS L\$55 M\$55 D\$55	1 3 1 4 1 1	60	2
E\$61	E\$61	F\$AT H\$66 L\$66 D\$66 D\$11 M\$11 M\$66	1 5 1 2 1 2	70	1
E\$62	E\$62	F\$AT H\$66 DLOG M\$62 DEXP	1 2 1 1 1	30	1
E\$66	E\$66	F\$AT H\$66 DLOG M\$66 DEXP	1 2 1 1 1	30	1
EXP	EXP	ARG\$ N\$22 M\$22 S\$22 A\$22 D\$22 F\$ER	1 2 6 3 2 2 1	230	3
F\$AR	See F\$IO				5
F\$AT	F\$AT			58	5
F\$B5-9 -	F\$B5 F\$B6 F\$B7 F\$B8 F\$B9 F\$BN	C\$MR	6	26	6
F\$CB	See F\$IO				5
F\$D5-9	F \$D2 F \$D5 F \$D6 F \$D7 F \$D8 F \$D9 F \$DN	O\$PS O\$ME	2 6	34	6

Primary Name	Entry Points	Subroutines Called	Number of R e ferences	Approx. Storage (Words ₁₀)	Tape Number
F\$ER	F\$ER F\$HT	AC5	2	37	6
F\$F5-9	F\$F5 F\$F6 F\$F7 F\$F8 F\$F9 F\$FN	C\$BR F\$ER	1 1	41	5
F\$GA	F\$GA	F\$ER	1	18	4
F\$GC	F\$GC			14	4
F\$HT	See F\$ER				6
F\$IO	F\$IO F\$CB F\$L1 F\$L2 F\$L3 F\$L5 F\$L6 F\$AR	F\$ER	2	1356	5
F\$R1	F\$R1	F \$IO I\$AA I\$AB	1 1 1	21	5
F\$R2	F\$R2	F\$IO I\$PA I\$PB	1 1 1	21	5
F\$R3	F\$R3	F \$10 1\$CA 1\$CB	1 1 1	21	5
F\$R5-9	F\$R5 F\$R6 F\$R7 F\$R8 F\$R9	F \$10 1\$MA 1\$MC	1 1 1	80	5
F\$Rn	F\$Rn	F\$R1 F\$R2 F\$R3 F\$R5 F\$R6 F\$R7 F\$R8 F\$R9	1 1 1 1 1 1 1 1	45	5
F\$TR	F\$TR	F\$W1 F\$AR F\$CB F\$L6 AC1 AC2 AC3	5 4 1 2 1 1	198	4

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	T ape Number
F\$W1	F\$W1	F\$IO O\$AP O\$AC O\$AF O\$AB	1 1 1 1 1	94	5
F\$W2	F\$W2	F\$IO O\$PF O\$PP O\$PC O\$PB	1 1 1 1	80	5
F\$W3	F\$W3	F\$IO O\$CH O\$CB	1 1 1	39	5
F\$W4	F\$W4	F\$IO O\$LF O\$LP O\$LO	1 3 1 1	36	5
F\$W5-9	F`\$W5 F\$W6 F\$W7 F\$W8 F\$W9	F \$10 O\$MC C\$8T06 O\$MA	1 1 1 1	57	5
F\$Wn	F\$Wn	F\$W1 F\$W2 F\$W3 F\$W4 F\$W5 F\$W6 F\$W7 F\$W8 F\$W8 F\$W9	1 1 1 1 1 1 1 1 1	41	5
FLOAT	FLOAT	C\$12	1	10	4
H\$22	H\$22	ARG\$	1	10	5
H\$55	H\$55	ARG\$ AC1 AC2 AC3 AC4	1 1 1 1 1	20	3
н\$66	Н\$66	ARG\$ AC1 AC2 AC3	1 1 1 1	20	3
IABS	IABS			10	4
IDIM	IDIM			20	5
IDINT	See IFIX				
IFETCH	IFETCH	ARG\$	1	10	4

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
IFIX	IDINT INT IFIX	L\$22 C\$21	1 1	10	4
INT	See IFIX				
ISIGN	ISIGN			20	5
ISTORE	ISTORE	F\$AT	1	10	4
L\$22	REAL L\$22	ARG\$	1	10	5
L\$33	L\$33			10	5
L\$55	L\$55	ARG\$ AC1 AC2 AC3 AC4	1	20	4
L\$66	L\$66	ARG\$ AC1 AC2 AC3	1 1 1 1	20	4
LOC	LOC			10	4
M\$11	M\$11	ARG\$ F\$ER	1 1	110	5S
M\$11X	M\$11 M\$11X	ARG\$ F\$ER	1 1	50	5H
M\$22	M\$22 D\$22 DIV\$	N\$22 ARG\$ F\$ER	5 2 3	330	55
M\$22X	M\$22	F\$ER	1	130	5H
M\$52	M\$52	F\$AT H\$55 SUB\$ L\$22 M\$22 H\$22 L\$55	1 1 2 2 2 2 1	50	2
M\$55	M\$55	F\$AT H\$55 SUB\$ L\$22 M\$22 H\$22 S\$22 N\$22 A\$22 L\$55	1 10 4 4 1 1 1 1 1	110	2

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
M\$62	 M\$62	F\$AT H\$66 DBLE M\$66	1 1 1 1	20	1
M\$66	See A\$66				35
M\$66X	See A\$66X				34
MAX0	AMAX0 MAX0	FLOAT	1	40	3
MAX l	AMAX1 MAX1	L\$22 H\$22 S\$22 IFIX	2 2 1 1	50	3
MIN0	AMIN0 MIN0	FLOAT	1	30	3
MIN1	AMIN1 MIN1	L\$22 H\$22 S\$22 IFIX	2 2 1 1	50	3
MOD	MOD	D\$11 M\$11	1 1	20	4
N\$22	N\$22			10	5
N\$33	N\$33			10	4
N\$55	N\$55	H\$55 SUB\$ L\$22 N\$22 H\$22 L\$55	1 2 2 2 2 1	30	2
N\$66	N\$66	AC1 AC2 AC3	1 1 1	30	4
OVERFL	OVERFL	AC 5	1	20	5
REAL	See L\$22				5
S\$22	See A\$22				5S
S\$22X	See A\$22X				
S\$52	S\$52	F\$AT H\$55 L\$22 S\$22 H\$22 L\$55	1 1 1 1 1	30	2
S \$55	S\$55	F\$AT H\$55 SUB\$ L\$22 S\$22	1 1 4 2 2	40	2

Primary Name	Entry Points	Subroutines Called	Number of References	Approx. Storage (Words ₁₀)	Tape Number
		N\$22 H\$22 L\$55	2 2 1		
S\$62	S\$62	F\$AT H\$66 DBLE S\$66 N\$66	1 1 1 1	20	1
S\$66	See A\$66				3S
S\$66X	See A\$66X				3H
SIGN	SIGN	L\$22 N\$22	2 1	20	4
SIN	COS SIN	ARG\$ N\$22 M\$22 S\$22 A\$22	1 2 7 1 4	190	3
SLITE	SLITE SLITET SSWTCH	ARG\$ L\$33	3 1	70	5
SLITET	See SLITE				
SNGL	See C\$62				
SQRT	SQRT	ARG\$ DIV\$ D\$22 A\$22 F\$ER	1 1 1	70	3S
SQRTX	SQRT SQRTX	ARG\$ D\$22 A\$22 F\$ER	1 1 1 1	80	3Н
SSWTCH	See SLITE				
SUB\$	SUB\$	M\$11 F\$ER	3 1	130	4
TANH	TANH	L\$22 EXP A\$22 H\$22 D\$22	1 1 2 1 1	60	3
Z\$80	Z\$80	AC1	1	20	3

~

APPENDIX E

ERROR MESSAGES

Error <u>Message</u>	Condition	Subroutine
AD	Over/underflow in double-precision	A\$66, S\$66, A\$66X, S\$66X
BF	End-of-file mark encountered while unit backspacing a record.	F\$F5-9
DL	Negative or zero argument	DLOG, DLOG10, DLOG2
DT	Both arguments are zero	DATAN2
DZ	Division by zero	D\$22, D\$22X
EQ	Exponential overflow adding integer to double-precision exponent	A\$81
EX	Exponential overflow during exponentiation	EXP
FE	Format error	F\$IO
GO	Incorrect control variable in a GO TO statement	F\$GA
II	First argument zero, second argument negative	E\$11, E\$11X
	$I > 2$ and $J \ge 15$, or	
X	$I \leq -2$ and $J \geq 15$	
IM	Over/underflow during integer multiplication	M\$11, M\$11X
IN	Input error	F\$AR
IZ	Integer division by zero or -32, 768/-1	D\$11, D\$11X
LG	Log of negative or zero argument	ALOG, ALOG10, ALOGX
MD	Double-precision multiplication or division over/underflow	D\$66, M\$66, D\$66X, M\$66X
ΡZ	Double-precision division by zero	D\$66, D\$66X
RI	Integer too large when converted from real to integer	C \$2 1
SA	Arithmetic overflow (result $\geq 2 * * 127$)	A\$22, A\$22X
SD	Divisor unnormalized	D\$22
SM	Arithmetic overflow during multiplication or division	M\$22, M\$22X, D\$22X
SQ	Negative argument	SQRT, SQRTX

HONEYWELL INFORMATION SYSTEMS **Technical Publications Remarks Form***

TITLE:

SERIES 16 FORTRAN MATH LIBRARY

ORDER No.: AM74, REV. 0 DATED: DECEMBER 1973

DATE: _____

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME _____

COMPANY_____

TITLE ____

CUT ALONG LINE

Your comments will be promptly investigated by appropriate technical personnel, action will be taken as required and you will receive a written rooly. If you do not require a

FIRST CLASS

MASS. 02181

FOLD ALONG LINE

- CUT ALONG LINE - -

Business Reply Mail Postage Stamp Not Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS 60 WALNUT STREET WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

FOLD ALONG LINE

The Other Computer Company: Honeywell

HONEYWELL INFORMATION SYSTEMS

.