Honeywell FORTRAN MATH LIBRARY

SERIES 16

SOFTWARE

Honeywell FORTRAN MATH LIBRARY

SERIES 16

SUBJECT:

Conventions, Loading Information,
tion of Intrinsic and External Funct
routines, and Error Messages.

Library Use, Programming Information, Descrip-
ions and Subroutines and of Compiler Support Sub-

DATE:

December 1973

ORDER NUMBER:
AMT74, Rev. 0

PREFACE

The FORTRAN Math Library consists of FORTRAN-callable subroutines. Section 1
introduces the library. Section II contains information for a programmer using the various
subroutines. Section III shows how to call them from a DAP-16 Mod 2 assembly program
and gives examples. Section IV describes the standard ANSI and ISA FORTRAN subroutines
in the library, and Section V describes the compiler support subroutines. Section VI pre-
sents run-time and control subroutines. There are five appendices, included to facilitate

access to the library.

Additional information may be obtained from the following manuals:

DAP-16 and DAP-16 Mod 2 Assembly Language, Order Number BYO09.
316/516 Programmers' Reference Manual, Order Number BX47.
Series 16 FORTRAN IV, Order Number BX32.

Series 16 Equipment Operators' Manual, Order Number BX48,

The FORTRAN Math Library consists of coded programs designed to
extend the power of Series 16 in the area of program preparation and
maintenance, They are supported by comprehensive documentation and
training; periodic program maintenance is furnished for the current
version of the programs, in accordance with established Honeywell
specitications, provided they are not modified by the user.

©1973, Honeywell Information Systems Inc. File No.: 1A23

AMT4

CONTENTS

Page
Section I Introduction vt vttt it i it et e et e e, 1-1
Subroutine Descriptions ettt ittt tnnnnnreneennnnns 1-1
Appendices cecereiiiiiiiiiiiiiena, s e et e e s e s et e st 1-1
Symbo]_s ... 1-2
Naming Conventions .« eeeeerttiarin it eennrnneenennns 1-2
Loading Information «:.... S et e it e e e e 1-3
Section II Use of FORTRAN Math Library «.cecvceeetvnennntennninn.., 2-1
Data Types and Representations «c:eievviiiiiiiiiiiiiia., 2-1
Integer vttt i i i i e it e i e e, 2-1
-) 2-1
DoUDle-PreciSion ot eeerenerneeenoeenenneennesoneenn. 2-2
Complex vt i i i i e i et e e 2-2
e < o 1 2-2
Normalization v ottt ittt it inoneeeneneesoneneennnnns 2-3
Register Use tovirivnininieiiine e eeeenneennnnns 2-3
ACcUMUIAtO TS v vttt ittt ittt e e et 2-3
Integer Accumulator - v v vviin ittt i e 2-3
Real Accumulator -« vt ottt vt eeneenenneennseneennes 2-3
Complex (pseudo) Accumulator «««.ceviverrererenennan. 2-3
Double-Precision (pseudo) Accumulator «-«::e.vveee.... 2-3
Results ccccteoeenns i e e e e e e e e e 2-3
Section II1 DAP-16 Mod 2 Programming Information +.ceceeervrnrnan.n, 3-1
Library (O 1 1 - T 3.1
Examples of Calls to Library «coeeeeeoerennernrennnernnnn 3-2
Section IV Intrinsic and External Functions and Subroutinescccv.... 4-1
N2 4-2
AIMAG ittt ittt teeeoteenennnanas Sttt et 4-3
7N 4-4
N 51 4-5
0 570 1. < 4-6
ALOGIO c vt enettent et enneen et saeeaseneanennenan 4-8
AMAXD vttt e e e e e e e e e e 4-9
N 7 4-10
AMINO vt vttt et tneeeoeeneeeneennnsenesneenanenneennennn 4-11
7N 1 4-12
AMOD t i ittt e i et i i e et et e et 4-13
N - N 4.14
7 4-16
CAB S ittt it it i i ittt e i it e e 4-17
O 1 1 4-18
L0135 4 4-19
[7 L 4.20
O 5 7 421

iii AM74

CONTENTS (cont)

Page
Section IV (cont) CONTG v ettt i e ettt sttt eeatossisanesneinessassassnnns 4-22
X = T R 4-23
CSIN it tes s e seeeeneseassoneeaosanasassenesnnsnansnnn 4-24
L8 =10) 2 & A I R 4-25
10N = 1 4-26
DAT AN ittt et neeoeeatsenneesnssassesossnnssaises 4-27
DATANZ ittt titnne s intassossasnsesnssassasonnnsons 4-28
DBLE sttt trereeasaessatsasensasasasne s rsanans 4-29
15 Y0 © 1 R 4-30
103 30 4 = N R) 4-31
0). I 4-32
1 191 A 4-33
DLOG vttt ttnernesoasessssnestonosasssssonssanesanss 4-34
DLOG2 ittt it tneeasssassesesanssoassasasessasssanas 4-35
DLOGIO ...t iienrenorancocansansans e i 4-36
DMAXI ettt aee s e e e 4-37
DMINL it e it ieneetsoranensasaantanecasassesansseas 4-38
15 1.7, (0) 5 J o R 4-39
DSIGN it iierine it tnesnnansassaaens et 4-40
DSIN ittt it . 4-41
1 1570) 23 A R R 4-42
205 = T I R 4-43
FLOAT ittt it tteeeoasntoransssaasssotasssasonsssanss 4-44
JABS ittt ittt et e e s 4-45
1 1. R 4-46
110 115 I I R 4-47
1 30 3 A = O T T) 4-48
3 R 4-49
11 I R 4-50
ISIGIN vttt teeeeneeseeeaasssosnenoasonassanssnsssasssas 4-51
ISTORE v o totseeeeesesesnesasneeeseeaesaansnannanees, 4-52
50 1 I R R 4-53
17 4-54
1. 72 T T R 4-55
MINO it iiieieniseesnsosesenseonaatosassstoasstonsssos 4-56
1115 T R 4-57
1Y) 5 2 4-58
OVERFE L . it iiitiietneeaasennnsosassosstonsososssasscnss 4-59
REAL L ittt iiititeesasatossosasanassssrsssnossanssanns 4-60
SIGN ittt ettt aesensenaseansasaasosstaass ot anaeeans 4-61
LS 1, R R R 4-62
SLITE © vt tee st eanennsoonsoseseosnosanssasssosannnsnns 4-63
SLITE T vt ittt teneeeneeanesneseassnnssonssassonsasanssas 4-64
)2 B A R 4-65
SORTX teetneeinereneoseessosasseannasosssassanosoassoss 4-66
TR A o R R 4-67
b N (R I 4-68
Section V Compiler Support Subroutines it 5-1
N7) 5-2
F N S 5-3
N 12 5-4
N3 T R 5-5
N1 R R R IR . 5-6
N 12X Y T) 5-7
N Y Y5 S R R . 5-9

iv AMT74

CONTENTS (cont)

Page

Section V (cont) A Bl e e e e e e e 5-10
O 5-11
ARG i e e e 5-12
O U 5-13
(3 5-14
. 5-15
O/ 5-16
B2 ittt et e e et e 5-17
O 5-18
B2 ittt e e e e e e 5-19
[5-20
3 1 5-21
B3 S 5.22
D22 i e et e e e e e e e 5.23
D22 i i e e e e e e 5-24
D52 i e e e e e 5-25
101 5-26
B 1Y 5.27
Db it e e e e e e 5-28
D03 P 5-29
05 1 5-30
E 2] i e e e e e 5-31
B 22 i e e e e e e 5-32
D0 S 5-33
05 5-34
0] U 5-35
E B2 i e e e e e e e 5-36
Y 5-37
22 i e e e e 5-38
2 3 . 5-39
= 7Y P 5-40
D22 it e e e e 5-41
I 5 5-42
75 5-43
LY Y 5-44
Y23 5-45
B3 5-46
M B2 it e et e e et e e e 5-47
M$22X ..., et et e e e e e e e 5-48
1Y 3 5-49
Y 1 5-50
MBO2 e vttt e e 5-51
MBE6 + e ve e e e e 5-52
N2 ittt i e e e e e e e e 5-53
3 3 S 5-54
N B D ittt ittt ettt ettt et et e e e 5-55
F Y S 5-56
SH22 et 5-57
Y - N 5-58
332 5-59
1 2 5-60
1YY 5-61
S 5-62
] A 5-63
BUBSE ittt ittt ittt e e et e, 5-64
2 Y1 N 5-66

v AMT4

CONTENTS (cont)

Page
Section VI Run-Time and Control Subroutinescceeeiiiionioeens 6-1
N S e 6-2
37N e e 6-3
FSB5-9 wevvuruenaenns e e e 6 -4
FECB evteennnrvintnioneanesenonenenennn, e 6-5
F$D5-9 cevnnn e et et e e e 6 -6
FSER ettt ieenitieenotnionennss et e et 6-7
a2« T veee 6-8
kY - N T I R R 6-9

) O @ T T R I 6-10

83 = 1 P R R eee b-11

F$10 st et aeees e aerect ettt ees s et as s ee e as s 6-12

83 23 I e 6-13

FSRZ cvvenvinvanennns e et e e . 6-14

2B S 6-15

FSR5-9 tvvvivenvnennnannns e e et e e e 6-16

FORO eveeenvnenannnnenoneenensnas e e . 6-17

F$TR e e e e . 6-18

83 6-20

FEW2 cevvviinninnnennnas e e e e e e e 6-21

o S T I 6-22

FEWA oeeeiiie it iaaianenenns e e e 6-23

FEW5-9 vevvnnnn. e e e e e e e 6-24

FEWH oveveevnntaneenonionnoansons et 6-25

Appendix A Magnetic Tape 70182805000 Tape Contents (Library
Sources Coded in FORTRAN) e st e et a e e A-1
Appendix B Mathematical Routines «..... S et e te et e e B-1
Appendix C Subroutine Functions eesssearerranse e s e e . C-1
Appendix D Library Index c et e e N ce e . D-1
Appendix E Error Mesgages c et e e c e e e s e e e e e e s e s e e e E-1
ILLUSTRATIONS

Figure 2-1. Format of Integer - -..vveerierenennnenasononenneenennnenan . 221
Figure 2-2. Format of Real and Double-Precision Numbers -+ coeeeeen. . 2-2

vi AMT4

SECTION I
INTRODUCTION

The FORTRAN Math Library consists of an extensive assortment of subroutines to aid
the programmer in performing mathematical and trigonometric operations and functions,
conversions between data types, bit string operations, logical relations, and other functions.
The math routines included are for single-(real) and double-precision, complex, integer,

and logical calculations.

This library may be loaded in either normal or extended mode and will run in the same

mode.

SUBROUTINE DESCRIPTIONS

The descriptions, in Sections IV and V, of the FORTRAN external and intrinsic functions
and the compiler support subroutines give the name of the subroutine, its purpose, the
DAP-16 Mod 2 calling sequence, the FORTRAN calling sequence (where appropriate), the
method used to compute the result, the data types of the arguments and the result (where
applicable), error messages generated by the subroutine, if any, and other routines used by

the subroutines, if any.

APPENDICES

There are five appendices to this manual. Appendix A lists the contents of the library
tapes. There are four magnetic tapes and eight paper tapes available. The first two mag-
netic tapes are source tapes and contain the sources for the Statistical Library, FORTRAN
Library, and Fixed Point Math Library. The third magnetic tape contains the objects for
the software version of the three libraries; the fourth tape contains the objects for the

hardware version of the three libraries.

1
The list of '""Other Routines Used' is given in the order in which they are called. If a
routine is called more than once, it is listed only once, the first time it is called.

1-1 AMT4

The eight object paper tapes contain the FORTRAN Library and are labeled:

LTCFI1 Tape 1 of 6

LTCF2 Tape 2 of 6

LTCF3S Tape 3 of 6 Software Version
LTCF3H Tape 3 of 6 Hardware Version
LTCF4 Tape 4 of 6

LTCF5S Tape 5 of 6 Software Version
LTCF5H Tape 5 of 6 Hardware Version
LTCF6 Tape 6 of 6

The tapes are order dependent, as many of the subroutines call other subroutines which

appear later in the library. The digits 1 through 6 on the label indicate the loading order.
Appendix B lists the math routines by argument type,.
Appendix C lists the library subroutines by function,
Appendix D is an alphabetical list of all the subroutines with their entry points,
approximate storage required, subroutines referenced and the number of times referenced,

the library tape on which they are located, and the page in this manual on which they are

described.

Appendix E lists the error messages produced by the subroutines and the interpretation

of these messages.

SYMBOLS

The following symbols and letters are used in many of the subroutine descriptions:

* multiplication

/ division

*ikn raised to the exponential power of n
C complex

D double-precision

I integer

L logical

R real

NAMING CONVENTIONS

The intrinsic and external functions are named according to the American National

Standards Institute (ANSI) or the Instrument Society of America (ISA) naming rules.

The compiler support subroutines are named, for the most part, according to the
following naming convention: The first letter of the name denotes the operation to be per-

formed (see the list below). It is followed by a dollar sign having no significance and then

1-2 AMT4

by two numbers, The first number (see the list below) represents the operand initially in the
accumulator (except in load operations) and the second number represents the second operand
or the type of result. If there is a High-Speed Arithmetic Option version of these subroutines,

an X is appended to the name,.

Operation Argument Type

A — Add 1 — Integer

C — Convert 2 — Real

D — Divide 3 — Logical

E — Exponential 5 — Complex '
H — Hold (store) 6 — Double-precision

L — Load 8 — Double-precision exponent

M — Multiply

N — Negate

S — Subtract

Z — Zero (clear)

Examples
A$22 — add two real numbers
D$52 — divide a complex number by a real number
E$61 — calculate the value of a double-precision number to an

integer power

M$22X — multiply two real numbers, using the High-Speed
Arithmetic Option

LOADING INFORMATION

There are two sets of library subroutines, one for installation with the High-Speed
Arithmetic Option and one for those systems without this hardware option. Each set is
contained on six rolls of paper tape, Customers who purchase the library in source form

(on magnetic tape) receive both sets of library subroutines,

The organization of the library is modular, thus making it possible to load only those
routines which will be used. This concept of modularity extends to the paper tape, If

complex or double-precision variables are not used, the first two paper tapes are not required,

Each paper tape has been assembled via the DAP-16 Mod 2 as sembly language and
should be loaded by the Series 16 Loader, LDR-APM. Refer to the Series 16 Equipment

Operators' Manual, Order Number BX48, for information concerning loading object paper

tapes.

1-3 AM74

SECTION II
USE OF FORTRAN MATH LIBRARY

DATA TYPES AND REPRESENTATIONS

The representation of a negative number in any of the following formats (excluding logical)
is the TWOs complement of the equivalent positive number. The complement is taken for the
entire representation, including all subfields. The TWOs complement is taken by reversing all
bits in the representation (ONEs complement) and adding one to the low-order position, propa-

gating carries as required,

Integer
This is a 16-bit (single-precision only) word with an implied decimal point after bit 16;

bit 1 is a sign bit (see Figure 2-1), An integer value may range from -32,768 to +32, 767,

Example: +5 =0 000 000 000 000 101 '0()00051
-5=1111 111 111 111 011 = '177773

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ety g

\— SIGN BIT

Figure 2-1. Format of Integer

Real

This is a 32-bit word in the format shown in Figure 2.2, Bit 1 is the sign bit (0 for
positive, 1 for negative), Bits 2-9 contain a binary number (N) with a maximum decimal value
of 255 (377 octal) representing the 8-bit characteristic. This number is ''biased'" by 128 (200
octal), The remaining 23 bits represent a binary fraction (F) with a value less than 1. The
value represented is F*2%%(N-128), A number is considered "normalized" when the fraction
F is at least 1/2 (i, e., the leading bit is set for a positive number). Within this representation
the largest representable number in normalized form is just under 2%%127, or approximately
10*#*(38,5), The smallest number is 2%%(-129), or approximately 10%%(-38, 5). The 23 magni-

tude bits give a precision of one part in 2%%*23, or approximately 6.9 digits of accuracy. Zero

The apostrophe before a number indicates octal code,

2-1 AM74

is shown by all zeros in these 23 bits. (Throughout this manual the word ''real" is used to

reference real singie-precision numbers. j

Example: +5. = 0 100 000 111 010 000, 0 000 000 000 000 000
-5,

040720, 0
1011 111 000 110 000, 0 000 000 000 000 000 = '137060, O

Double-Precision

This three-word format is identical to the real number format with the exception of an
additional 16 magnitude bits (see Figure 2-2). The 39 magnitude bits give a precision of one
part in 2%%39, or approximately 11.7 digits of accuracy. This data type should not be confused

with hardware double-precision.

Complex

This is represented by two real number pairs, each having the format of a real number
(see Figure 2-2). A real number takes two words of storage; the complex format requires
four words. The first two words represent the real portion of the complex number, and the

last two words represent the imaginary portion.

Logical

A logical value is shown as a word of all zeros for false and a value of one for true. In
logical operations, any nonzero value is interpreted as true, The complement of a logical

value changes it from 0 to 1 or 1 to 0.

12345678910111213141516

FIRST WORD: : ' l ‘ L x l
(REAL AND 1 L i i 1 i — Lo ; 1]
DOUBLE- N N
PRECISION) CHARACTERISTIC MOST SIGNIFICANT

7 BITS OF THE FRACTION
(EXCESS - 128 NOTATION)

SIGN BIT POSITION OF THE BINARY
POINT

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16

SECOND WORD:

(REAL AND lllll!lltllilll/
DOUBLE- ~—

PRECISION) v

NEXT MOST SIGNIFICANT 16 BITS OF THE FRACTION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

THIRD WORD:

(USED FOR T SN AT R A U A NN T S M
DOUBLE- - ~N —
PRECISION ONLY)
LEAST SIGNIFICANT 16 BITS OF THE FRACTION
-

Figure 2-2. Format of Real and Double-Precision Numbers

2-2 AMT74

NORMALIZATION

A real, double-precision, or complex number is defined as normalized when the fractional
part has a value between 1/2 and 1, For instance, 3/8 x 23 and 3/4 x 22 both have the same

value, but the latter is the normalized form.

REGISTER USE

All registers are presumed to be available to the subroutine library., and the user is
cautioned not to expect any of them to be preserved, whether or not the arguments or results
are stored in them, That is, any registers not specifically described as containing a particular
result upon exit from the subroutine must be considered as having become undefined by the

execution of the subroutine,

ACCUMULATORS

Integer Accumulator

The A-register is used in all integer operations.

Real Accumulator

The A- and B-registers are used in all real operations.

Complex (pseudo) Accumulator

This four-word area in memory (AC1-AC4) is provided by the library to be used in all
complex operations. The real portion of the complex number is stored in locations ACI and

ACZ; the imaginary portion is stored in locations AC3 and AC4,

Double-Precision (pseudo) Accumulator

This three-word area in memory (AC1-AC3) is provided by the library to be used in all

double-precision operations.

RESULTS

Results are stored according to their data types. Complex numbers are found in the
complex accumulator upon exit from any of the compiler support subroutines; double-precision
numbers are found in the double-precision accumulator; real numbers are found in the A- and

B-registers; and integer and logical values are found in the A-register.

2-3 AM74

SECTION III
DAP-16 MOD 2 PROGRAMMING INFORMATION

LIBRARY CALLS

The DAP-16 Mod 2 calling sequences for entry into the subroutines are shown in the
descriptions in Sections IV, V and VI. When the FORTRAN compiler encounters either a
function reference or a call to a subroutine, the following steps are performed;

1. A call to the function or subroutine is generated.

2. The address of each argument is determined and saved, in the order in
which it is retrieved. In the case of expressions, this address is the
location containing the current value of the expression.

3. If there are two or more arguments, the final address is followed bv a
word of zeros to serve as an argument list terminator.

The code generated by a subprogram definition written in FORTRAN includes a call to
the special subroutine F$AT (Argument Transfer; refer to Section VI). This call immediately
follows the entry point and in turn is followed by a word containing a count of the number of
arguments as defined in the definition statement, followed by that number of words. The
F$AT subroutine fills in those words with the argument addresses (from the call to the
subprogram) and sets the return to the word following the argument terminator word (zeros).
All levels of indirect addressing are removed in passing these addresses. In the case of a
single argument, the terminator word is eliminated, the argument to F$AT shows a single

argument, and the search for the terminator is not performed.

Null arguments may be included in a calling sequence by use of DAC*0 as the address in
the call. Subroutines serviced by F$AT find the address DAC *Q placed in the list of addresses
and therefore know that the parameter was null. It is equally effective to use a DAC *PTR,
where PTR is a DAC*0. This permits a dummy argument to be null, i.e. , an argument

passed through an intermediate subroutine call.

The DAP-16 Mod 2 programmer can generate his own code, performing the same functions

as the F$AT subroutine.

Some of the FORTRAN Math Library subroutines have additional arguments in the A- and
B-registers, or the C-register, or the pseudo-accumulators AC1-AC4. When this is the case,
the description references an "implicit'' argument, i.e., one whose address is not explicitly

part of the calling sequence.

3-1 AMT74

Compiler support subroutines are those which are not normally explicitly called by the

FORTRAN programmer. For example, the statement

produces the following DAP-16 Mod 2 code:

CALL L$22 . .

DAC % } loads the value of X in the A- and B-registers
](;f:éL $$22 } adds the value of Y to the A- and B-registers
gﬁiéL ;I$2'2 } stores the result in the A- and B-registers in

location Z
Subroutines L$22, A$22, and H$22 are compiler support subroutines. They may be called
explicitly by the FORTRAN programmer, if desired, as follows:

CALL L$22(X)
CALL A$22(Y)
CALL H$22(Z)

To perform the same function as the statement Z = X + Y and to generate the same code.

Any of the compiler support subroutines may be called by the FORTRAN programmer in
the following manner:

CALL ROUTINE NAME (ARG1)

CALL ROUTINE NAME (ARG1, ARG2)

CALL ROUTINE NAME (ARG, ARG2, ..., ARGn)

EXAMPLES OF CALLS TO LIBRARY

CALL M$55
DAC ARGI1
Return

This call enters the complex multiplication subroutine, multiplying the contents of the
complex pseudo-accumulator by the complex value in locations ARG1-ARG1+ 3 in the standard
format for complex numbers. The result is stored in the complex accumulator (AC1-AC4),

and any of the other registers should be presumed to have become undefined.

CALL AMINO
DAC I

DAC J

DAC K

OCT 0
Return

This subroutine compares the three integer arguments I, J, and K (no implicit arguments)
and returns with the value of the smallest of these, converted to data type real, in the A- and

B-registers. Other registers are now nresumed to be undefined.

3-2 AMT4

SECTION IV
INTRINSIC AND EXTERNAIL FUNCTIONS AND SUBROUTINES

This section describes the mathematical and trigonometric functions and special

FORTRAN subroutines, arranged in alphabetical order by subroutine name.

4-1 AMT4

ABS

Purpose To generate the absolute value of a real number.
DAP Calling CALL ABS
Sequence DAC ARG (a real number)

(Return)

FORTRAN Reference ABS(R)

Method This subroutine checks the real agrument, ARG]1, for its algebraic
sign. If the sign is negative, the TWOs complement of ARG1 is
calculated. If the sign is positive, the number remains unchanged.

Data Type of This absolute value function of a real number gives a real
Arguments and result.

Reanlts

Other Routines 1.$22, N$22

Used

4-2 AMT74

Purgose

DAP Calli ng
Sequence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

AIMAG

To obtain the imaginary part of a complex argument and convert it
to real format.

CALL AIMAG
DAC ARG1 (a complex number)
(Return)

AIMAG(C)

The complex argument, ARGI, is placed in the complex accumu-
lator. The imaginary part of the complex number (AC3 and AC4)
is then loaded into the A- and B-registers.

The imaginary part of the complex argument, ARGI, is converted

to a real number and placed in the A- and B-registers.

L$55, L$22, AC3

4-3 AMT4

AINT

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of
Arguments and

Results

Other Routines
Used

To truncate the fractional bits of a real number.

CALL AINT
DAC ARG!1 (a real number)
(Return)

AINT(R)

A constant (2%%22) is successively added and subtracted from ARGI.
The available precision of real numbers is such that the fractional '
part of this result is lost. If ARGI is negative, its TWOs comple-
ment is taken before the addition and subtraction take place and it
is recomplemented before the subroutine exits. The resultant value
is effectively the largest integer < | ARG1| with the sign of ARGI.

The real argument remains a real number.

1.$22, N$22, A$22, S$22

4-4 AMT4

ALOG

Purpose To calculate the natural (base e) or common (base 10) logarithm
of a real number.

DAP Calling CALL ALOG (or ALOGI10)
Sequence DAC ARG1 (a real number)
(Return)

FORTRAN Reference ALOG(R) or ALOGI0(R)

Method The log, of the argument, ARG, is computed. This value is
then converted to the desired base by multiplication by an appro-
priate constant.

log2 ARGI1 = FI*(C1+T(C3+T(C5+T(C7+T(C9)))))+B-.5

where T = FI*Fl and Cl1 .28853901E1
C3 = .96179665E0
C5 = .57708664E0
C7= .41153510E0
C9 .34280712E0

F is the fractional part of the normalized argument and B is the
binary exponent of the original argument which has been converted
to a real number.

Data Type of The argument and the results are both real numbers.
Arguments and
Results

Error Messages The message "LG'" is reported if a negative or zero-valued argu-
ment is used, and the result is undefined.

Other Routines ARGS$, C$12, A$22, M$22, S$22, F$ER, H$22, L$22, D$22
Used

4-5 AMT4

ALOGX

Purpose To calculate the natural (base e) or common (base 10) logarithm
of a real number.

DAP Calling CALL ALOGX {or ALOG or ALOGI!0)
Sequence DAC ARG (a real number)
(Return)

FORTRAN Reference ALOG(R) or ALOGI10(R)

Method logA Z = (log‘2 Z)*(logA 2), where Z=ARG1. Thus for the natural
logarithm,
In Z = (10g2 Z)*(logz 2): for the common logarithm,
log10 Z = (log2 Z)*(log10 2). The calculation simplifies in both
‘cases to a computation of 1og2 Z. Remembering that the floating-
point number Z can be expressed as Z = F*2%*B, where F is the
fractional part and B the binary exponent of the normalized argu-
ment Z,
log2 Z = (In(F)/1n (2))+B.
Now, let F = F*K/K, where K may be the product
-
i
i=1
such that F*K = 1+G; where G is positive
1og2 X = In(F*K/K) + B

1n(2)
- 1:1152)1{) =1nK) L B then In(K) is .
s ln(Ki)
i=1
= In(F*K) - 1n(K)
In(2) In(2) *B
= 1n(1+G) - 1n(K)
in(2) 1n(2) +B
=G—1/2G2+1/3G3 - 1n(K) + B
n(zy 0 In(2)

Since 1n(2) = . 69314718,
log2 X =1.442695141 G - . 7213475704 Gz + .4808984995 G3

. 1In(K) +
In(2)

4-6 AMT7T4

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

ALOGX cont.

This function with a real argument results in a real number.

The message "LG" is reported if a negative or zero-valued argu-
ment is used, and an undefined result is returned.

ARGS, C$12, AS$22X, M$22X, S$22X, FSER

4.7 AM74

ALOG10

Purpose To calculate the common (base 10) logarithm.

See ALOG or ALOGX.

4-8 AM74

AMAXO

Purpose To find the maximum real value in a list of integers.
Lurpose g

See MAXO.

4-9 AM74

AMAX1

To find the maximum real value in a list of real arguments.

Purpose

See MAX1.

4-10 AMT74

AMINO

Purpose To find the minimum real value in a list of integers.

See MINO.

4-11 AMT74

AMIN1

To find the minimum real value in a list of real arguments.

Purpose

See MINI.

4-12 AMT4

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

AMOD

To compute the remainder resulting from the division of two real
numbers.

CALL AMOD

DAC ARG1 (real dividend)

DAC ARG2 (real divisor)

OCT 0 (end of arguments flag)
(Return)

AMOD(R, R)

This subroutine divides ARGl by ARG2 by calling D$22. The functior.
AMOD (ARG1, ARG?2) is defined as:

Al - (A1/A2) * A2, where A1=ARGI1 and A2=ARG2

(A1/A2) is the integer whose magnitude does not exceed the magni-
tude of A1/A2 and whose sign is the same as that of Al/A2.

This function with two real arguments results in a real number for
a remainder.

L$22, D$22, AINT, M$22, N$22, A$22

4-13 AMT74

ATAN

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Results

To calculate the principal value of the arctangent (i.e., Ist or 4th
quadrant angle) of a real number or to compute and adjust for

quadrant the arctangent of a real number expressed as a ratio
(X/Y).

CALL ATAN or CALL ATANZ2
DAC ARG (a real number) DAC ARG!1] (both arguments
(Return) DAC ARGZ2 are real numbers
OCT 0 (end of arguments flag)

(Return)

ATAN(R) or ATAN2(R, R)

For ATAN, let N = ABS(ARGI1) The arctangent of N is evaluated by
dividing the total range 0SN<10%%75 into three intervals:

If N<10%%(-B), ATAN(N) = N

If N >10%%10, ATAN(N) = pi/2

If 10%% (-8) < N <10%%*10,

ATAN(N) = base angle + P(Z)
= base angle + C1*Z+ C3%Z*#3+C5*Z*%5, .,

If N<1/2, Z = N and base angle = 0

If N<2, Z

If N<2, Z

fl

(N-1)/(N+1) and base angle = pi/4

n

(-1/N) and base angle = pi/2

For ATAN2, the arctangent of the quotient of ARG1/ARG2 (ARG =
side opposite, ARG2 = side adjacent, or sin/cos) is computed as
in ATAN and adjusted for quadrant by examination of the signs of
the numerator and denominator.

Quadrant ARG! ARG2 Quotient Results (radians)

1 + + 0 to © 0 to pi/2

2 - -to 0 pi/2 to pi

3 - - 0 to® -pi to -pi/f2
4 - + -to 0 -pi/2 to 0

4-14 AM74

ATAN cont.

Data Type of This arctangent function of a real number results in a real number.
Arguments and

Results

Other Routines ARGS$, D$22, N$22, M$22, A$22, S$22
Used

4-15 ’ AM74

ATANZ

Purpose To calculate the arctangent as the quotient of two real numbers.

See ATAN,

4-16 AMT74

CABS

Purpose To generate the absolute value of a complex number.
DAP Calling CALL CABS
Sequence DAC ARG! (a complex number)

(Return)

FORTRAN Reference CABS(C)

Method The argument is squared and its square root is taken to arrive at
its absolute value; e.g., if ARG1 = X+IY,
CABS(ARGI) = SQRT (X*#24Y#%2),

Data Type of This absolute value function of a complex number gives a real
Arguments and result.

Results

Other Routines F$AT, SUBS$, L$22, M$22, H$22, A$22, SQRT

Used

4-17 AMT4

CcCCOS

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To calculate the cosine of a complex number with the real part
in radian measure.

CALL CCOS
DAC ARGI1 (a complex number)
(Return)

CCOS(C)

The cosine function is transtormed into the sine function by use of
the trigonometric identity COS (Z) = SIN (Z+pi/2), where Z=Y+IY.
SIN (Z+pi/2) is then evaluated.

This cosine function of a complex number results in a complex number.

FAT, L55, A$55, H$55, CSIN

4-18 AM7T4

CEXP

Purpose To calculate the exponential of a complex number with the imaginary
part in radian measure.

DAP Calling CALL CEXP
Sequence DAC ARG1 (a complex number)
(Return)

FORTRAN Reference CEXP(C)

Method The following algorithm is used to calculate the value of e**ARGI,
where ARG1 is a complex number:

If ARG1 = X+1Y,
e>-'<*(X+IY) = (e**x) % (e**IY) = (e**x) >.'<COS(Y) + 1 % (e>}::kX) :}:SIN(Y)

Data Type of - This function raises e to a complex power and gives a complex result.
Arguments and
Results

Other Routines FAT, SUB, EXP, H$22, COS, M$22, SIN, L$55
Used

4-19 AM7T4

CLOG

Purpose To calculate a particular value of the natural logarithm (base e)
of a complex number,

DAP Calling CALL CLOG
Sequence DAC ARGl (a complex number)
(Return)

FORTRAN Reference CLOG(C)

Method The following algorithm is used to calculate In(ARG1), where
ARGl =X + IY:

Tn (X4TY) = R+T(A)
where R = In (X##2+ Y:i2)%%,.5 = 1/2 In (X#%2+ Y#42)
¢

where K =0, 1, £2, ...

(TAN=##_1)(Y/X) = ¢ + 2Kpi

A particular value for ¢ is chosen such that -pi<¢ < pi by enter-
ing the arctangent routine ATAN2.

Data Type of This logarithm function of a complex number gives a complex result.
Arguments and

Results

Qther Routines FAT, L22, M$22, H$22, A$22, ALOG, ATANZ2, L$55, SUB$
Used

4-20 AMT4

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Txee of

Arguments and
Results

Other Routines
Used

CMPLX

To combine two real numbers into one complex quantity.

CALL CMPLX

DAC ARGI (a real number)

DAC ARG2 (a real number)

OCT 0 (end of arguments flag)
(Return)

CMPLX (R, R)

The first real argument (ARG1) is stored in the real portion of the
complex accumulator (AC1 and AC2). The second real argument
(ARGZ2) is stored in the complex portion of the complex accumulator
(AC3 and AC4).

The two real arguments are combined into one complex number and
stored in the complex accumulator.

FAT, SUB, L$22, H$22, L$55

4-21 AM74

CONJG

Purpose To obtain the conjugate of a complex number.
DAP Calling CALL CONJG
Sequence DAC ARG! (a complex number)

(Return)

FORTRAN Reference CONJG(C)

Method This subroutine reverses the sign of the imaginary part of the
complex argument (ARG1),

Data Type of The complex argument in this function remains a complex number.
Arguments and

Results

Other Routines FAT, SUB, L$22, H$22, N$22, L$55
Used

4-22 AMT74

COS

Purpose To calculate the cosine of a real number expressed in radians.

See SIN,

4-23 AM74

CSIN

Purpose To calculate the sine of a complex number with the real part in
radian measure.

DAP Calling CALL CSIN
Sequence DAC ARGl (a complex number)
(Return)

FORTRAN Reference CSIN(C)

Method The sine function of the complex number ARG (X+1Y) is computed
as follows:

SIN (X+IY) = SIN(X) * COSH (Y) + 1 * (COS(X) * SINH(Y))

where SINH(Y) = 1/2 * (E&%Y -E*%.Y)
COSH(Y) = 1/2 * (Ex*Y+E**%-Y)

Data Type of The argument and the result of this function are complex numbers.
Arguments and

Results

Other Routines FAT, SUB, EXP, H$22, L$22, D$22, A$22, SIN, M$22, S$22, COS,
Used L$55

4-24 AM74

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

CSQRT

To calculate the square root of a complex number.

CALL CSORT
DAC ARG1 (a complex number)
(Return)

CSQRT(C)

If the complex argument is positive, (A+B)**,5 = C+DI is determined
as follows:

C (((A:{:;}:Z-{-B:}:*Z):{:*. 5+A)/2):}<:}<' 5
D = B/(2%*C)
If the argument is negative, ABS(D) = (((A%*2+B%%2) -A)[2)%%, 5,

il

The sign of the real part of the result will be positive and the sign
of the imaginary part of the result will be the same as the sign of
the imaginary part of the argument, That is, the results will lie

in quadrants I or IV of the complex plane,

This square root function of a complex number results in a complex
number.

FAT, SUB, CABS, H$22, ABS, A$22, M$22, SQRT, 1L$22, D$22,
L$55

4-25 AMT74

DABS

Purpose To generate the absolute value of a double-precision number.
DAP Calling CALL DABS
Sequence DAC ARGI1 (a double-precision number)

(Return)

FORTRAN Reference DABS(D)

Method This subroutine checks the double-precision argument, ARGI, for
its algebraic sign. If the sign is negative, the TWOs complement o
ARG]1 is calculated. If the sign is positive, the number remains

unchanged.
Data Type of This function with a double-precision argument results in a
Arguments and double -precision number.
Results
Other Routines FAT, L66, N$66
Used

4-26 AMT74

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

DATAN

To calculate the arctangent of a double-precision number.

CALL DATAN
DAC ARG1 (a double-precision number)
(Return)

DATAN(D)

The principal value is computed. See "Method" for ATAN,

This function with a double-precision argument results in a double -
precision number,

F$AT, DABS, H$66, C$81, L$66, A$66, D$66, M3$66, N$66

4-27 AM74

DATANZ2

Purpose To calculate the arctangent of the quotient of two double-precision
numbers,
DAP Calling CALL DATANZ2
Sequence DAC ARG1 (a double-precision number (X))
DAC ARG?2 (a double-precision number (Y))
OCT 0 (end of arguments flag)
(Return)

FORTRAN Reference DATANZ2(D, D)

Method The arctangent of the quotient (X/Y) is adjusted for the quadrant
by examining the signs of the numerator and denominator. See
""Method' for ATAN,

Data Type of This arctangent function of a double-precision quantity gives a
Arguments and double -precision result.

Results

Error Messages The error message ''DT' is reported if the second argument is

zero. The result in the double -precision accumulator is undefined.

Other Routines FAT, L66, H$66, FSER, D$66, DATAN, S$66, A$66
Used

4-28 AMT4

PurEose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

DBLE

To convert a real number to double-precision format.

CALL DBLE
DAC ARG1 (a real number)
(Return)

DBLE(R)

This subroutine stores the real argument, ARGI, in AC1 and AC2.
A word of zeros is appended to the real number as the least signifi-
cant word of the double-precision fraction and stored in AC3,

The real argument is converted to a double-precision number.

FAT, L22, C$26

4-29 AMT74

DCOS

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of
Arguments and

Results

Other Routines
Used

To calculate the cosine of a double-precision number expressed in
radians.

CALL DCOS
DAC ARG1 (a double-precision number)
(Return)

DCOS(D)

The cosine function is transformed into the sine function using the
trigonometric identity COS (X) = SIN (pi/2+X). SIN (pi/2+X) is then
evaluated, with X = ARG]1.

This function with a double-precision argument gives a double-

precision result.

FAT, L66, A$66, H$66, DSIN

4-30 AM7s

PurEose

DAP Calling
Seguence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

DEXP

CALL DEXP
DAC ARGI1 (a double-precision number)
(Return)

DEXP(D)

In calculating e**ARGI, the following method is used: e**ARGI =
2**(ARG1*10g2(e)) = 2%%(I+F), where I and F are the integer and
fractional portions, respectively, of the product ARGl*log,(e).

This function raises e to the power of a double-precision argument
and gives a double-precision result.

FAT, L66, M$66, H$66, C$61, C$16, N3$66, A$66, S$66, D$66,
A$81

4-31 AM74

Purpose To compute the positive difference between two real arguments,
DAP Calling CALL DIM
Sequence DAC ARG1 (a real number)
DAC ARG?2 (a real number)
OCT 0 (end of arguments flag)
(Return)

FORTRAN Reference DIM(R, R)

Method ARGI] - ARG2 is computed, If the result is positive, this value is
the result given. If ARGl - ARGZ is a negative quantity, the
result of this function is zero,

Data Type of This routine to calculate the difference between two real numbers
Arguments and results in a real number.

Results

Other Routines L$22, S$22

Used

4-32 AMT74

PurEose

DAP Calling
Seguence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

DINT

To truncate the fractional bits of a double-precision number.

CALL DINT
DAC ARGI {a double-precision number)
(Return)

DINT (D)

A constant (2*%%*38) is successively added and subtracted from the
argument, ARGIl. The available precision of double-precision
numbers (39 bits) is such that the fractional part of this result is
lost, If ARGI is negative, its TWOs complement is taken before
the addition and subtraction take place and it is recomplemented
before the subroutine exits, The resultant value is effectively
the largest integer <|ARGI1| with the sign of ARGI.

The double-precision argument after truncation remains a double-
precision number,

L$66, N$66, A$66, S$66, AC1

4-33 AM74

DLOG

Purpose To calculate the natural (base e) logarithm of a double-precision
number.
DAP Calling CALL DLOG
Sequence DAC ARGI1 (a double-precision number)
(Return)

FORTRAN Reference DLOG(D)

Method This routine is also used by DLOG2 and DLOG10. Log A (X), where
X = ARG], is calculated as log, &X)/logz(A). To calculate log, (X),
X is considered as the number F~%(2%*B), where 1/2 <F <1, Log;
(X) = log, (F!) + the binary exponent of F*, and logp Fh =12+
Cl*Z +C3(Z%*3) + ..., where

Fl - V2)
Z = (FL T /2) Cl = 2,885390081845024D0
C3 =,9617966484737566D0
C5 = .577086624639535D0
C7 = .4115350984570017D0
C9 = ,3428071228932386D0
Data Type of This natural logarithm function of a double-precision argument
Arguments and results in a double-precision number.
Results
Error Messages The message ''DL'" is reported if a negative or zero -valued argu-
ment is found, The result in the double-precision accumulator is
undefined.
Other Routines F$AT, DLOG2, M$66
Used

4-34 AM74

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data TIEe of
Arguments and
Results

Error Messages

Other Routines
Used

DLOG2

To calculate the common (base 2) logarithm of a double -precision
number.

CALL DLOG?2
DAC ARGI1 (a double-precision number)
(Return)

DLOG2(D)

This routine is used bf’ DLOG and DLOGI10 to calculate log,(X),
where X is equal to F**(2%*B) and 1/2 «F < 1. See "Method'" for
DLOG.

This common logarithm function with a double-precision argument
results in a double-precision number,

The message ""DL" is reported if a negative or zero-valued argu-
ment is found, The result is undefined,

FAT, L66, FER, C81, C$16, H$66, Z$80, A$66, S$66, D$66,
M3$66

4-35 AM74

DLOG10

Purpose To calculate the common (base 10) logarithm of a double-precision
number,
DAP Calling CALL DLOGIO0
Sequence DAC ARGI (a double-precision number)
(Return)

FORTRAN Reference DLOGL0(D)

Method See ''Method" for DLOG.
Data Type of This logarithm function with a double-precision argument results
Arguments and in a double-precision number.

Recoults

Error Messages The message ''DL' is reported if a negative or zero-valued argu-
ment is found, The result is undefined.

Other Routines F$AT, DLOG2, M$66
Used

4-36 AM74

Purpose

DAP Calling
Seguence

FORTRAN Reference

Method

Data Type of
Arguments and

Results

Other Routines
Used

DMAX1

To find the largest value in a list of double-precision arguments,

CALL DMAX1
DAC ARGI1 (first double-precision argument)
DAC ARG2 (a double-precision number)

DAC ARGn (last double-precision argument)
OoCT 0 (end of arguments flag)
(Return)

DMAX1 (D,D,...,D)
Compare the arguments and retain the largest value,

\

The largest double-precision argument is stored in the double-
precision accumulator.

L$66, H$66, S$66

4-37 AMT74

Purpose

DAP Calling
Seguence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To find the smallest value in a list of double-precision arguments.

CALL DMINI

DAC ARGI (a double-precision argument)
DAC ARG2 (a double-precision argument)
DAC ARGn (last double-precision argument)
OCT 0 (end of arguments flag)

(Return)

DMIN1 (D,D,...,D)

Compare the arguments and retain the smallest value.

Both of the arguments are double-precision and the result of this

function is a double-precision number,

L$66, H$66, S$66

4-38

AMT4

DMOD

Purpose To compute the remainder resulting from the division of two double -
precision numbers.,

DAP Calling CALL DMOD
Sequence DAC ARGI1 (a double precision number)
DAC ARG2 (a double-precision number)
OCT 0 (end of arguments flag)
(Return)

FORTRAN Reference DMOD(D, D)

Method This subroutine divides ARG by ARG2 by calling D$66. The
function DMOD (A1, A2) is defined as A1-(A1/A2)%A2, where (Al, A2)
is the integer whose magnitude does not exceed the magnitude of
A1/A2 and whose sign is the same as that of A1/A2,

Data Type of This function with two double-precision arguments results in a
Arguments and double-precision number for a remainder,

Results

Other Routines FAT, L66, D$66, H$66, DINT, M$66, S$66, N$66

Used

4-39 AM74

DSIGN

Purpose To generate a value consisting of the sign of the second double-
precision argument and the magnitude of the first double-precision
argument,

DAP Calling CALL DSIGN

Sequence DAC ARGI1 (a2 double-precision number)

DAC ARG2 (a double-precision number)
OCT 0 (end of arguments flag)
(Return)

FORTRAN Reference DSIGN(D, D)

Method ARG2 is tested for its algebraic sign and, depending on the sign of
ARG]1, the procedure is as follows:

ARGl ARG2Z Result

- + +|ARG1|
- - - |ARG1]
+ + + |ARGI |
+ - - |ARG1|
Data Type of Both arguments for this call are double-precision numbers and the
Arguments and result is a double-precision number,
Results
Other Routines FAT, L66, N$66
Used

4-40 AM74

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of
Arguments and
Results

Other Routines
Used

To calculate the sine of a double-precision number expressed in
radians.

CALL DSIN
DAC ARG1 (a double-precision number)
(Return)

DSIN(D)

An arbitrary angle X expressed in radian measure can be reduced
to the range 0 <Y < 51— through the relation X = Y + N(pi/2).
Adjustment is made for quadrant before using a modified Taylor's
expansion.

This sine function with a double-precision argument results in a
double -precision number,

F$AT, DABS, M$66, H$66, C$61, C$16, N$66, A$66, MOD,
L$66, S$66

, 4-41 AM74

DSQRT

Purpose To calculate the square root of a double-precision number.
DAP Calling CALL DSQRT
Sequence DAC ARG1 (a double-precision number)

(Return)

FORTRAN Reference DSQRT (D)

Method A first approximation to the double-precision square root of the
double -precision argument is obtained by calling the real square
root routine (SQRT). One more Newton-Raphson iteration is the
made to achieve full double-precision accuracy.

Data Type of This square root function of a double-precision argument result

Arguments and in a double-precision number.

Results

Other Routines FAT, L66, C$62, H$22, SQRT, C$26, H$66, D$66, A$66,
A$81

4-42 AMT4

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of
Arguments and

Results

Error Message

Other Routines
Used

EXP

To calculate e**x, where x is a real number.

CALL EXP
DAC ARG1 (a real number)
(Return)

EXP(R)

e**ARG1 = 2°¢(ARGI1 * log,(e)) = 2%*%(I+F), where I is the integer
and F is the fractional portion of the product ARGI log_(e). The
value of F is used to define the quantities I', F(1), and F(2):

E r E() E@)
-1 < F < -1/2 I-1 1/4 F+3/4
-1/2 < F<0 I-1 3/4 F+1/4
0 <F < 1/2 1 1/4 F-1/4
1/2<F < 1 1 3/4 F -3/4

where
2%%F2 = e¥¥(F2%1n(2)) = e**F = (A(F))/(A(F)-B(F))
A(F) = CI1+H{(F*F), B(F) = C2*F

R
This exponential function with a real argument (e) results in a real
number.

When overflow occurs, the error message "EX' is reported and the
answer returned is the maximum value possible (1. 7E38). When
underflow occurs, the value 0 is returned without an error message.

ARGS$, N$22, M$22, S$22, A$22, D$22, F$ER

4-43 AM74

FLOAT

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of
Arguments and

Results

Other Routines
Used

To convert an integer argument to real format.

CALL FLOAT
DAC ARG! (an integer value)
(Return)

FLOAT(I)

This routine extracts the integer and converts it to real format
leaving the result in the A- and B-registers.

This routine converts an integer argument to a real number.

C$12

AM74

Purpose

DAP Calling
Seguence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

IABS

To generate the absolute value of an integer.

CALL IABS
DAC ARGI1 (an integer value)
(Return)

IABS(I)

This subroutine checks the integer argument, ARGI, for its algebraic
sign. If the sign is negative, the TWOs complement of ARGI is cal-
culated. If the sign is positive, the number remains unchanged.

This absolute value function with an integer argument results in an
integer.

4-45 AM7T4

Purpose To compute the positive difference between two integer arguments.
DAP Calling CALL IDIM
Sequence DAC ARGI1 (an integer value)
DAC ARG2 (an integer value)
OCT 0 (end of arguments flag)
(Return)

FORTRAN Reference IDIM(I, I)

Method Compute DIF = ARG1-ARG2. If DIF is positive, the result of this
function is the value of DIF. If DIF is negative, the result of this
function is zero.

DIF = ARG! - MIN(ARG1, ARG2)

Data Type of The result of this function with two integer arguments is an integer.
Arguments and
Results

4-46 AM74

IDINT

Purpose To truncate the fractional bits from a double-precision ar ument,
urpose P g
thus converting it to integer format.

See IFIX,

4-47 AMT74

IFETCH

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Other Routines
Used

To fetch the contents of the memory location specified by ARGI.

CALL IFETCH
DAC ARG1
(Return)

IFETCH(ARGI)

The A-register is loaded with the contents of the location specified

by ARG1.

ARG$

AM74

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method
Data Type of

Arguments and

Results

Other Routines

Used

IFIX

To truncate the fractional bits from a real or double-precision
argument, thus converting it to integer format.

CALL IFIX (or CALL INT)
DAC ARGI1 (a real number)
(Return)

or

CALL IDINT
DAC ARG (a double-precision number)
(Return)

IFIX(R), INT(R), IDINT(D)

This subroutine truncates the fractional bits of ARG, shifts it to
the right until the binary point is at the end of the register, and
normalizes the result. It then uses the characteristic to scale
the value to an integer.

If either IFIX or INT is called, the argument is a real number and
the result is an integer. If IDINT is called, the argument is a double-
precision number and the result is an integer.

L$22, Ch21

4-49 AMT4

INT

Purpose To truncate the fractional bits from a real argument, thus convert-
ing it to integer format.

See IFIX.

+-50 AM74

Purpose To generate a value consisting of the sign of the second integer
argument and the magnitude of the first integer argument.

DAP Calling CALL ISIGN
Sequence DAC ARG1 (an integer value)
DAC ARG2 (an integer value)
OCT 0 (end of arguments flag)
(Return)

FORTRAN Reference ISIGN(I, I)

Method ARG?2 is tested for its algebraic sign and, depending on the sign of
ARG]1, the procedure is as follows:

ARG ARG2 Result
+ + + |ARG1 |
+ - - |ARG1 |
- + + [ARGI |
- - - |ARG1 |
Data Type of Both arguments and the result are integers.
Arguments and
Results

4-51 AM74

ISTORE

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Other Routines
Used

To store the contents of the second argument in the location speci-

fied as the first argument.

CALL ISTORE
DAC ARGI1 (target word address)
DAC ARG2 (word to be stored)

ocT 0 (end of arguments flag)
(Return)
ISTORE(ARG1,ARG2)

Fetch the target word address (ARG1) and save it.
Fetch the word to be stored (ARG2) and use it to replace the

contents of the target location. Effectively, the contents of ARG2

are stored in location ARGI.

F$AT

AMT4

LOC

Purpose To determine the address of the argument.
DAP Calling CALL LOC
Sequence DAC ARG1

(Return)

FORTRAN Reference LOC(ARGI1)

Method Fetch the argument address (direct or indirect) and load it into
the A-register.

4-53 AM74

MAXO

Purpose To find the largest value in a list of integer arguments and exit
with this value or convert it to real format (AMAXO0) and exit,

DAP Calling CALL MAXO (or AMAXO0)
Sequence DAC ARG (integer value)

DAC ARG?2 (integer value)

DAC ARGn (last integer argument)

OCT 0 (end of arguments flag)

(Return)

FORTRAN Reference MAXO0(,1,...,1) or AMAXO0(I,I,...,1)
Method This subroutine compares the arguments and retains the largest

value. If AMAXO is called, the result is converted to real by
calling FLOAT before the subroutine exits.

Data Type of The arguments are integers in either call (MAX0 or AMAXO0}. The
Arguments and result is integer if MAXO is called; the result is a real number if
Results AMAXO is called.

Other Routines FLOAT

Used

4-54 AM7T4

MAX1

Purpose To find the largest value in a list of real arguments and exit with
Lfurpose g g
this value or convert it to an integer (MAX1) and exit.

DAP Calling CALL MAX1 (or AMAX1)
Sequence DAC ARG (a real number)

DAC ARG2 (a real number)

DAC ARGn (last real argument)

OCT 0 (end of arguments flag)
(Return)
FORTRAN Reference MAXI(R,R,...,R) or AMAXI1(R,R,...,R)
Method This subroutine compares the arguments and retains the largest

value. If MAXI] is called, the result is converted to integer by
calling IFIX before the subroutine exits.

Data Type of The arguments are real numbers in either call (AMAX] or MAX]1).
Arguments and The result is real if AMAXI is called; the result is an integer if
Results MAXI1 is called.

Other Routines L$22, H$22, S$22, IFIX

Used

4-55 AM74

MINO

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Types of
Arguments and

Results

Other Routines
Used

To find the smallest value in a given set of integers and exit with
this value or convert this value to a real number and exit.

CALL MINO (or AMINO)
DAC ARG1 (an integer value)
DAC ARG2 (an integer value)

DAC ARGn (last integer argument)
OCT 0 (end of arguments flag)
(Return)

MINO(L,1,...,I) or AMINO(,I,...,I)

This subroutine compares the arguments and retains the smallest
value. If AMINQO is called, the result is converted to a real number
before the subroutine exits.

The arguments are integers in either call (MINO or AMINO). The
result is integer if MINO is called; the result is a real number if
AMINO is called.

FLOAT

4-56 AM7T4

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of

Arguments and
Results

Other Routines
Used

To find the smallest value in a list of real arguments and exit with
this value (AMIN1) or convert it to an integer (MIN1) and exit.

CALL MINI (or AMIN1)
DAC ARG1 (a real number)
DAC ARG2 (a real number)

DAC ARGn (last real argument)

OCT 0 (end of arguments flag)
(Return)
MINI(R,R,...,R) or AMINI(R,R,...,R)

Compare the arguments and retain the smallest value,

The arguments are real numbers for either call (MIN1 or AMIN]1).
The result is real if AMIN] is called; the result is integer if MIN1
is called.

L$22, H$22, S$22, IFIX

4-57 AM74

MOD

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of
Arguments and

Results

Other Routines
Used

To compute the remainder resulting from the division of two integers.

CALL MOD

DAC ARGI1 (an integer value)

DAC ARG?2 (an integer value)

OCT 0 (end of arguments flag)
(Return)

MOD(I, I)

This subroutine divides ARG by ARG2 by calling D$11. The function
MOD(A1, A2) is defined as Al-(A1/A2)*A2, where (A1/A2) is the
integer whose magnitude does not exceed the magnitude of Al1/A2

and whose sign is the same as that of Al/A2.

This function with two integer arguments results in an integer for a

remainder.

D$11, M$11

1-58 AMT74

Purgose

DAP Calling
Sequence

FORTRAN Reference

Method

Other Routines
Used

OVERFL

To check for an error condition.

CALIL OVERFL
DAC J (an integer value)
(Return)

OVERFL(J)

This subroutine checks error flag AC5 for a nonzero value, which
indicates that an entry to the error subroutine, F$ER, was made

since the last call to OVERFL., If ACS5 is nonzero, the variable J
is set to 1 and AC5 is cleared. If ACS5 is zero, J is set to 2.

ACS

4-59 AM74

REAL

Purpose To load the real portion of a complex number into the A- and B-
register.

DAP Calling CALL REAL

Sequence DAC ARG (a complex number)
(Return)

FORTRAN Reference REAL(C)

Method This subroutine calls ARG$ to place the complex argument, ARG,

into the index register. The real portion, i.e., the first two
words, of the complex argument is then loaded into the A- and B-

registers.
Data Type of This function of a complex number results in a real number.
Arguments and
Results
Other Routines ARGS$
Used

4-60 AMT4

SIGN

Purpose To generate a value consisting of the sign of the second real argu-
ment and the magnitude of the first real argument.

DAP Calling CALL SIGN
Sequence DAC ARGI (a real number)
DAC ARG2 (a real number)
OCT 0 (end of arguments flag)
(Return)
FORTRAN Reference SIGN(R, R)
Method ARG?2 is tested for its algebraic sign and, depending on the sign of
ARG]1, the procedure is as follows:
ARG1 ARG2 Result
+ + + | ARGI |
+ - - | ARGl |
- + + | ARG! |
- - - | ARG1 |
Data Type of Both arguments are real numbers and the result is a real number.
Arguments and
Results
Other Routines 1.$22, N$22
Used

4-061 AMT74

Purpose To calculate the sine or cosine of a real number expressed in radians.
DAP Calling CALL SIN (or COS)
Sequence DAC ARG! (a real number)
(Return)
FORTRAN Reference SIN(R) or COS(R)
Method The angle is reduced to the first quadrant by the use of the relation

X = Y+ N#(pi/2) and the identities SIN(Y) = COS(pi/2-Y) and COS(Y)
= SIN(pi/2-Y). A modified Taylor's expansion is then used to cal-
culate the sine of the first quadrant angle.

The cosine function is transformed into the sine function by the use
of the identity COS(X) = SIN(pi/2-X); SIN(pi/2-X) is then evaluated,
wnere X =ARG1

‘Data Type of This sihe function with a rea' argument results in a real number.
Arguments and

Results

Other Routines ARGS$, N$22, M$22, S$22, A%22

Used

4-62 AMT4

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Other Routines
Used

SLITE

To set or reset the pseudo sense lights and switches.

CALL SLITE
DAC ARGI1 (where ARG1 is the address of the variable con-
(Return) taining the sense light number).

CALL SLITET (or CALL SSWTCH)

DAC ARG!1 (where ARG1 is the address of the variable con-

DAC ARG2 taining the sense light or switch (SSWTCH)

OCT 0 number to be interrogated, and ARG2 is the
(Return) address of the location in which to store the

""'set or reset'' indicator; (I=set, 2= reset).

CALL SLITE (I), CALL SLITET(I,J), CALL SSWTCH(I, J)

SLITE --- The ARG$ routine is used to place the variable address in
the index register. The argument (I) is tested for zero. If zero, all
sense light positions are reset; otherwise, the sense light specified
is shifted to its appropriate position and INCLUSIVELY ORed with
current settings, leaving them undisturbed.

SLITET --The ARG$ routine is used to place the sense light number

in the A-register and the location of the variable in the index register.
If the sense light number is 0, a 2 is inserted into the variable J,
signifying a reset condition. Otherwise, the sense light bit is moved
to its proper position in the A-register. A logical AND is executed
with the sense light register. If the result of the AND is zero, the
sense light is reset and a 2 is placed in J. If the result of the AND

is not zero, an EXCLUSIVE OR is carried out with the sense light
register, resetting the sense light specified and storing a 1 in J to
signify that the sense light was set on entry.

SSWTCH - The ARG$ routine is used to place the sense switch number
in the A-register and the variable location in the index register. If
the sense switch number is 0 (no real switch), J is set to 1. If the
sense switch number is valid (I to 4), J is set to 1 if the external
switch is set and set to 2 if the external switch is not set.

ARGS$, L$33

4-63 AM74

SLITET

To set or reset the pseudo sense lights and switches.

Purpose

See SLITE,

4-64 AMT74

SQRT

Purpose To calculate the square root of a real number. (This subroutine has
a high-speed version, SQRTX,)

DAP Calling CALL SQRT
Sequence DAC ARG]1 (a real number)
(Return)

FORTRAN Reference SQRT(R)

Method Given the argument N = F(2%%e), the mantissa is adjusted so that
e is even and 1/4 £ e < 1. An initial approximation to the square
root (Y) is chosen as follows:

Y = 7/8(F) +9/32 ife < 1/2
Y =9/16(F) + 7/16 if e 2 1/2

Two Newton-Raphson iterations are then made to obtain full single-
precision accuracy.

Data Type of This square root function of a real number results in a real number.
Arguments and
Results

Error Messages The error message '"SQ" is reported if a negative argument is found.
An undefined result is returned in the A-and B-registers.

Other Routines ARGS$, DIV$, D$22, A$22, F$ER
Used

4-65 AM74

SQRTX

Purpose

DAP Calling
Sequence

FORTRAN Reference

Method

Data Type of
Arguments and

Results

Error Messages

Other Routines
Used

To calculate the square root of a real number. (This routine re-
quires the High-Speed Arithmetic Option.)

CALL SQRTX (or SQRT)

DAC ARGI1 (a real number)
(Return)

SQRT(R)

Given the argument N=F*(2%%e), the mantissa is adjusted so that
eis even and 1/4 < e < 1. An initial approximation to the square
root of ARG is chosen as follows:

ARG = 7/8(F)+ 9/32 if e <1/2
ARGI1 = 9/16(F) + 7/16 if e 2 1/2

Two Newton-Raphson iterations are then made to obtain full single-
precision accuracy.

This square root function of a real number results in a real number.

The error message ''SQ' is reported if a negative argument is found.
An undefined result 1s returned in the A-and B-registers.

ARGS$, D$22X, A$22X, FSER

4-66 AMT74

SSWTCH

Purpose To set or reset the pseudo sense switches.

See SLITE,

4-67 AMT74

TANH

Purpose To calculate the hyperbolic tangent of a real number.
DAP Calling CALL TANH
Sequence DAC ARG!1 (a real number)

(Return)

FORTRAN Reference TANH(R)

Method TANH = (e¥*%(2%X)-1)/(e**(2%X)+1), where X = ARGI.

Data Type of This tangent function with a real argument results in a real number.
Arguments and

Results

Other Routines L$22, EXP, A$22, H$22, D$22

Used

4-68 AM74

SECTION V
COMPILER SUPPORT SUBROUTINES

This section describes the compiler support subroutines, i.e., those subroutines which
are not normally explicitly called by the FORTRAN programmer. These subroutines per-
form conversions between data types, logical relationals, arithmetic operations, and miscel-

laneous functions.

5-1 . AMT74

AS22

PurEose

DAP Calling

Sequence

Method

Data Type of
Arguments and
Results

Error Messages

Other Routines
Used

To add or subtract real numbers. (This subroutine has a high-
speed version, A$22X.)

CALL A$22 (or S$22)
DAC ARG2 (a real number)
(Return)

A$22 (Add) -~ The contents of ARG2 are added to the contents of the
A- and B-registers after both numbers are unpacked and scaled.
The result is normalized and the characteristic is adjusted.

S$22 (Subtract) — The value contained in ARG2 is negated and the
add routine, A$22, is entered.

< implicit real argument> + < real argument> —» < real result>

The error message '"SA" is reported if an arithmetic overflow

occurs, i.e., the result is > 2%*127. An undefined result is
returned.

ARGS$, N$22, F3ER

5-2 AM7T4

AS22X

Purpose To add or subtract real numbers. (This routine requires the High-
Speed Arithmetic Option.)

DAP Calling CALL A$22X (A$22, S$22 or S$22X)
Sequence DAC ARG2 (a real number)
(Return)
Method A$22 (Add) - The contents of ARG2 are added to the contents of the

A- and B-registers after both numbers are unpacked and scaled.
The result is normalized and the characteristic is adjusted.

S$22 (Subtract) - The value contained in ARG2 is negated and the
add routine, A$22, is entered.

Data Type of <implicit real argument> + < real argument> —» < real result>

Arguments and

Results

Error Messages The error message ''SA" is reported if an arithmetic overflow
occurs, i.e., the resultis > 2%%127. An undefined result is
returned.

Other Routines N$22, F$ER

Used

5-3 AMT74

ASS52

Purpose To add a real argument to a complex number.
DAP Calling CALL A$52
Sequence DAC ARG2 (a real number)
(Return)
Method The following is the algorithm used to compute the operation of

adding a real argument (ARG2) to the contents of the complex
accumulator (Y):

Y+ ARG2 = A+ B *1+ ARG2
= (A + ARG2) + B * 1)
where Y = A+ B *1I

Data Type of < implicit complex argument> + < real argument> — < complex
Arguments and result>

Results

Other Routines FAT, H55, L$22, A%22, H$22, L$55

Used

5-4 AMT74

PurEose

DAP Calling
Seguence

Method

Data TZEe of

Arguments and
Results

Other Routines
Used

ASSS

To add complex numbers.

CALL A$55

DAC ARG2 (a complex number)
(Return)

The following is the algorithm used in the addition of two complex
numbers (the contents of ARG2 and the complex accumulator):

X+ARG2 = (A+B#I) + (M*N+I) = (A+M) + (B+N) * I
where X = A+B#I and ARG2 = M+N#I

<implicit complex argument> + < complex argument> —

< complex result>

FAT, H55, SUBS$, L$22, A$22, H$22, L$55

5-5 AMT74

AS62

Purpose To add a real number to a double-precision number.
DAP Calling CALL A$62
Sequence DAC ARG2 (a real number)
(Return)
Method This subroutine calls DBLE to convert the real argument to a

double-precision number and calls A$66 to perform the double-
precision addition.

Pa_ta__TM < implicit double -precision argument> + < real argument> —

Arguments and < double -precision result>
Results

Other Routines FAT, H66, DBLE, A$66
Used

5-6 AMT74

AS$S66

Purpose To add, subtract, multiply, or divide normalized, double-
precision numbers. (This subroutine has a high-speed version,
A$66X.)

DAP Calling CALL A$66 (or S$66, M$66, or D$66)

Seguence DAC ARG2 (a double-precision number)
(Return)

Method The contents of ARG2 are added to,‘ subtracted from, multiplied
by, or divided into the contents of the double-precision accumu-
lator (X),

Add (A%$66) — The numbers are unpacked and scaled to coincident
places. The addition process takes place (X+ARG2), and the result
is normalized.

Subtract (S$66) — The numbers are unpacked and scaled to coincident
places. The subtraction process takes place (X-ARG2), and the
result is normalized.

Multiply (M$66) - X*ARG2

(X#2%%E1) % (Y#2%xE2)
X#ARG2#2%% (E1+E2)
Let X = (A+B#*2%% (-N))
and ARG2 = (C+D#2%% (-N))
X*ARG2 = A*C+((A*D+B*C) * 2%%(-N))

1]

n

]

The term B#*D#*2%% (-2N) is ignored.
The least significant bits of the product are:
L#(A%*C)+H*(A*D)+H*(B*C)

Divide (D$66) — The quotient X/ARG2 is obtained by the binomial
expansion of 1/X = X#¥(=1), The high-order and low-order parts
(H and L) of the quotient are computed as follows:

(A+B*2% (-N))/ (C+D*2:% (-N)) = (A+B-A%*D/C)/C

H = (A+B-A*D/C)/C
L = remainder (H)/C
+
Data T}:Be of <implicit double-precision argument> — < double -precision
Arguments and /
Results
argument> —» < double-precision result>

Error Messages v 1. The error message '"AD'' is printed if an addition or

subtraction over/underflow occurs.

2. The error message ""PZ" is printed if a division by zero
is attempted.

3. The error message "MD" is printed if a multiplication or
division over/underflow occurs.

5-7 AM47

AS$SG66 cont.

After an error message is reported, the double-precision accumu-
lator is loaded with the maximum ((2%%128)-1) or minimum
(2:<%(-128)) value (as determined by the correct sign) before
returning to the calling program. ’

Other Routines N$66, FSER, H$66, L$66, ARG, AC1, AC2, AC3
Used

5-8 AMT74

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

AS$66X

To add, subtract, multiply, or divide normalized, double-precision
numbers. (This routine requires the High-Speed Arithmetic Option.)

CALL A$66X (or A$66, S$66, S$66X, M$66, M$66X, D$66, D$66X)
DAC ARG2 (a double-precision number)
(Return)

The contents of ARG2 are added to, subtracted from, multiplied by,

or divided into the contents of the double-precision accumulator. See
A$66, described on the preceding pages, for a detailed description of
the methods used.

< implicit double-precision argument > — < double -precision
/
argument> — < double-precision result>

See Error Messages for A$66.

N$66, F$ER, H$66, L$66, ARG$, ACI, AC2, AC3

5-9 AMT4

AS$81

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Error Messages

Other Routines
Used

To add an integer value (I) to the characteristic of the variable in the
double-precision accumulator (effectively, multiplication by 2I).

CALL A$81
DAC ARG2 (an integer value)
(Return)

The characteristic (base 2) of the value in the double-precision accum-
ulator is increased (or decreased) by an integral value, ARGZ2. For
example, if ARG2= 2 and the value in the double-pregision accumu-
lator is 8.0 (23‘0), the result of this call would be 2 - 0+2 or 25’ =
32.0 (8.0*22). If the absolute value of the result is less than 2%%(-128),
a value of zero is returned.

< implicit double-precision argument> * (2%% < integer argument>) —
< double -precision result>

If there is exponent overflow, an "EQ' error message is reported and
external locations ACI and AC2 are loaded with the maximum value
possible ((2%%128)-1) with the sign of ARG?2.

N$22, F$ER, ACl, AC2

5-10 AMT74

AC1

(AC2, AC3, AC4, AC5)

Purpose To assign lecations to be used as a double-precision or complex
accumulator by the FORTRAN library routines.

Use ACl, ACZ2, AC3: double-precision accumulator.
ACl1, AC2: complex accumulator, real portion.
AC3, AC4: complex accumulator, imaginary portion.
AC5: error flag,

5-11 AMT74

ARGS

Purpose To convert the indirect address of an argument to its correspondin
p g P g
direct address.

DAP Calling CALL ARG$

Sequence DAC: ARG?2 (usually a subroutine entry)
(Return)

Method The address of the argument is returned in the index register. This
subroutine may be used upon entering a subroutine to set up the return
address.

5-12 AMT4

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

cs$12

To convert an integer to a real number,

CALL c$12
(Return)

The integer value in the A-register is placed in the B-register and
the A-register is set to 045600 (octal), representing a characteristic
such that the number fits the description given for a real number ex-
cept that it is not ''normalized.' A$22 (with argument = 0

(040000, 000000), also unnormalized) is called to normalize the
result.

The integer value in the A-register is converted to a real number and

placed in the A- and B-registers.

A$22, N$22

5-13 AMT74

CS$16

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines
Used

To convert an integer to a double-precision number.

CALL C$16
(Return)

The integer in the A-register is normalized and converted to real by
calling C$12. This real value is then converted to a double-precision
number by calling C$26. The result is placed in the double-precision
accumulator. AC]1 contains the contents of the B-register (the real
exponent), AC2 contains the contents of the A-register (the most
significant word of the fraction), and AC3 contains a word of zeros.

The integer value in the A-register is converted to a double-precision

number and placed in the double-precision accumulator.

Cc$12, C$26

5-14 AMT4

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

cs$21

To convert a real number to an integer,

CALL C$%21
(Return)

This subroutine scales the real number in the A- and B-registers to
23 bits by adding the octal value 045700 (2*%22) to truncate the
fractional part of the real number. The result is in the A-register.

The real number in the A- and B-registers is converted to an integer
and returned in the A-register.

The message ""RI' is reported if the integer (I) is too large when con-
verted from real to integer. The integer must be in the following
range: -215< 1 < 215_1. An undefined result is returned in the A-
register.

N$22, A$22, F$ER

5-15 AMT4

C$25S

Purpose To convert a real number to a complex number.

DAP Calling CALL C$25

Sequence (Return)

Method The A- and B- registers are stored in ACI and AC2, respectively

(the real part of the complex number), and AC3 and AC4 (the imagin-
ary part of the complex number) are set to zeros.

Data Type of The real argument in the A- and B- registers is converted to a com-
Arguments and plex number and stored in the complex accumulator (ACl, AC2Z, AC3,
Results and AC4).

Other Routines H$22, CMPLX

Used

5-16 AM74

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

C$26

To convert a real number to a double-precision number.

CALL C#$26
(Return)

The number in the A- and B-registers is placed in AC1 and AC2,
AC3 is cleared and the routine exits,

The real number in the A- and B-registers is converted to double-

precision and placed in the double-precision accumulator.

ACl1, AC2, AC3

5-17 AM74

C$61

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines
Used

To convert a double-precision number to an integer.

CALL C$61
(Return)

This subroutine calls C$62 to convert the number in the double-
precision accumulator to real and calls C$21 to convert the real
number to integer.

The double-precision value in the double-precision accumulator is
converted to an integer and placed in the A-register.

C$62, Cs21

5-18 AMT4

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Other Routines
Used

Cc$62

To convert a double-precision number to a real number.

CALL C$62 or CALL SNGL
(Return) DAC ARGl (a double-precision
(Return) number)

ACI] and ACZ (the exponent and the most significant part of the
fraction of the number in the double-precision accumulator) or the
first two words of ARG (if SNGL is called) are loaded into the A-
and B-registers., The least significant part of the fraction (AC3,
word 3) is not considered in the result.

The double-precision value in the double-precision accumulator or
in ARG is converted to a real number and placedin the A- and B-
registers.,

L$22, N$66, N$22, L$66, AC1, AC2

5-19 AM74

CcCS$81

Purpose To convert the exponent of the value in the double-precision accumu-
furpose P P
lator to an integer,

DAP Calling CALL C$81
Sequence (Return)
Method Extract the characteristic (base 2) from the value in the double-

precision accumulator (AC1) and convert it to an integer.

Data Type of The characteristic of the double-precision argument is converted to
Arguments and an integer.

Results

Other Routines AC1

Used

5-20 AMT74

Purpose

DAP Calling
Sequence

Method

Data Type of

Arguments and
Results

Error Messages

Other Routines
Used

D$11

To divide two integers. (This subroutine has a high-speed version,
D$11X.)

CALL D$11
DAC ARG2 (integer divisor)
(Return)

The numerator (an integer value) should be in the A-register upon
entrance to this subroutine. If the denominator, ARGZ2, is zero,

an overflow occurs and an error message is reported. If both
arguments are nonzero, the numerator is positioned in the A- and
B-registers and the division is performed. The results are ex-
amined for the special case (-32,768/-1) which is treated as an over-
flow. If the results are in the range of -32,768 to + 32, 767, D$11
returns to the calling program with the quotient in the A-register

and the remainder in the B-register. The integer answer is in the
A-register.

< implicit integer argument> / < integer argument> — <integer
result>

The error message '"IZ'" is reported if a division by zero is at-,
tempted. The maximum value is output (-32, 768 if negative or
+32,767 if positive). A division of -32,768 by -1 also causes "'IZ"
to be reported; D$11 returns a value of + 32,767, the maximum
value possible.

ARGS$, F$ER

5-21 AMT7T4

D$11X

Purpose To divide two integers. (This routine requires the High-Speed
Arithmetic Option,)

DAP Calling CALL D$11X (or D$11)
Sequence DAC ARG2 (integer divisor)
(Return)
Method See '"Method' for D$11.
Data Type of < implicit integer argument> / <integer argument> — < integer
Arguments and result>
Results
Error Messages See "Error Messages'' for D$11.
Other Routines ARGS$, F$ER
Used

5-22 AMT4

D$22

Purpose To divide two real numbers. (This subroutine has a high-
speed version, D$22X.)

See M$22,

5-23 AM74

D$22X

Purpose

DAP Calling
Sequence

Method

Data_Type of
Arguments and

Results

Error Messages

Other Routines
Used

To divide two real numbers. (This subroutine requires the High-
Speed Arithmetic Option.)

CALL D$22X (or D$22)
DAC ARG2 (the real divisor)
(Return)

This subroutine divides the real number in the A- and B-registers
(X) by the real argument, ARG?2 (Y). The division is performed by
multiplying X by the reciprocal of Y, i.e., X*1/Y. Newton's
method for 1/Y is:

R(1) = R(0) * (2-R(0)*Y

where

R(0) = 1/H(Y), H(Y) being the high-order 15 bits of Y

X % (1/Y) = X % R(1) = X * R(0) * (2-R(0)*Y)

< implicit real argument> / < real argument> —s < real result>

A "DZ' error message is typed if division by zero is attempted.
A value of 0 is returned if the dividend is also 0. The signed
maximum value (x£1.7E38) is returned if the dividend is nonzero.

An "SM' error message is reported if an arithmetic overflow
occurs. The signed maximum value (£1.7E38) is returned.

A value of 0 is returned for an overflow.

N$22, F$ER

5-24 AMT4

PurEo se

DAP Calling
Sequence

Method

Data Type of

Arguments and

Results

Other Routines
Used

D$S2

To divide a complex number by a real number.

CALL D$52
DAC ARG2 (a real number)
(Return)

This subroutine divides the complex value in the complex
accumulator (Y) by the real argument, ARG2,
Y/ARGZ = (A+ B*I)/ARG2 = A/ARG2+ B%I, where Y = A+ B*I

< implicit complex argument> /< real argument> — <complex
result>

FAT, H55, SUBS, L$22, D$22, H$22, L$55

5-25 AM74

D$5S

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines
Used

To divide two complex numbers.

CALL D$55
DAC ARG2 (complex divisor)
(Return)

The following algorithm is used to compute the operation of
dividing two complex numbers. The contents of the complex
accumulator (X) are divided by the contents of ARG2 (Y).

X/Y = (A+ B*I)/(M+ N*I)

where X = A+ B*Il and Y = M+ N=*I

(A+ B¥I1)%*(M-N*1)/ (M+ N*I)%(M-N*I)

(A%M+ B#N+ B#M*1- AXN*I)/ (M**2+N**2)

(A:{:M+ B:}:N)/(M: <24 N::z:::2)+ (B;::M*I_A:}:N:::I)/(M:::;}<2+ N:{::}:Z)
(A>1:M+ B:::N) / (M;{::{<2+ N:}:>{<Z)+ (I:{:(B*M_A:::N))/(M>:<3:<2+ N;:::::Z)

1
>
+
o
2
Z
é
~
g
+
Z

< implicit complex argument> / < complex argument> —» < complex
result>

FAT, H55, SUB$, L$22, M$22, H$22, A$22, D$22, S$22,
N$22, L$55

5-26 AMT74

D$62

Purpose To divide a double-precision number by a real number.
DAP Calling CALL D$62
Sequence DAC ARG2 (a double-precision number)
(Return)
Method This subroutine calls DBLE to convert the real divisor (ARG2)

to a double-precision number and calls the double-precision
divide routine (D$66).

Data Type of < implicit double-precision argument> /< real argument> —
Arguments and < double-precision result>

Results

Other Routines FAT, H66, DBLE, L$66, D$66

Used

5-27 AM74

D$66

Purpose To divide normalized double-precision numbers.

See A$66.

5-28 AM74

PurEose

DAP Calling
Seguence

Method

Data Type of
Arguments and

Results

Error Messages

Other Routines
Used

ES$S1

To calculate the value of an integer raised to an integer power.
(This subroutine has a high-speed version, E$11X,)

CALL E$11
DAC ARG2 (the integer exponent)
(Return)

The implicit integer argument in the A-register and the integer
exponent, ARGZ, are first examined for the combinations listed
below. If one of these combinations is found, the answer is loaded
in the A-register for return to the calling program,

Value in A-Register Exponent Answer

I 0 1

0 0 1

0 - +32767
0 + 0

1 J 1
-1 even 1
-1 odd -1

1 - 0

Otherwise, the value of the expression is calculated and returned
in the A-register. The maximum or minimum value computed
may not exceed +32,767 or -32, 768,

< implicit integer argument> ** < integer argument> —» < integer
result>

The error message '"II"' is reported and +32,767 is returned if
overflow occurs or if I = 0 and J is negative (1/0). The value
-32,768 is returned if 1 < -2, J is odd, and overflow occurs.

ARGS$, M$11, F$ER

5-29 AMT74

E$S11X

Purpose To calculate the value of an integer raised to an integer power,
(This subroutine requires the High-Speed Arithmetic Option.)

DAP Calling CALL ESIIX (or E$11)
Sequence DAC J (the integer exponent)
(Return)
Method See '"Method'" for E$11.
Data Type of < implicit integer argument> ** <integer argument> — <integer
Arguments and result>
Results
Error Messages See "Error Messages'' for E$11,
Other Routines ARGS$, F$ER
Used

5-30 AMT4

Purpose

DAP Calling
Seguence

Method

Data Type of
Arguments and

Results

Other Routines

Used

ES$21

To calculate the value of a real number raised to an integer power,

CALL E$21
DAC ARG?2 (the integer exponent)
(Return)

A**¥*ARG2 is evaluated by multiplying A by itself ARG2-1 times,
The sign is determined by the sign of the number in the A- and
B- registers and whether Iis odd or even,

<implicit real argument> *% <integer argument> —= <real result>

ARGS$, M$22, D$22

5-31 AM74

ES$S22

Purpose To calculate the value of a real argument raised to a real power.
DAP Calling CALL ES$22
Sequence DAC ARG2 (the real exponent)
(Return)
Method X**ARG2 is evaluated as e¥**(ARG2*log(X)).
Data Type of < implicit real argument> % < real argument> -» < real result>
Arguments and
Results
Other Routines ARG$, ALOG, MS$22, EXP
Used

5-32 AMT7T4

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines
Used

E$S26

To calculate the value of a real number raised to a double-precision

power,

CALL E$26
DAC ARG2
(Return)

(the double-precision exponent)

B**ARG2 is evaluated as e**ARG2*log(B)).

St

< implicit real argument> *% < double-precision argument> —»
< double-precision result>

FAT, C26, H$66, DLOG, M$66, DEXP

AM74

E$S1

Purpose

DAP Calling
Seguence

Method

Data Type of
Arguments and

Results

Other Routines

Used

To calculate the value of a complex quantity raised to an integer
power,

CALL E$51
DAC ARGI (the integer exponent)
(Return)

The number in the complex accumulator is multiplied by itself
ARGI1-1 times,

\\\\\\

<implicit complex argument> =
result>

FAT, H55, IABS, L$55, M$55, D$55

5-34 AMT4

Purpose

DAP Calling
Seguence

Method

Data Type of
Arguments and

Results

Other Routines

Used

E$61

To calculate the value of a double-precision number raised to an
integer power,

CALL E$61
DAC ARG2 (the integer exponent)
{(Return)

This routine checks for an even-numbered exponent, squares the
number in the double-precision accumulator, and divides the integer
argument (the exponent) by 2 until the exponent divided by 2 = 1,

If the exponent is odd, the computed value (DI'I) is multiplied by

the original double-precision number before exiting.

<implicit double -precision argument> *% < integer argument> —»

< double -precision result>

FAT, H66, L$66, D$66, D$S11, M$11, M$66

5-35 AMT74

ES$S62

Purpose

DAP Calling
Seguence

Method

Data Type of
Arguments and

Results

Other Routines

Used

To calculate the value of the number in the double-precision accumu-
lator raised to a real power.

CALL E$62
DAC ARG2 (the real exponent)
(Return)

contents of the double—\precision accumulator,

< implicit double-precision argument> % < real argument> —
< double -precision result>

FAT, H66, DLOG, M$62, DEXP

5-36 AM74

ES$S66

Purpose To calculate the value of a double-precision value raised to a
double-precision result,

DAP Calling CALL E$66

Sequence DAC ARG2 (the double-precision exponent)
(Return)

Method rARG2 is evaluated as e**(ARG2*LOG(B)), where B = the

contents of the double-precision accumulator.

Data Type of < implicit double -precision argument> ** < double -precision argument>
Arguments and — < double-precision result>
Results

Other Routines FAT, H66, DLOG, M$66, DEXP
Used

5-37 AMT74

H$22

Purpose To store (hold) the contents of the A- and B-registers in memory.

DAP Calling CALL H$22

Sequence DAC ARGl (location in which the contents of the A- and B-
(Return) registers are to be stored)

Method The contents of memory at the location specified by the argument

address, ARGI, are replaced by the contents of the A- and B-
registers. The contents of the A- and B-registers remain un-

changed,
Data Type of This subroutine stores a real number in the argument address.
Arguments and
Results
Other Routines ARGS$
Used

5-38 AMT4

H$S5S

Purpose To hold (store) the contents of the complex accumulator in memory.

DAP Calling CALL H$55

Sequence DAC ARGI1 (location in which the contents of the complex
(Return) accumulator are to be stored)

Method The contents of memory at the location specified by the argument

address, ARGI, are replaced by the contents of the complex accumu-
lator. The contents of the accumulator remain unchanged.

Data Type of This subroutine stores a complex number in the argument address,
Arguments and

Results

Other Routines ARG$, AC1, AC2, AC3, AC4

Used

5-39 AMT4

H$66

Purpose To hold (store) the contents of the double -precision accumulator
in memory.

DAP Calling CALL H$66

Sequence DAC ARGI1 (location in which the contents of the double-
(Return) precision accumulator are to be stored)

Method The contents of memory specified by the argument address, ARG,

are replaced by the contents of the double-precision accumulator.
The contents of the accumulator are unchanged.

Data Types of This subroutine stores a double-precision number in the argument
Arguments and address.

Results

Other Routines ARG$, AC1, AC2, AC3

Used

5-40 AMT7T4

LS22

Purpose To load a real number into the A- and B- registers.
DAP Calling CALL 1L.$22 or CALL REAL
Seguence DAC ARGI1 (2 real number)
(Return)
Method This subroutine calls ARG$ to place the address of the argument,

ARG]1, into the index register, ARG] is then loaded into the A-
and B-registers.

Other Routines ARG$
Used

5-41 AMT74

LS33

Purpose To form an INCLUSIVE OR from memory with the value in the
A-register.

DAP Calling CALL 1.%33
Sequence DAC ARG1 (an integer value)
(Return)
Method The value in the A-register is EXCLUSIVELY ORed, ANDed, and

EXCLUSIVELY ORed again with the argument, ARGI.

5-42 AMT74

Purpose

DAP Calling
Seguence

Method

Other Routines

Used

L$SS

To load a complex number into the complex accumulator.

CALL L$55
DAC ARG {a complex number)
(Return)

This subroutine calls ARG$ to place the address of the argument,
ARGI, into the index register. ARGI is then loaded into the complex
accumulator,

ARGS, ACl1, AC2, AC3, AC4

5-43 AMT74

L$S66

Purpose To load a double-precision number into the double-precision
accumulator.,

DAP Calling CALL L$66

Sequence DAC ARGI (a double-precision number)
(Return)

Method This subroutine calls ARG$ to place the address of the argument,

ARG]1, into the index register. ARGI is then loaded into the
double-precision accumulator.

Other Routines ARGS$, AC1, AC2, AC3
Used

5-44 AM74

MS$11

Purpose To multiply two integers. (This subroutine has a high-speed version,
M$11X.)

DAP Calling CALL M$11

Sequence DAC ARG?2 (integer multiplier)
(Return)

Method This subroutine multiplies the value in the A-register by the integer

argument, ARG2. If either or both are negative, a sign counter is
incremented and the negative value(s) are made positive. The multi-
plier, ARG2, is loaded into the B-register and shifted to place the
low-order bit of the multiplier in the C-register. The C-bit is
tested and if it is set, the multiplicand is added to the A-register.
The A- and B-registers are shifted together 1 bit, with the new low-
order bit going into the C-register, and so forth, for 16 shifts.
When these right shifts are completed, the bits are shifted back into
the A-register, one at a time, checking for overflow. The positive
or negative result is returned in the A-register.

Data Type of <implicit integer argument> * < integer argument> — < integer result>
Arguments and
Results

Error Messages When an over/underflow occurs, the error message ""IM" is reported.
The subroutine returns with +32, 767 in the A-register if the answer
is positive, or -32,768 if it is negative.

Other Routines ARG$, F$ER
Used

5-45 AMT74

MS$11X

Purpose

DAP C alling
Seguence

Method

Data Type of

Arguments and
Results

Error Messa.ges

Other Routines
Used

To multiply two integers. (This subroutine requires the High-Speed
Arithmetic Option.)

CALL M$11X (or M$I11)
DAC ARG2 (an integer value)
(Return)

This subroutine multiplies the value in the A-register by ARG2.
The result is then examined for over/underflow (see "Error
Messages''). If the result is in the proper range, the signed result
is returned to the calling program in the A-register.

<implicit integer argument > * <integer argument> — <integer result>

See ""Error Messages' for M$l1l.

ARG$, F$ER

5-46 AMT74

Purgose

DAP Calling
Seg uence

Method

Data TzEe of
Arguments and

Results

Error Messages

Other Routines
Used

Mmsa2

To multiply or divide two real numbers. (This subroutine has a
high-speed version, M$22X.)

CALL M$22 (or D$22) The multiplicand (M$22) or dividend
DAC ARG2 (multiplier (D$22) must be in the A- and B-
(Return) or divisor) registers. The sign, exponent, and

most significant bits will be in the
B-register.

X#Y = (X#2%%B)%(Y*2:%%C), where X = the value in the A- and B-
registers

Y = ARG2

= ABS(X)*ABS(Y)*Z**(B+C)
ABS(X)*ABS(Y) = X(1)*Y(1)+(X(1)*Y (2)+X(2)*Y(1))%25%- 15
The most significant part of the product is H(X(1)*Y (1)) and
the least significant part is L(X(l)*Y(l))+H(H(1)*Y(2\)+H(X(2)*
Y(1))*2%%-15,
Newton's method for 1/Y is R(1) = R(0)*(2-R(0)*Y), where
R(0) = 1/H(Y), H(Y) being the high-order 15 bits of Y.
X(1/Y) = X*R(1) = X*R(0)*(2-R(0)*Y).

<implicit real argument> * < real argument> — < real result>

MultiBIication - If there is underflow, a value of zero is returned
with no error message.

If there is overflow, an '""SM'" error message is reported and the
maximum value ((2%%128)-1) is returned in the A- and B-registers.

Division - If division by zero is attempted, a "DZ'" error message

is reported and the result in the A- and B- registers is undefined.
If the divisor is unnormalized, an ''SD" error message is reported

and the result in the A- and B-registers is undefined.

N$22, ARG$, F$ER

5-47 AM74

MmsS$S22X

Purpose To multiply two real numbers.
DAP Calling CALL Ms$22
Sequence DAC ARG2 {a real number)
(Return)
Method XY = (Xx20%B)*(Y#2%%C), where X = the value in the A- and B-
registers
Y = ARG2

= ABS(X)*ABS(Y)*2%%(BC)
ABS(X)*ABS(Y) = X(1)*Y(1)*(X(l)*Y(2)+X(2)*Y(l))*Z**-15
The most significant part of the product is H((X(1)*Y(1)) and the
least significant part is L(X(1)* Y(1))+H(H(1)* Y(2))+H(X(2)*Y(1))
w2%%-15, where H(X(1)*Y (1)) is the most significant part of the
product X(1)*Y (1) and L(X(1)*Y (1)) is the least significant part
of that product.

Data Type of < implicit real argument> * < real argument> —» < real result>
Arguments and

Results

Error Messages Underflow - A value of zero is returned with no error message.

Overflow - An '"SM'"' error message is reported and a signed maxi-
Zyereon
mum value (x1.7E38) is returned.

Other Routines F$ER
Tzed

5-48 AMT74

MS$S2

Purpose To multiply a complex number by a real number.
DAP Calling CALL M$52
Sequence DAC ARG2 (a real number)

(Return)
Method Y#X = (A+B*I)*X = A*X+(BxX)*I

where Y = A+B*I (in the complex accumulator)

X = ARG2

Data Type of < implicit complex argument> * < real argument> —= < complex re sult>
Arguments and
Results
Other Routines FAT, H55, SUB$, L$22, M$22, H$22, L$55
Used

5-49 AM74

MS$SSS

PurBose

DAP Calling
Seguence

Method

Data TzEe of

Ar guments and
Results

Other Routines
Used

To multiply complex numbers.

CALL M$55

DAC ARG2 (a complex value)
(Return)

This routine multiplies the contents of the complex accumulator (X)
by the value in ARG2 (Y).

X*Y = (A+B%I) (M+N=I) = A%M-B%N+{A*N+B*M)*I

where X = A+B*I and Y = M+N*I,

< implicit complex argument> * < complex argument> — < complex

result>

FSAT, H$55, SUBS, L$22, M$22, H$22, s$22, N$22, A$22, L$55

5-50 AM7T4

Purpose

DAP Calling
Seguence

Method

Data Type of

Arguments and

Results

Other Routines
Used

Mms$e2

To multiply a double-precision number by a real number.

CALL M$62
DAC ARG2 (real multiplier)
(Return)

This subroutine calls DBLE to convert the real multiplier to a
double-precision number and calls the double-precision multiply
routine (M$66).

< implicit double-precision argument> * < real argument> —

< double-precision result>

FAT, H66, DBLE, M$66

5-51 AMT74

MS$SE66

Purpose To multiply normalized, double-precision numbers.

See A$66.

5-52 AMT74

PurRose

DAP Calling
Seguence

Method

Data Tme of
Arguments and
Results

NS$S22

To determine the TWOs complement of a real number,

CALL N$22
DAC ARGI (a real number)
(Return)

The C-bit is preset on entrance to this routine to provide a true TWOs
complement if the low-order word is found to be zero. The C-bit is
reset when this is not the case, and the A- and B-registers are TWOs
complemented normally.

The TWOs complement of the real argument is computed and the
routine exits with the the real result in the A- and B-registers,

5-53 AMT74

Purpose To obtain the complement of a logical value.

DAP Calling CALL N$33

Sequence (Return)

Method The least significant bit of the argument in the A-register is

logically complemented, changing its value from true to false
(1 to 0) or false to true (0 to 1).

5-54 AMT74

PurEose

DAP Calling
Seguence

Method

Data TzBe of
Arguments and

Results

Other Routines
Used

NS$SS

To negate a complex quantity,

CALL N$55
(Return)

The signs of the real part and the complex part of the complex
number are negated. The result is in the complex accumulator.

The complex argument is negated and the subroutine exits, with the

complex result in the complex accumulator.

H$55, SUBS$, L$22, N$22, H$22, L$55

5-55 AM74

N$66

Purpose

DAP Calling
Seguence

Method

Data Type of
Arguments and

Results

Other Routines
Used

To negate a double-precision number.

CALL N$66
(Return)

This subroutine negates the value in the double-precision accumu-
lator. The double-precision word is effectively TWOs complemented
as follows:

1. The lowest order word, AC3, word 3, is tested for zero. If it
is not zero, the word is TWOs complemented. If it is zero, the

C-bit is set.

2. AC2, word 2, is tested for zero. If it is not zero, the word is
ONEs complemented and the C-bit is added. If it is zero and the
C-bit is set, no action is taken. If the C-bit is not set, the word
is ONEs complemented.

3. ACIl, word 1, is ONEs complemented, and the C-bit, if set, is
added. The negated result is left in the double-precision accumu-
lator.

The double-precision argument is negated and the routine exits with

a double-precision result in ACI, AC2, and AC3.

AC1, AC2, AC3

5-56 AMT74

Sss$22

Purpose To subtract real numbers. (This subroutine has
a high-speed version, S$22X.)

See A$22.

5-57 AM74

S$22X

To subtract real numbers. (This subroutine requires the

Purpose
High-Speed Arithmetic Option.)

See A$22X,

5-58 AM74

S$s52

Purpose To subtract a real number from a complex number to obtain a com-
plex result,

DAP Calling CALL S$52

Sequence DAC ARG2 (a real number)
(Return)

Method Y-X = A+B*I-X = (A-X)+B*I

where Y = A+B*I, X = ARG2

Data Type of < implicit complex argument> — <real argument> -—» < complex result>
Arguments and
Results

Other Routines FAT, H55, L$22, S$22, H$22, L$55
Used

5-59 AM74

S$55

Purpose

DAP Calling
Sequence

Method

Data Type of
Arguments and

Results

Other Routines

Used

To subtract two complex numbers.

CALL S$55
DAC ARG2 (the complex subtrahend)
(Return)

This subroutine subtracts ARG2(Y) from the value in the complex
accumulator (X):

X - Y = (A+B*I) - (M+N*I) = AXM+(B*N)*I
where X = A+B*I, Y = M+N*I

<implicit complex argument> — <complex argument> — < complex
result>

FAT, H55, SUB$, L$22, S$22, N$22, H$22, L$55

5-60 AMT74

s$62

PurEose To subtract a real argument from a double-precision number,
DAP Calling CALL S$62
Sequence DAC ARG2 (a real number)
(Return)
Method This subroutine calls DBLE to convert the real argument to a double-

precision number and enters the double-precision subtraction
routine (S$66).

Data Type of < implicit double-precision argument> — < real argument> —»
Arguments and < double -precision result>

Results

Other Routines FAT, H66, DBLE, S$66, N$66

Used

5-61 AMT74

S$66

Purpose To subtract normalized, double-precision numbers.

See A$66.

5-62 AMT74

SNGL

Purpose To convert a double-precision number to a real number.

See C$62.

5-63 AM74

SUBS

PurBose

DAP Calling
Seguence

Method

To calculate the address of a referenced array element or to calcu-

late the array size.

CALL SUB$

DAC or DAC* ARRAY TABLEL
DAC or DAC* SUBSCRIPT 1
DAC or DAC* SUBSCRIPT 2

DAC or DAC* SUBSCRIPT N
(Return)

or
CALL SIZ$

DAC or DAC*¥ ARRAY TABLE2
(Return)

ARRAY TABLE] Layout

DAC or DAC* ARRAY
OCT L (number of words per array element)
DEC DIMENSION 1
DEC DIMENSION 2

DEC DIMENSION N
OCT O (end of dimension list)

ARRAY TABLEZ Layout

DAC or DAC* ARRAY

OCT KEY

OCT or DAC:* DIMENSION 1
OCT or DAC* DIMENSION 2

-

OCT or DAC* DIMENSION N or OCT ARRAY SIZE

or omitted

The KEY bit pattern is CVDDDDDDDDDDDLLL, where

0 - no array bounds checking

1 - array bounds checking

= 0 - last word of array table is array size
1 - last word of array table is dimension

<< OO0
)

If C=0 and V = 0, the last dimension word of the array table is

omitted.
D = dimensionality - limited to 2047
L = number of words per array element

5-64

AM7T4

Error Messages

Other Routines
Used

SUBS cont.

Note that L is determined by the data type of the array as follows:

Data Type of Array

L = 1 - integer or logical
- real
- double-precision

- complex

B W N e

Let S denote the array starting address, L the number of words per
array element, S(I) the Ith subscript value, and D(I) the Ith dimension
for an N-dimensional array A where N = 1,

The address of the array element A(S(1), S(2), ...S(N)) is given by
S+ L{..., (S(N)-1)*D(N-1) +...+ (S(2)-1)*D(1) + (S(1)-1))

The error message ""AO'" (array overflow) is reported if the array
element referenced is outside the bounds of the array. Only the final
array element referenced is checked for legality, not individual sub-
script values.

M$11, F$ER

5-65 AM74

Z$80

Purpose To clear (zero-out) the exponent of the variable in the double-
precision accumulator,

DAP Calling CALL Z$80
Sequence (Return)
Method Extract the value in AC1 and replace the characteristic (base 2) in

bits 2-9 with zeros.

Other Routines AC1
Used

5-66 AM74

SECTION VI
RUN-TIME AND CONTROL SUBROUTINES

This section describes the routines which: control input and output by selecting and

activating the proper device drivers; provide buffers; and edit and trace all I/0,

6-1 AMT4

FSAR

Purpose

DAP Calling
Sequence

FORTRAN
Reference

Method

Other Routines
Used

To transfer an array from or to the input or output data list.

CALL F$AR For use with DAP

OCT m Number of words in array
DAC a Location of first word
(Return)

or -

CALL F$Lx As used by the compiler
OoCT m x = 1 for integer

DAC a = 2 for real

(Return) = 3 for logical

= 5 for complex
= 6 for double precision

DIMENSION I(5)

DTAD /. & ligt or - FORTR AN ctatement niirmhor)
SorEAT rer)

Availeias (30, 1y 210

WRITE (x, f) list

Whenever the data list requires data from the internal source
or data to be stored in the internal source, exit is made from
F$10 to the next location in the data list. Elements of the data
list may be variables, subscripted variables, or array names,
Mode may be integer, real, logical, complex, or double
precision. For easier data transmission, all list elements
are assumed to be arrays; the mode is determined by
appropriate format descriptors, For each item in the list,

the three-word calling sequence (above) is generated.

F$10, F$CB, F$ER

AM74

FSAT

Purpose To transfer a variable number of arguments from the
calling routine to the called routine.

DAP Calling DAC ol Entry point

Sequence CALL F$AT
DEC n Number of arguments to be transferred
DAC ARGI Address at which first argument is stored
DAC ARGn Address at which last argument is stored
(Return)

FORTRAN CALL SUBI (ARGI, ARG2, ..., ARGn)

References Where SUBI is any subroutine and ARGI

through ARGn are any constants, variables,
arrays, etc.

Method When arguments are to be transferred from a calling routine
to a subroutine, a call to F$AT is generated by the compiler.
The number of arguments specified by the first pseudo -
operation following the call are transferred from the calling
routine to the subroutine. All levels of indirect addressing
are removed before an argument is transferred. ARGI is
the beginning location of the block into which the arguments
are to be placed.

Data Type Arguments are direct relative addresses.
of Arguments

6-3 AMT74

F$BS-9

Purpose

DAP Calling
Sequence

FORTRAN
Reference

Method

Other Routines
Used

To connect the calling program with the magnetic tape
rewind routine.

CALL F$Bx x=5,6,7,8,9 or the previously defined
variablen (n = 5,6,7,8, or 9)

REWIND x x=5,6,7,8,9 or the variable n

This routine converts the logical magnetic tape unit number
(5,6,7,8 or 9) to the corresponding physical magnetic tape
unit number (1,2, 3, 4,o0r 5) and then calls the REWIND

routine to rewind the tape on that unit to the beginning of tape.

C$MR

AMT4

Purpose

DAP Calling
Sequence

FORTRAN
Reference

Method

Other Routines
Used

F$SCB

To close the buffers used for input or output.

CALL F$CB

READ (n, m) list n = device number; m = format
READ (n, m) statement number

READ (n) list

READ (n)

WRITE (n, m) list

WRITE (n, m)

WRITE (n) list

At the end of the data list from a READ or WRITE statement,
or when the format statement is exhausted (non-list), a call
is issued to F$CB to close the buffer. The address of the
buffer was determined by F$IO. F$CB checks for I/O mode
and immediately closes the buffer if mode is input. If the
buffer is formatted output, F$CB fills the remainder of the
buffer with up to 134 spaces. If output is binary, the end of
the buffer is filled with up to 120 zeros.

F$I10

6-5 AM74

F$DS-9

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Other Routines
Used

To control the writing of an end-of-file mark on magnetic
tape and a STOP code as an end-of-file on paper tape punch.

CALL F$D2
CALL F$Dx
CALL F$Dn
END FILE x

BoM N
wouon

"
"

paper tape punch

logical tape unit number 5 through 9
dummy device number and the A-
register contains the value 2,5, 6,
7,8, or 9

2,5,6,7,8,9 or the variable n

This routine converts the logical magnetic tape unit number
(5,6,7,8, or 9) to the corresponding physical magnetic tape
unit number (1,2,3,4, or 5). It then calls the driver to
write an end-of-file mark on the specified magnetic tape.

If x is 2, it calls the driver to punch a STOP code on the
high-speed paper tape punch.

OME, OPS

6-6

AMT4

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Data Type
of Argument

Other Routines
Used

To cause a mnemonic error indicator to be typed on the ASR-33
when an object-time error is encountered in a specified routine.

CALL F$ER ARGI is the address of the indicator to
DAC ARG]I be typed. The routine types the error
indicator and halts if Sense Switch 3
is not set. Pressing START after the
halt causes the program to continue.

If Sense Switch 3 is set, F$ER exits
with no typeout and no halt.

CALL F$ER (2Hxx) xx = two ASCII characters to be typed

The location of the object-time error mnemonic indicator

is extracted from its relocatable address, AC5., ACS is
then loaded with the error mnemonic indicator and Sense
Switch 3 is tested. If the switch is not set, a carriage
return and line feed are issued. The error mnemonic is
then printed, and the routine halts. If START is pressed

at this point, a normal return is made to the calling routine.
If Sense Switch 3 is set, return is made immediately to
calling routine.

The argument is the address of any two ASCII characters.

AC5, F$HT

6-7 AMT74

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Error

Message

Other Routines
Used

To control back spacing of a record on magnetic tape.

CALL F$Fx x=5,6,7,8,9 or the previously defined
variable n.
BACKSPACE x x=5,6,7,8,9 or the variable n.

This routine converts the logical magnetic tape unit number
(5,6,7,8, or 9) to the corresponding physical magnetic tape

unit number (1,2, 3,4, or 5) and then calls the driver to back
space one record on the specified magnetic tape.

An error message BF is reported if an end-of-file is

encountered.

CBR, FER

6-8

AMT4

Purpose

DAP Calling
Sequence

FORTRAN
Reference

Method

Data Type
of Ar gument

Other Routines
Used

FSGA

To process FORTRAN run-time assigned GO TO statements.

LDA PTR Transfer address in A-register
CALL F$GA

DEC n Number of statements in list
DAC S1 Address of first statement

DAC S2 Address of second statement
DAC Sn Address of last statement
ASSIGN J TO I J = statement number
GO TO1I, (K1,K2,...Kn) I = integer variable name

Ks = statement numbers

This routine checks the address passed in the A-register against
the statement address list that follows the call. If the address
is found in that list, control passes to that statement. If not,

a GO error is reported. No recovery from this error is
possible. If the statement address list is empty (n = 0), the
address is not checked,

An address is passed to this routine in the A-register. Con-
trol is passed to the statement number at that address.

F$ER

6-9 AM74

F$SGC

Purpose To process FORTRAN run-time computed GO TO statements.
DAP Calling LDA PTR Index to statement list
Sequence CALL F$GC

DEC n Number of statements in list

DAC S1 Address of first statement

DAC S2 Address of second statement

DAC Sn Address of last statement in list
FORTRAN GO TO (K1,K2,...Kn),I I = integer value in the range 1 to n
Reference Ks = statement numbers
Method The integer variable I or the content of PTR is treated as an

index number; F$GC uses it to select the statement number
from that position in the calling sequence. For example,
if I = 3 then control is shifted to statement K3 or S3 in the
above examples. If the index (I) is <1 or >n, the computed
GO TO statement is treated as a NOP,

Data Type An integer value is passed to this routine in the A-register.
of Argument Control is passed to the statement at the computed address.

6-10 AMT4

Purpose

DAP Calling
Sequence

FORTRAN
Reference

Method
Data Type

of Argument

Other Routines

Used

FSHT

To cause the computer to stop and print PA if a PAUSE
statement has been encountered, or to print ST if a STOP
statement has been encountered.

CALL FSHT

DAC '151724 Cctal notation for ST
CALL F$HT

DAC 150301 Octal notation for PA
STOP or

PAUSE

This calling sequence is generated by the compiler when the
STOP or PAUSE verb is encountered. The mnemonic ST or

PA is placed in relocatable address AC5 and printed on the
ASR. The A-register is restored and the program halts.
Return to the calling program may be made by pressing START.

The binary equivalent to the specified ASCII characters.

ACS5

6-11 AMT4

F$I10

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Other Routines
Used

To perform input/output conversion, to edit input/output
information, to accommodate the appropriate input/output
device, and to provide buffers.

DAC a a = location of the format list from the
CALL F$10 READ statement

DAC BUF BUF = buffer location

DACH* a The calling sequence for a FORTRAN
CALL F$IO WRITE with a and BUF as above

DAC BUF

READ (n, x) list n = device number

WRITE (n, x) list X
x FORMAT ()

1

format statement number

A FORTRAN READ/WRITE statement starts with a device
number and a reference to a format statement, followed

by an optional argument list. The first instruction generated
by the READ/WRITE statement is a coupling to the appro-
priate device driver. The device driver then calls on

F$IO passing the location of the format list, setting the entry
location for the device driver and setting a flag to indicate
input or output. F$IO then interprets the format list,
character-by-character, taking whatever actions are
required. Whenever data is required from or is to be stored
in the internal source, exit is made from F$IO to the next
location in the data list.

FAR, FCB, F$ER

AMT74

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Data Type

Other Routines
Used

FSR1

To control the typewriter keyboard input routine.

CALL F$R1

DAC n n = location of the format descriptor list
(Return)

READ(1, f) list f = FORTRAN statement number
READ(I, f)

This subroutine connects the calling program with the

I/O control subroutine (F$10). Included in F$RI1 is the driving
logic needed to transmit input from the typewriter keyboard.
When F$IO is called, the location of the format descriptor

list (if any), the entry location of the driver subroutine, and

a flag indicating input are transmitted.

Whenever the F$IO subroutine requires data, return is made
to the driver input entry of this subroutine, at which time up
to 120 characters (terminated by a carriage return) are
entered into the input buffer.

Information is in ASCII format.

F$10, I$AA

6-13 AMT4

FSR2

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Data Type

Other Routines
Used

To control the paper tape input routine.

CALL F3SR2

DAC n Location of the format descriptor list
(Return) (or 00000 if input is in binary format)
READ(2,) list Formatted READ where f is a format
READ(2,) statement number

READ(2) list Unformatted paper tape read
READ(2)

This subroutine connects the calling program with the I/O
control subroutine (F$I0). Included in F$R2 is the driving
logic needed to transmit input from the paper tape reader,

When F$IO is called the location of the format descriptor

156 amer) Alhp antre larnatinn nf +he Ariver cuhrontine. and
-7

13~
P v S I L

a flag indicating input are transmitted.

Whenever the F$IO subroutine requires data, it calls on the
F$R2 driver subroutine, which assembles data into a 60-word
buffer, three characters per word, if the input mode is
binary. If the inputmode is BCD, 80 characters are
assembled, two per word, into a 40-word buffer. A carriage
return character is replaced with as many blanks as needed
to fill the rest of the input buffer. A tab character is
replaced with as many blanks as needed to reach the next
predetermined tab position.

A STOP code read in either binary or BCD mode causes the
characters ST to be typed followed by a halt. Press START
to continue,.

Information is in ASCII if formatted, or in binary if
unformatted.

F$10, I$PA, I$SPB

6-14

AM74

Purpose

DAP Calling

Sequence

FORTRAN
References

Method

Data Type

Cther Routines
Used

FSR3

To control the card input routine.

CALL F$R3

DAC n Location of format descriptor list
(Return) (00000 if input is binary)

READ(3, f) list f = FORTRAN Statement number
READ(3,f)

READ(3) list Unformatted read from a punch card
READ(3)

This subroutine connects the calling program to the I/O
control subroutine F$IO. Included in this subroutine is the
driving logic required to input from the card reader. When
F$IO is called, this subroutine transmits the location of the
driver subroutine and a flag indicating input.

When the F$IO subroutine requires data, it calls upon the
F$R3 driver subroutine, which assembles 80 characters
(two per word) into a 40-word buffer, if mode is Hollerith
(formatted), or into a 60-word buffer in column binary
format (three words for every four columns) if binary.
Return is made to F$IO where the buffer is processed.

Information is in Hollerith if formatted, or in column
binary if unformatted.

F$10, I$CA, I$CB

o
¥

ot

wm

AMT74

FSRS-9

Purpose To control reading of magnetic tape.

DAP Calling CALL F$Rx x=5,6,7,8, or 9

Sequence DAC n Location of the format descriptor list
(Return) if formatted, or zero if unformatted

FORTRAN READ(x,f) list f = FORTRAN statement number and

References READ (x,) x=5,6,7,8, or 9
READ(x) list Unformatted read where x = 5,6, 7,8, or 9
READ (x)

Method This subroutine connects the calling program with I/O control

routine (F$I0O) and standard magnetic tape routines.

When F$IO is called, the format descriptor list and a flag
indicating input are transmitted.

When the F$IO routine needs a buffer of data, it calls this
driver, which in turn calls the appropriate magnetic tape unit
and conversion routines (for formatted READ)., The number
of words read is 60, equivalent to 120 characters.

The appropriate magnetic tape units are physical magnetic tape
units 1 through 5 corresponding respectively to logical tape
units, numbers 5 through 9.

Data Type Information is in ASCII if formatted, or in binary if
unformatted.

Other Routines F$10, I$MA, IMC, C6TO08

Used

6-16 AMT4

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Data Type

Other Routines

Used

FSRnNn

To control the input drivers for variable input device numbers.

LDA d
CALL F$Rn
DAC n
(Return)

READ (x, f) list
READ (x, f)
READ (x) list
READ (x)

Location of device number

Location of Format Descriptor List = 00000
if format is binary

f = FORTRAN statement number;

X =

variable device number 1 through 9
unformatted read wherex=1,2,3,5,6,7,8,9

The value of d is checked for correct limits and is then used
to determine the entry position of a Jump Table. The Jump
Table transfers to the proper F$R subroutine. (Note that
the entire F$R subroutine must be called into memory along
with this subroutine, because there is no way of knowing

in advance which drivers are required.)

If d does not equal a number from 1 to 9, the computer

halts with a 1 in the A-register. The A-register may be changed
manually to another device number; otherwise, the typewriter
will be selecied as the input device when START is pressed

to continue processing.

Other errors, such as parity, end of tape, etc., cause the
actions described in the appropriate F$R subroutine.

Information is in ASCII if formatted, or in binary if

unformatted.

F$R1, F$R2, F$R3, F$R5-9

AM74

FSTR

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

To aid in debugging programs by printing the following:

e Values of variables or array elements as they are
being stored

. Values of the DO parameters as they vary
° Locations of statement numbers as they are encountered

. Content of IF statements as they are evaluated.

CAT.L F$TR
CCT The first three bits of the first argument
CCT are:
CCT 000 = 0 = Statement number
(Return) 001 = 1 = Integer
010 = 2 = Real
011 = 3 = Logical
100 = 4 (Not Used)
101 = 5 = Comnlex
110 = 6 = Double precision

The mode of an IF statement depends
on the mode of the expression being
evaluated. The remaining 13 bits of
ARGI! and all the ARG2 and ARG3 are
the name of the variable, the statement
number, or blank,

TRACE x1,x2,... xn Each x represents a variable or array
name;

TRACE n n represents a statement number

The A-register is stored in location zero (index register).
The location of the argument is extracted and is interchanged
with the index register, restoring the A-register. Sense
Switch 4 is interrogated and if set, return is made to the
calling program. If Sense Switch 4 is reset, trace mode is
entered. The A- and B-registers are saved, and the buffer
pointer is reset. The mode jump address is then set up.

The 1- to 6-character name is then put in the format state-
ment buffer. The return address for exit is calculated and

stored., The 1-to 6-character name is interrogated to determine

whether a statement number or a variable is being processed.
If a variable name is being processed, an equal sign is stored
in the format buffer following the name of the variable. An
indirect jump is then taken, contingent upon whether the mode
is real, integer, logical, complex, or double-precision. The
following formats are moved to the format buffer, depending
on the mode, to provide maximum representation of the
variable.

REAL G19.7
INTEGER 17

LOGICAL 12

COMPLEX E15.7,H, E15.7

DOVURLE PRECISION D19.11

6-18

AMT7T4

Data Type
of Arguments

OCther Routines

Used

FSTR cont.

The output device and format location are provided to the
appropriate I/O driver and communicated to F$IO. Then the
variable name and equal sign, and its appropriate value, are
printed. When an IF statement evaluation is being written
the four characters IF() are printed, followed by an equal
sign and the value of the expression in the parentheses.

If a statement number is being printed, the number is
bracketed by opening and closing parentheses, and is printed.
Upon completion of each printout, the buffer is closed and
the A- and B-registers restored. Return is made to the
calling program,

See calling sequence.

F$W1, F$AR, F$CB, ACl, AC2, AC3

6-19 AM74

FSW1

Purpose To control the typewriter output routine.

DAP Calling CALL F$wl

Sequence DAC n Location of the format descriptor list
(Return)

FORTRAN WRITE(!1, f)list f = FORTRAN statement number

References WRITE(], f)

Method This subroutine connects the calling program with the 1/0

control subroutine (F$I0). Included in this subroutine is the
driving logic needed to produce output on the typewriter.

When F$IO is called, the location of the format descriptor
list (if any), the entry location of the driver subroutine, and
a flag indicating output are transferred.

After the F$IO subroutine has generated a buffer full of data
(72 characters), return is made to the driver output entry
of this subroutine. At that time, the first character of the
buffer is analyzed for proper line feed control as follows:

Blank — Type a single carriage return
followed by characters (2-72)

0 — Issue two carriage returns, then
type characters (2-72)

1 — Skip to the top of the next page,

then type characters (2-72)
+ — No line advance, type characters (2-72)
Others — Same as blank, except characters

(1-72) are typed

This subroutine prints 60 lines per page and skips six lines
to the top of the next page. The operator should start three
lines down the first page in order to get correct spacing
between pages.

Data Type Only ASCII information is processed.
Other Routines F$10, O$AC, O$AF
Used

6-20 AM74

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Data Type

Other Routines
Used

FSW2

To control the paper tape output routine.

CALL F$w2

DAC n Location of format descriptor list
(Return) (00000 if output mode is binary)
WRITE(Z, f) list f = FORTRAN statement number
WRITE(Z, f)

WRITE(2) list Unformatted WRITE to paper tape punch

This subroutine connects the calling program to the I/O control
subroutine F$IO. Included in the subroutine is the driving logic
required to produce output on the paper tape punch. When F$IO
is called, this subroutine transmits the location of the format
descriptor list (if any) the entry location of the driver sub-
routine, and a flag indicating input.

After the F$IO subroutine has generated a full buffer of data
60 words at two characters per word, or 40 words at three
binary characters per word, return is made to the driver
output entry of the subroutine. At that time, the buffer is
punched on tape.

Information is in ASCII if formatted or in binary if unformatted.

F$10, O$PF, OPP, OPB

6-21 AM74

FSW3

Purpose

DAP Calling
Sequence

FCRTRAN
References

Method

Data Type

Other Routines
Used

Note

To control the card punch routines.

CALL F$wW3
DAC n Location of format descriptor list
(Return) (00000 if output mode is binary)

WRITE(3, f) list
WRITE(3, f)
WRITE(3) list

f = format statement number

Unformatted WRITE to the card punch

This subroutine connects the calling program (FORTRAN

Cbject Program) to the 1/0 control subroutine, F$IO, and to

the card punch subroutines. When F$I10 is called, F$W3

transmits the location of the address of the format descriptor

list (if any), including a flag indicating output mode (DAC> for input),
and a lacation for reentrance to F$W3,

After the F$IO subroutine has generated a full buffer of data

(40 words at two BCD characters per word or 60 binary words),
return is made to F$W3. The appropriate card punch subroutine
is called, and a card is punched.

Information is in Hollerith if formatted, or in column binary
if unformatted.

F$I1C, O$CH, O$CB

The Hollerith information can be either 026 or 029 character
set, depending on the version of O$CH selected.

6-22 AMT74

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Data Type

Other Routines

Used

FSWa

To control the line printer output routine.

CALL F$w4 ,
DAC n Location of format descriptor list
(Return)

If n is zero, which normally indicates binary
output, the computer halts. Push START to
print data in BCD format.

WRITE(4, f) list f = format statement number
WRITE((4, f)

This subroutine connects the calling program to the I/C control
subroutine F$IO. Included in the subroutine is the driving logic
required to produce output on the line printer. When F3$IO

is called, this routine transmits the location of the format
descriptor list (if any), the entry location of the driver sub-
routine, and a flag indicating output mode.

After the F$IO subroutine has generated a full buffer of data
(120 characters), return is made to the driver output entry
of this subroutine, At that time, the first character of the

buffer is analyzed for proper line feed control as follows:

Blank — Advance one line and print characters
2 through 120.

0 — Advance two lines and print characters
2 through 120.

1 — Advance to top of next page and print
characters 1 through 120.

+ — Print characters 1 through 120 without
advancing line position.

Others — Advance one line and print characters
1 through 120.

Information is in ASCII format.

F$10, O$LP, O3LO

6-23

AM74

FSWS-9

Purpose

DAP Calling
Sequence

FCRTRAN
References

Method

Data Type

Other Routines
Used

To control writing on magnetic tape.

CAILL F$wx x=5,6,7,8, or 9

DAC n Address of format, if any

WRITE(x,) list f = FORTRAN statement number
WRITE (x, f) x=5,6,7,8, or 9

WRITE(x) list Unformatted READ, x=5,6,7,8, or 9

This program connects the calling program with the I/0O control
routine (F$IO) and the standard magnetic tape routines. When
F$IO is called, the format descriptor list and a flag indicating
output mode are transferred.

When the F$IO routine has a buffer of data to write, it calls
the driver, which in turn calls the appropriate magnetic tape

P L T T . 2 s e e e e R LA P A A S
QLG CONVOLTO10n TOUGGID (WO F LOTINLaetld v ava b amy

60 words are written, equivalent to 120 characters in either
mode (formatted or unformatted).

The appropriate magnetic tape units (physical) are numbers
1 through 5 corresponding respectively to the logical tape
units numbers 5 through 9 given for x above.

Information on the tape is in ASCII if formatted, or in
binary if unformatted.

F$10, O$MC, OMA, C8TO6

AMT74

Purpose

DAP Calling
Sequence

FORTRAN
References

Method

Data Type

Other Routines
Used

FSWn

To control the output drivers for variable output device numbers.

LDA d Location of device number

CALL F$Wn

DAC n Location of format descriptor list

(Return) (00000 if format is binary)

WRITE(x, f) list f = FORTRAN statement number

WRITE (x, f) X = variable device number 1 through 9

WRITE(x) list Unformatted WRITE, where x = 1,2, 3, 4,5,
6,7,8, or 9

The value of d is checked for correct limits and then used to
determine the entry position of a Jump Table. The Jump
Table is then transferred to the proper F$W subroutine.

(Note that all F$W subroutines must be called into memory
along with this subroutine, because there is no way of knowing
in advance which drivers are required.

If d does not equal a number from 1 through 9, the computer
halts with a 1 in the A-register. The A-register may be
changed manually to another device number. Otherwise,

the typewriter will be selected as the output device when
START is pressed to continue processing,

Other errors, such as parity, end of tape, etc., cause the
actions described in the appropriate F$W subroutine,

Information is in ASCII if formatted, or in binary if unformatted.

F$WI1, F$W2, F$W3, F$W4, F$W5-9

6-25 AMT74

APPENDIX A
TAPE CONTENTS

MAGNETIC TAPE 70182805000 - L'TCSIS
(LIBRARY SOURCES CODED IN FORTRAN)

This tape consists of the individual sources of the following programs in the order listed.
This tape is one of two distributed and contains that portion of the FORTRAN Library that is
FORTRAN-coded.

FILE NUMBER NAME ‘ DOC. NO,

1 STMEAN 70181386000

2 STGEOM 70181387000

3 lSTCORR 70181388000
4 STSPER 70181389000

5 STCRMT 70181390000

6 STMEDT 70181391000

7 S3TCHI2 70181392000

8 STBNPB 70181394000

9 STLNRG 70181395000
10 STCHIS 70181393000
11 STPLRG 70181396000
12 STANVI 70181397000
13 STANV2 70181398000
14 STANVR 70181399000
15 STANVL 70181400000
16 'STANVG 70181401000
17 STANVB 70181402000
18 STANVY 70181403000
19 DEFOAD 70181405000
20 DEFOMA 70181404000
21 DEFOHA 70181406000
22 DEFORK 70181407000
23 DESOAD 70181408000
24 DESOMA 70181409000
25 DESOHA 70181410000
26 DESORK 70181411000
27 PLYMUL 70181416000
28 PLYDIV 70181417000
29 PLYINT 70181420000
30 PLYIRT 70181421000
31 PLYEVL 70181422000
32 PLYDEF 70181423000
33 NACPLY 70181429000
34 NAAITK 70181418000
35 NALAGR 70181419000
36 NABAIR 70181424000
37 MATTRS 70181412000
38 MATMUL 70181413000
39 MARITH 70181414000

A-1 AM74

FILE NUMBER

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

NAME

MATEIG
MATINV
NAREGU
NAMULL
GSEID
SORT
SORT2
CVPOLR
E$62
E$61
E$26
E$66
DSQRT
DCOS
DSIN
DEXP
DLOGIO
DLOG
DLOG2
DATAN2
DATAN
DMOD
DSIGN
DABS
A$62
S$62
M$62
D$62
C$16
DBLE
CSQRT
CCos
CSIN
CLOG
CEXP
CABS
E$51
A$52
S$52
M$52
D$52
A$55
S$55
M$55
D$55
CONJG
Cc$25
CMPLX
N$55
END

DOC, NO.

70181415000
70181427000
70181425000
70181426000
70181428000
70181430000
70181431000
70181432000
70180053000
70180052000
70182582000
70180054000
70182580000
70180055000
70182583000
70182581000
70180051000
70182579000
70182914000
70180056000
70182584000
(V182588000
70182589000
70182587000
70180037000
70180038000
70180039000
70180040000
70180059000
70180058000
70182592000
70180066000
70182595000
70182591000
70182593000
70182596000
70182594000
70180041000
70180042000
70180043000
70180044000
70182544000
70180093000
70182545000
70180034000
70182598000
70180068000
70182597000
70180069000

AMT74

MAGNETIC TAPE 70182806000 — LLTCS2S

(LIBRARY SOURCES CODED IN DAP)

FILE NUMBER

QR ~J O Ul W

Or O s s o W D B R R B R W W W W W W W W W W NIV NNNDNNN — b o b bt b et bt
= O 00O~ OULIWNHEHFOWOWOMNNOULR WNFHRFOOWUOMIOCU R WNMEMOOVOIOURNWNIELO-W

NAME

DMAX]1
DMIN1
DINT
Z3%80
A$81
C$61
A$66
A$66XRA
H$66
C$26
H$55
MAXO0
MAXI1
MINO
MIN1
TANH
SQRT
SQRTX
SIN, COS
ATAN
E$21
E$22
ALOG
ALOGX
EXP
E$11
E$11X
ABS
C$62
AMOD
L$66
AINT
N$66
DIM
SIGN
AIMAG
L$55
IFIX
FLOAT
C$l12
c$21
LOC
C$81
ISTORE
N$33
IFETCH
IABS
F$OE
MOD
F$TR-RA
SUB$

DOC, NO,

70182585000
70182586000
70180850000
70180851000
70180852000
70182554000
70180853000
70180979000
70180855000
70180857000
70180860000
70182548000
70182549000
70180649000
70182551000
70182565000
70182560000
70180681000
70182563000
70182564000
70182562000
70180045000
70182559000
70180682000
70182561000
70182547000
70180684000
70182570000
70180884000
70182572000
70180854000
70182571000
70180856000
70182573000
70182574000
70180858000
70180859000
70182553000
70180062000
70182575000
70182558000
70181962000
70180882000
70181982000
70180090000
70181983000
70182552000
70181984000
70182555000
70180827000
70185150000

AMT4

FILE NUMBER

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

NAME

ErsGA
F3GC
IDIM
A$22
M$22
A$22X11
M$22X11
D$22X11
ISIGN
L$22
H$22
N$22
SLITE
M$11
D$11
M$11X
D$11X
OVERFL
F$AT
L$33
F$WN
FTERN
F$R1
F$W1
F$R2
F3W2
F$R3
F$W3
F$W4
F$R5-9
F$F5-9
F$W5-9
F$10
016CHAIN
ARGS$
F3$D5-9
F$B5-9
F$ER-RA
AC1
END

0155151000
70135152000
70182556000
70182536000
70182537000
70181805000
70181806000
70181804000
70182557000
70182534000
70182535000
70180097000
70182599000
70180035000
70182546000
70180685000
70180686000
70180894000
70180071000
70180065000
70180089000
70180088000
70182610000
70182611000
70182612000
70182613000
70182614000
70181667000
70182616000
70180306000
70180310000
70180307000
70182618000
70180659000
70180072000
70180308000
70180309000
70181068000
70180717000

MAGNETIC TAPE 70182803541 — LTCMIS

(LIBRARY OBJECTS - SOFTWARE VERSION)

This magnetic tape consists of the concatenation of the individual objects of the listed

programs. They have been translated by the FORTRAN Translator Mod 1 if FORTRAN coded

and/or assembled by the DAP-16 Mod 2 Assembler.

FILE NUMBER

N O~ ULk W N

NAME

STMEAN
STGEOM
STCORR
STSPER

STCRMT
STMEDT
STCHI12

A-4

DOC. NO,

70181386000
70181387000
70181388000
70181389000
70181390000
70181391000
70181392000

AMT74

FILE NUMBER

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

NAME

STBNPB
STLNRG
STCHIS
STPLRG
STANV1
STANV2
STANVR
STANVL
STANVG
STANVB
STANVY
DEFOAD
DEFOMA
DEFOHA
DEFORK
DESOAD
DESOMA
DESOHA
DESORK
PLYMUL
PLYDIV
PLYINT
PLYIRT
OLYEVL
PLYDIF
NACPLY
NAAITK
NALAGR
NABAIR
MATTRS
MATMUL
MARITH
MATEIG
MATINV
NAREGU
NAMULL
GSEID
SORT
SORT2
CVPOLR
E$62
E$61
E326
E$66
DSQRT
DCOs
DSIN
DEXP
DLOGI10
DLOG
DLOG2
DATANZ2
DATAN
DMOD
DSIGN
DABS
A$62

DOC. NO,

70181394000
70181395000
70181393000
70181396000
70181397000
70181398000
70181399000
70181400000
70181401000
70181402000
70181403000
70181405000
70181404000
70181406000
70181407000
70181408000
70181409000
70181410000
70181411000
70181416000
70181417000
70181420000
70181421000
70181422000
70181423000

70181429000

70181418000
70181419000
70181424000
70181412000
70181431000
70181414000
70181415000
70181427000
70181425000
70181426000
70181428000
70181430000
70181431000
70181432000
70180053000
70180052000
70182582000
70180054000
70182580000
70180055000
70182583000
70182581000
70180051000
70182579000
70182914000
70180056000
70182584000
70182588000
70182589000
70182587000
70180037000

AMT4

DMINI1
DINT
Z$80
A3$81
C$61
A$66
H$66
C$26
H$55
MAXO0
MAX]1
MINO
MIN1
TANH
SQRT
SIN, COS
ATAN
E$21
E$22
ALOG
EXP
E$11
ABS
C$62
AMOD
L$66
AINT
N$66
DIM
SIGN
AIMAG

A-6

DOC, NO

70180036000
70180039000
70180040000
70180059000
70180058000
70182592000
70180066000
70182595000
70182591000
70182593000
70182596000
70182594000
70180041000
70180042000
70180043000
70180044000
70182544000
70180093000
70182545000
70180034000
70182598000
70180068000
70182597000
70180069000
70182585000
70182586000
70180850000
70180851000
70180852000
70182554000
70180853000
70180855000
70180857000
70180860000
70182548000
70182549000
70180649000
70182551000
70182565000
70182560000
70182563000
70182564000
70182562000
70180045000
70182559000
70182561000
70182547000
70182570000
70180884000
70182572000
70180854000
70182571000
70180856000
70182573000
70182574000
70180858000

AMT74

FILE NUMBER

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

NAME

L$55
IFIX
FLOAT
C$i2
Cs$21
LOC
C$81
ISTORE
N$33
IFETCH
IABS
F$DE
MOD
F$TR-RA
SUB#$
F$GA
F$GC
IDIM
A$22
M$22
ISIGN
L$22
H$22
N$22
SLITE
M$11
D$11
OVERFL
F$AT
L$33
F$WN
F$RN
FS$R1
F$W1
F$R2
F$wz2
F$R3
F$W3
F$w4
F$R5-9
F$F5-9
F$W5-9
F$10
016CHAIN
ARGS$
F$D5-9
F$B5-9
F$ER-RA
AC1
SQRX1
COSX1
SINX1
ANTX1
LGEX1
LG2X1
EXEX]1
EX2X1

A-T

DOC, NO,

70180859000
70182553000
70180062000
70182575000
70182558000
70181962000
70180882000
70181982000
70180090000
70181983000
70182552000
70181984000
70182555000
70180827000
70185150000
70185151000
70185152000
70182556000
70182536000
70182537000
70182557000
70182534000
70182535000
70180097000
70182599000
70180035000
70182546000
70180894000
70180071000
70180065000
70180089000
70180088000

- 70182610000

70182611000
70182612000
70182613000
70182614000
70181667000
70182616000
70180306000
70180310000
70180307000
70182618000
70180659000
70180072000
70180308000
70180309000
70181068000
70180717000
70188775000
70188781000
70188777000
70188779000
70188814000
70188784000
70188786000
70188782000

AMT74

FILE NUMBER

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

Files
Files

bFiles

NAME

DSQRX1
DCOSX1
DSINX1
DATNX1
DLGEX]1
DLG2X1
DEXEX]1
DEXZ2X1
DMPY
MPY
DIV
DADD
DSUB
ROND
RODD
TWOS
END

1-47

48-169

L(U=-1Y5

DOC. NO,

70188788000
70188792000
70188790000
70188793000
70188801000
70188795000
70188799000
70188797000
70188808000
70188811000
70188810000
70188812000
70188813000
70188805000
70188804000
70188803000

Statistical Library
FORTRAN Library

#1xed roint nvath Libra.

MAGNETIC TAPE 70182804541 — LTCMIH

(LIBRARY OBJECTS - HARDWARE VERSION)

This magnetic tape consists of the concatenation of the individual objects of the listed

programs. They have been translated by the FORTRAN Translator Mod 1 if FORTRAN code

and /or assembled by the DAP-16 Mod 2 Assembler.

FILE NUMBER

NAME

STMEAN
STGEON
STCORR
STSPER
STCRMT
STMEDT
STCHI2
STBNPB
STLNRG
STCHIS
STPLRG
STANV1
STANV2
STANVR
STANVL
STANVG
STANVB
STANVY
DEFOAD
DEFOMA
DEFOHA
DEFORK
DESOAD

DOC. NO.

70181386000
70181387000
70181388000
70181389000
70181390000
70181391000
70181392000
70181394000
70181395000
70181393000
70181396000
70181397000
70181398000
70181399000
70181400000
70181401000
70181402000
70181403000
70181405000
70181404000
70181406000
70181407000
70181408000

AMT4

FILE NUMBER

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

NAME

DESONA
DESOHA
DESORK
PYLMUL
PLYDIV
PLYINT
PLYIRT
PLYEVL
PLYDIF
NACPLY
NAAITK
NALAGR
NABAIR
NATTRS
NATMUL
MARITH
NATEIG
NATINV
NAREGU
NAMULL
GSEID
SORT
SORT2
CVPOLR
E$62
E$61
E$26
E$66
DSQRT
DCOS
DSIN
DEXP
DLOGI10
DLOG
DLOG?2
DATAN2
DATAN
DMOD
DSIGN
DABS
A$62
S$62
M$62
D$62
C$16
DBLE
CSQRT
CCOS
CSIN
CLOG
CEXP
CABS
E$51
A$52
S$52
M$52
D$52

A-9

DOC, NO,

70181409000
70181410000
70181411000
70181416000
70181417000
70181420000
70181421000
70181422000
70181423000
70181429000
70181418000
70181419000
70181424000
70181412000
70181413000
70181414000
70181415000
70181427000
70181425000
70181426000
70181428000
70181430000
70181431000
70181432000
70180053000
70180052000
70182582000
70180054000
70182580000
70180055000
70182583000
70182581000
70180051000
70182579000
70182914000
70180056000
70182584000
70182588000
70182589000
70182587000
70180037000
70180038000
70180039000
70180040000
70180059000
70180058000
70182592000
70180066000
70182595000
70182591000
70182593000
70182596000
70182594000
70180041000
70180042000
70180043000
70180044000

AM7T4

AME

he

$55
$$55
M$55
D$55
CONJG
C$25
CMPLX
N$55
DMAX1
DMIN1
DINT
7$80
A$81
C$61
A$66XEA
H$66
C$26
H$55
MAXO0
MAX1
MTNO
MIN1
TANH
SQRTX
SIN, COS
ATAN
E$21
E$22
ALOGX
EXP
E$11X
ABS
C$62
AMOD
L$66
AINT
N$66
DIM
SIGN
AIMAG
L$55
IFIX
FLOAT
Cc$12
cs$21
LOC
C$81
ISTORE
N$33
IFETCH
IABS
F$OE
MOD
F$TR-RA
SUB$
F$GA
F$GC

A-1C

DOC. NO.

70182544000
70180093000
70182545000
70180034000
70182598000
70180068000
70182597000
70180069000
70182585000
70182586000
70180850000
70180851000
70180852000
70182554000
70180979000
70180855000
70180857000
70180860000
70182548000
70182549000
70180649000
70182551000
70182565000
70180681000
70182560000
70182564000
70182562000
70180045000
70180682000
70182561000
70180684000
70182570000
70180884000
70182572000
70180854000
70182571000
70180856000
70182573000
70182874000
70180858000
70180859000
70182553000
70180062000
70182575000
70182558000
70181962000
70180882000
70181982000
70180090000
70181983000
70182552000
70181984000
70182555000
70180827000
70185150000
70185151000
70185152000

AMT74

FILE NUMBER

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

NAME

IDIM
A$22X11
M$22X11
D$22X11
ISIGN
L$22
H$22
N$22
SLITE
M$11X
D$11X
OVERFL
F$AT
L$33
F$WN
F$RN
F$R1
F$W1
F$R2
F$wz2
F$R3
F$W3
F$w4
F$R5-9
F$F5-9
F$Ws5-9
F$I10
016CHAIN
ARGS$
F$D5-9
F$B5-9
F$3ER-RA
AC1
SQRX2
COSX2
SINX2
ATNX2
LGEX2
LG2X2
EXEX?2
EX2X2
DSQRX2
DCOsXz2
DSINX2
DATNX2
DLGEX?2
DLG2X2
DEXEX2
DEX2X2
DMPYH
DADD
DSUB
ROND
RODD
TWOS
END

DOC, NO,

70182556000
70181805000
70181806000
70181804000
70182557000
70182534000
70182535000
70180097000
70182599000
70180685000
70180686000
70180894000
70180071000
70180065000
70180089000
70180088000
70182610000
70182611000
70182612000
70182613000
70182614000
70181667000
70182616000
70180306000
70180310000
70180307000
70182618000
70180659000
70180072000
70180308000
70180309000
70181068000
70180717000
70188776000
70180761000
70188778000
70188780000
70188815000
70188785000
70188787000
70188783000
70188789000
70180762000
70188791000
70188794000
70188802000
70188796000
70188800000
70188798000
70188809000
70188812000
70188813000
70188805000
70188804000
70188803000

AMT74

Files
Files
Files

1-47
48-170
171-192

Statistical Library
FORTRAN Library

Fixed Point Math Library

PAPER TAPE 70181876000 - LTCF1 (Paper Tape 1 of 6)

This paper tape consists of the concatenation of the individual objects of the listed

programs. They have been translated by the FORTRAN Translator MOD 1 and assembled by

the DAP-16 Mod 2 Assembler.

FILE NUMBER

O 00 ~1 O~ U1 WiV

NAME

E$62
E$61
E$26
E$66
DSQRT
DCOS
DSIN
DEXP
DLOG10
DLOG
DLOG2
DATAN2
DATAN
DMOD
DSIGN
DABS
A$62
S$62
M$62
D$62
C$16
DBLE
END

DOC. NO.

70180053000
70180052000
70182582000
70180054000
70182580000

70180055000
70182582000
70182581000
70180051000
70182579000
70182914000
70180056000
70182584000
70182588000
70182589000
70182587000
70180037000
70180038000
70180039000
70180040000
70180059000
70180058000

PAPER TAPE 70181877000 - LTCF2 (Paper Tape 2 of 6)

This paper tape consists of the concatenation of the individual objects of the listed

program. They have been translated by the FORTRAN Translator MOD 1 and assembled by

the DAP-16 Mod 2 Assembler.

FILE NUMBER

—

OO 0010 Ui WIN -

NAME

CSQRT
CCOS
CSIN
CLOG
CEXP
CABS
E$51
A$52
S$52
M$52

DOC. NO,

70182592000
70180066000
70182595000
70182591000
70182593000
70182596000
70182594000
70180041000
70180042000
70180043000

AMT74

FILE NUMBER

11
12
13
14
15
16
17
18
19

NAME

D$52
A$55
S$55
M$55
D$55
CONJG
C$25
CMPLX
N$55
END

DOC. NO,

70180044000
70182544000
70180093000
70182545000
70180034000
70182598000
70180068000
70182597000
70180069000

PAPER TAPE 70181882000 - LTCF3S (Paper Tape 3 of 6)

This is the Software Version of Paper Tape 3

FILE NUMBER

O Ui W IN

NN NNV o e b b b e e e
W OOVONTULBR WN OO

NAME

DMAX]1
DMIN1
DINT
Z$80
A$81
C3$61
A$66
H$66
C$26
H$55
MAXO0
MAX1
MINO
MIN1
TANH
SQRT
SIN, COS
ATAN
E$21
E$22
ALOG
EXP
E$11
END

DOC, NO.

70182585000
70182586000
70180850000
70180851000
70180852000
70182554000
70180853000
70180855000
70180857000
70180860000
70182548000
70182549000
70180649000
70182551000
70182565000
70182560000
70182563000
70182564000
70182562000
70180045000
70182559000
70182561000
70182547000

PAPER TAPE 70181878000 - LTCF3H (Paper Tape 3 of 6)

This is the Hardware Version of Paper Tape 3

FILE NUMBER

NO 000N U W e

NAME

DMAX1
DMIN1
DINT
Z$80
A$81
C$61
A$66XRA
H$66
C$26

DOC. NO,

70182585000
70182586000
70180850000
70180851000
70180852000
70182554000
70180979000
70180855000
70180857000

AMT74

FILE NUMBER

10
11
12
13
14
15
16
17
18
19
20
21
22
23

NAME

H$55
MAXO
MAX1
MINO
MINI1
TANH
SQRTX
SIN, COS
ATAN
E$21
E$22
ALOGX
EXP
E$11X
END

DOC. NO,

70180860000
70182548000
70182549000
70180649000
70182551000
70182565000
70180681000
70182563000
70182564000
70182562000
70180045000
70180682000
70182561000
70180684000

PAPER TAPE 70181879000 - LTCF4 (Paper Tape 4 of 6)

FILE NUMBER

NeRN--BEN B NG BNV NI G

NAME
ABS

Ch62
AMOD
L$66
AINT
N$66
DIM
SIGN
AIMAG
L$55
IFIX
FLOAT
c$l2
c$21
LOC
C$81
ISTORE
N$33
IFETCH
IABS
F$OE
MOD
F$TR-RA
SUB$
F$GA
F$GC
END

DOC. NO,

70182570000
70180884000
70182572000
70180854000
70182571000
70180856000
70182573000
70182574000
70180858000
70180859000
70182553000
70180062000
70182575000
70182558000
70181962000
70180882000
70181982000
70180090000
70181983000
70182552000
70181984000
70182555000
70180827000
70185150000
70185151000
70185152000

PAPER TAPE 70181883000 - LTCF5S (Paper Tape 5 of 6)

This is the Software Version of Tape 5

FILE NUMBER

W N

NAME

IDIM
A$22
M$22
ISIGN

DOC, NO.

70182556000
70182536000
70182537000
70182557000

AM74

FILE NUMBER

x® 30 U

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

NAME

L$22
H$22
N$22
SLITE
M$11
D$11
OVERFL
F$AT
L$33
F$WN
F$RN
F$R1
F$w1
F$R2
F$w2
F$R3
F$W3
F$w4
F$R5-9
F$F5-9
F$W5-9
F$I0
END

DOC, NO,

70182534000
70182535000
70180097000
70182599000
70180035000
70182546000
70180894000
70180071000
70180065000
70180089000
70180088000
70182610000
70182611000
70182612000
70182613000
70182614000
70181667000
70182616000
70180306000
70180310000
70180307000
70182618000

PAPER TAPE 70181880000 - LTCF5H (Paper Tape 5 of 6)

This is the Hardware Version of Tape 5

FILE NUMBER

0 0 Ul i W IV

NNNN(\)NNN»—-»—-i—-b—cl—-I—-l—-v—b—'i—l
NIO\U'len(.NNHO\OOO\]O\UTﬁ&wND—‘O\O

NAME

IDIM
A$22X11
M$22X11
D$22X11
ISIGN
L$22
H$22
N$22
SLITE
M$11X
D$11X
OVERFL
F$AT
L$33
F$WN
F$RN
F$R1
F$wW1
F$R2
F$w2
F$R3
F$W3
F$wW4
F$R5-9
F$F5-9
F$W5-9
F$I0
END

A-15

DOC, NO.,

70182556000
70181805000
70181806000
70181804000
70182557000
70182534000
70182535000
70180097000
70182599000
70180685000
70180686000
70180894000
70180071000
70180065000
70180089000
70180088000
70182610000
70182611000
70182612000
70182613000
70182614000
70181667000
70182616000
70180306000
70180310000
70180307000
70182618000

AM74

PAPER TAPE 70181881000 - LTCF6 (Paper Tape 6 of 6)

FILE NUMBER

oS UL W NV

NAME.

016CHAIN
ARGS$
F$D5-9
F$B5-9
F$ER-RA
AC1

END

A-16

DOC. NO.

70180659000
70180072000
70180308000
70180309000
70181068000
70180717000

AMT74

APPENDIX B
MATHEMATICAL ROUTINES

Function Routine
Complex

Absolute value CABS
Add A$55
Add real argument A$52
Conjugate CONJG
Convert imaginary part to real AIMAG
Cosine CCOs
Divide D$55
Divide by real argument D$52
Exponential, base e CEXP
Load L$55
Load real part REAL
Logarithm, base e CLOG
Multiply M$55
Multiply by real argument M$52
Negate N$55
Raise to integer power E$51
Sine CSIN
Square root CSQRT
Store (hold) H$55
Subtract S$55
Subtract single-precision argument S5$52

Double-Precision

Absolute value DABS
Add A$66
Add single-precision argument A$62
Add integer to exponent A$81
Arctangent, principal value DATAN

B-1 AMT4

Function

Double-Precision

Real

Arctangent, X/Y

Clear (zero) exponent
Convert exponent to integer
Convert to integer

Convert to single-precision
Cosine

Divide

Divide by real argument
Exponential, base e

Load

Logarithm, base e
Logarithm, base 2
Logarithm, base 10
Mazximum value

Minimum value

Multiply

Multiply by real argument
Negate

Raise to double-precision power

Raise to integer power
Raise to real power
Remainder

Sine

Square root

Store (hold)

Subtract

Subtract real argument

Transfer sign of second argument to first

Truncate fractional bits

Truncate fractional bits and convert

to integer

Absolute value

Add

Arctangent, principal value
Arctangent, X/Y

Convert pair to complex

B-2

Routine

DATANZ
Z$80
C$81
C$61
C$62
DCOS
D$66
D$62
DEXP
L$66
DLOG
DLOG2
DLOGI10
DMAX 1
DMINI
M$66
M$62
N$66
E$66
E$61
E$62
DMOD
DSIN
DSQRT
H$66
S$66
S$62
DSIGN
DINT

IDINT

ABS
A$22
ATAN
ATAN2
CMPLX

AMT4

Real

Integer

Function

Convert to complex format
Convert to double-precision
Convert to integer

Divide

Exponential, base e
Hyperbolic tangent

Load

Logarithm, base e
Logarithm, base 10
Maximum integer value
Maximum value

Minimum integer value
Minimum value

Multiply

Positive difference

Raise to double-precision power
Raise to integer power
Raise to real power
Remainder

Sine, cosine

Square root

Store (hold)

Subtract

Transfer sign of second argument to first

Truncate fractional bits

Truncate fractional bits and convert

to integer

TWOs complement

Absolute value

Convert to double-precision

Convert to real (FORTRAN-generated)

Convert to real
Divide

Maximum value

Routine

c$25
C$26
c$21
D$22
EXP
TANH
L$22
ALOG
ALOG10
MAX1
AMAX1
MIN1
AMINI
M$22
DIM
E$26
E$21
E$22
AMOD
SIN, COS
SQRT
H$22
S$22
SIGN
AINT

IFIX, INT
N$22

IABS
C$16
FLOAT
C$12
D$11
AMAXO0

AM74

Function

Integer

Maximum integer value
Minimum value
Minimum integer value
Multiply

Positive difference
Raise to integer power
Remainder

Transfer sign of second argument to first

Logical

Complement

OR with A-register

Routine

MAXO
AMINO
MINO
M$11
IDIM
E$11
MOD
ISIGN

N$33
L$33

AMT4

APPENDIX C
SUBROUTINE FUNCTIONS

INTRINSIC AND EXTERNAL FUNCTIONS

Mathematical and Trigonometric Functions

Argument Result
Name Data Type Data Type Function

SIN R
DSIN
CSIN

COS
DCOS
CCOSs

ATAN
DATAN
ATAN2Z2
DATAN2

TANH

SQRT
DSQRT
CSQRT

EXP
DEXP
CEXP

ALOG
DLOG
CLOG

Sine (radians)

Cosine(radians)

Arctangent (radians)

Hyperbolic tangent (radians)

Square root

Exponential

Natural logarithm

ALOGI10
DLOG2
DLOGI10

Common logarithm

ABS Absolute value
IABS
DABS

CABS

AMOD
MOD
DMOD

AINT
DINT
IDINT
IFIX
INT

Remainder

Truncate fractional bits

PRHPm UF @ mdY®m DU OUR QU QUX m OgwWdw QUW OUw

MIWODUOW UFw QU R UUX QUXW QU OU®W W OWU®W Qadw QU

C-1 AMT74

Name

AMAXO
AMAXI1
MAXO0
MAX]1
DMAXI1

AMINO
AMINI
DMIN1
MIN10
MINI1

FLOAT
AIMAG
DBLE
CMPLX
REAL
SNGL

SIGN
DSIGN
ISIGN

DIM
IDIM

CONJG

Special Subroutines for FORTRAN Use

Name

IFETCH(I)
ISTORE(, J)
LOC
OVERFL
SLITE
SLITET
SSWTCH

COMPILER SUPPORT SUBROUTINES

Conversion Routines

Name

Cc$12
C$16
c$21
C$25
C$26
C$61
Cc$62
c$81

Argument Result
Data Type Data Type
I R
R R
1 I
R I
D D
1 R
R R
D D
I 1
R I
I R
C R
R D
C R
C R
R D
R R
D D
1 i
R R
I I
C C
Argument Result
Data Type Data Type
Argument Result
Data Type Data Type
I R
I D
R I
R C
R D
D I
D R
D D
c-2

Function

Choose largest argument

Choose smallest argument

Change data type or argument

Value of first argument, sign of
second

Positive difference

Complex conjugate

Function

Get contents of location I
Store value of J in location I
Find address of argument
Check for error condition
Set and reset sense lights or
switches

Function

Convert integer to real

Convert integer to double-precision
Convert real to integer

Convert real to complex

Convert real to double-precision
Convert double-precision to integer
Convert double-precision to real
Convert exponent of double-
precision number to integer

AMT4

Arithmetic Routines

Name Function Name Function
A$22 R = R+R E$62 D = D#*R
A$52 C = C+R E$66 D = D#**D
AS$55 C = C+C M$11 I=1Ix1
A$62 D = D+R M$22 R = R*R
A$66 D = D+D M$52 C = C*R
A3$81 D = D3*(2%%I) M$55 C = C*C
D$11 1=1/1 M3$62 D = D*R
D$22 R =R/R M$66 D = D#*D
D$52 C =C/R N$22 R = -R
D$55 Cc=cC/C N$33 L=-L
D$62 D =D/R N$55 C=-C
D$66 D =D/D N$66 D=-D
E$11 I = T4 S5$22 R = R-R
E$21 R = R**¥ S$52 C=C-R
E$22 R = R**R S$55 C=C-C
E$26 D = R**D 5$62 D =D-R
E$51 C = C**] S$66 D =D-D
E$61 D = DI Z$80 Replace binary exponent

with zero

Miscellaneous Routines

Name Function

ACl1 Pseudo accumulators

ARGS Convert indirect address to direct address

H$22 Store real number in memory

H$55 Store complex number in memory

H$66 Store double-precision number in memory

L$22 Load real number into A- and B-registers

L$55 Load complex number into complex accumulator
L$66 Load double-precision number into double-precision accumulator
L$33 INCLUSIVE OR with A-register

SUB$ Calculate address of array element

C-3 AMT4

APPENDIX D
LIBRARY INDEX

Approx.

Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Words 10) Number
A$22 A$22 ARG$ 1 150 5S

S$22 N$22 1
F$ER 1
A$22X A$22 N$22 1 140 5H
S$22 FS$ER 1
A$52 A$52 F$AT 1 20 2
H$55 1
L$22 1
A$22 1
H$22 1
L$55 1
A$55 A$55 FS$AT 1 60 2
H$55 1
SUBS$ 4
L$22 2
A$22 2
H$22 2
L$55 1
A$62 A$62 FS$AT 1 20 1
H$66 1
DBLE 1
A$66 1
A$66 A$66 N$66 11 580 38
S$66 F$ER 3
M$66 H$66 1
D$66 L$66 1
ARGS$ 1
AC1 1
AC2 1
AC3 1
A$66X A$66 N$66 11 530 3H
A$66X F$ER 3
S$66 H$66 1
S$66X L$66 1
M$66 ARG$ 1
M$66X AC1 1
D$66 AC2 1
D$66X AC3 1

D-1 AMT7T4

Approx.

Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Words 10) Number
A$81 A$81 N$22 2 70 3
F$ER 1
ACl1 1
AC2 1
ABS ABS L$22 1 10 4
N$22 1
AC1 AC]1 5 6
AC2
AC3
AC4
ACS5
AIMAG AIMAG L$55 1 10 4
L$22 1
AC3 1
AINT AINT L$22 1 30 4
N$22 2
A$22 1
S$22 1
ALOG ALOGI10 ARGS$ 1 120 3S
ALOG C$12 1
H$22 5
L$22 3
A$22 6
S$22 2
D$22 1
M$22 7
F$ER 1
ALOGX ALOGI10 ARGS$ 1 180 3H
ALOG C$12 1
ALOGX A$22 4
M$22 4
S$22 1
F$ER 1
ALOGI10 See ALOG or ALOGX
AMAXO See MAXO0
AMAX1 See MAX1
AMINO See MINO
AMINI1 See MINI
AMOD AMOD L$22 1 30 4
D$22 1
AINT 1
M$22 1
N$22 1
AS$22 1
ARGS$ ARGS$ 20 6
D-2 AMT4

Approx.
Primary Entry Subroutines Number of Storage T ape
Name Points Called References (Words 10) Number

340 3

ATAN ATAN2 ARG$
ATAN D$22
N$22
M$22
A$22 1
S$22

N =0 g 0w

ATANZ2 See ATAN

c$l2 c$12 A$22
N$22 1

C$16 C$16 C$12 1 5 1
C$26 1

Cs$21 C$z1 N$22 1 30 4
A$22
F$ER

C$25 C$25 H$22
CMPLX

C$26 C$26 ACl1
AC2
AC3 1

C$61 C$61 C$62 1 4 3
C$21

C$62 C$62 L$22
SNGL N$66

N$22

L$66

ACl

AC2

C$81 C3$81 AC1

CABS CABS F$AT
SUBS$
L$22
M$22
H$22
A$22
SQRT

CCOSs CCOsS F$AT
L$55
A$55
H$55
CSIN

CEXP CEXP F$AT
SUB$
EXP
H$22
COs
M$22
SIN
L$55

—

30 4

[Sr—

20 2

—

10 3

b

—

20 4

bt bt et it e

s

10 4
40 2

= NN NN

40 2

60 2

LT el N B R N T = e e)

D-3 AMT74

Primary
Name

Entry
Points

Subroutines
Called

Number of
References

Approx.
Storage
(Words 10)

Lape
Number

CLOG

CMPLX

CONJG

CcOs
CSIN

CSQRT

D$11

D$11X

D$22
D$22X

CLOG

CMPLX

CONJG

See SIN
CSIN

CSQRT

D311

D$11
D$11X

See M$22
D$22

F$AT
SUB$
L$22
M$22
H$22
A$22
ALOG
ATAN2
L$55

F$AT
SUB$
L$22
H$22
L$55

F$AT
SUB$
L$22
22
N$22

L$55

F$AT
SUBS$
EXP
H$22
L$22
D$22
A$22
SIN
M$22
S$22
COs
L$55

F$AT
SUB$
CABS
H$22
ABS
A$22
M$22
SQRT
L$22
D$22
L$55

ARG$
F$ER

ARGS$
F$ER

N$22
F$ER

[T NS Y N A I I e i B VL B VE R Ve oA

— b D e b b O ON = O

— = 0N = DN = 00 =~

[P — b~

90 2

40 2

40 2

90 2

90 2

80 5S

40 5H

110 5H

AMT74

Primary
Name

Entry
Points

Subroutines
Called

Number of
References

Approx.

Storage
d

(Words 10

Tape
) Number

D$52

D$55

D$62

D$66
D$66X
DABS

DATAN

DATAN2

DBLE

D$52

D$55

D$62

See A$66
See A$66X
DABS

DATAN

DATANZ

DBLE

F$AT
H$55
SUB$
L$22
D$22
H$22
L$55

F$AT
H$55
SUB$
L$22
M$22
H$22
Ag22
D322
S$22
N$22
L$55

F$AT
H$66
DBLE
L$66
D3$66

F$AT
L$66
N$66

F$AT
DABS
H$66
C$81
L$66
A$66
N$66
D$66
M$66

F$AT
L$66
H$66
F$ER
D$66
DATAN
S$66
A$66

F$AT
L$22
C$26

= = = N DN 00O 00N = = DN N NN

i e N

[erp—
—

b oo WO - O WO W O ke

50 2

140 2

20 1

10 1

180 1

70 1

20 1

AM74

Primary
Name

Entry
Points

Subroutines
Called

Number of
References

Approx.
Storage

(Words 10)

Tape
Number

DCOS

DEXP

DIM

DINT

DIV$

DLOG

DLOG2

DLOGI10

DMAX]1

DMIN1

DCOS

DEXP

DIM

DINT

See M$22

DLOG

DLOG2

DLOGI10

DMAX1

DMINI1

F$AT
L$66
A$66
H$66
DSIN

F$AT
L.$66
M$66
H$66
C$61
Cc$16
N$66
A$66
S$66
D$66
A$81

L$22
S$22

L$66
N$66
A$66
S$66
AC1

FS$AT
DLOG2
M$66

F$AT
L$66
F$ER
C$81
C$16
H$66
Z$80
A$66
S$66
D$66
M$66

F$SAT
DLOG2
M$66

L$66
H$66
5$66

L$66
H$66
S$66

s
— = s DN — = W 00 ke = = 00N e

[] N =N O~ O = = Ul

— N W

- NN W

20 1

160 1

20 4

20 3

10 1

100 1

10 1

40 3

40 3

AMT4

Approx.
Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Words 10) Number

20 1

DMOD DMOD F$AT
L$66
D$66
H$66
DINT
M$66
S$66
N$66

DSIGN DSIGN F$AT
L$66
N$66

DSIN DSIN F$AT
DABS
M$66
H$66
C$61
C$16
N$66
A$66
MOD
L$66
5$66

DSQRT DSQRT F$AT
L$66
C$62
H$22
SQRT
C$26
H$66
D$66
A$66
A$81

E$11 E$11 ARG$
Ms$11
F$ER

E$11X E$11 ARGS$
E$11X F$ER

E$21 E$21 ARGS$
M$22
D$22

E$22 E$22 ARGS$
ALOG
M$22
EXP

E$26 E$26 F$AT
C$26
H$66
DLOG
M$66
DEXP

Ll s T R Ty S S

20 1

— W

130 1

DN GO = 0 Wk = U1\O ~ =

40 1

100 35

Ll S A T S N

110 3H

50 3

30 3

— e — = [—

30 1

= b et [N bt e

D-7 AMT74

Approx.

Primary Entry Subroutines Number of Storage Tape
Name Points Called References {Words 10) Numbert
E$51 E$51 F$AT 1 60 2

H$55 3
IABS 1
1.$55 4
M$55 1
D$55 1
E$61 E$61 F$AT 1 70 1
H$66 5
L$66 5
D$66 1
D$11 2
M$11 1
M$66 2
E$62 E$62 F$AT 1 30 1
H$66 2
DLOG 1
M$62 1
DEXP 1
E$66 E$66 FSAT 1 30 1
H$66 2
DLOG 1
M$66 1
DEXP 1
EXP EXP ARGS$ 1 230 3
N$22 2
M$22 6
S$22 3
A$22 2
D$22 2
F$ER 1
F$AR See F$IO 5
F$AT F$AT 58 5
F$B5-9 F$B5 C$MR 6 26 6
F$B6
- F$B7
F$B8
F$B9
F$BN
F$CB See F$IO 5
F$D5-9 F$D2 O$PS 2 34 6
F$D5 O$ME 6
F$D6
F$D7
F$D8
F$D9
F$DN
D-8 AMT4

Approx.

Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Words 10) Number
F$ER F$ER AC5 2 37 6

F$HT
F$F5-9 F$F5 C$BR 1 41 5
F$F6 F$ER 1
F$F7
F$F8
F$F9
F$FN
F$GA F$GA F$ER 1 18 4
F$GC F$GC 14 4
F$HT See F$ER 6
F$I10 F$I10 F$ER 2 1356 5
F$CB
FS$L1
F$L2
FS$L3
F3$L5
F$L6
F$AR
F$R1 F$R1 F$10 1 21 5
I$AA 1
I1$AB 1
F$R2 F$R2 F$I10 1 21 5
I$PA 1
I1$PB
F$R3 F$R3 F$10 1 21 5
I$CA 1
I$CB 1
F$R5-9 F$R5 F$I0 1 80 5
F$R6 I$MA 1
F$R7 I$MC 1
F$RS8
F$R9
F$Rn F$Rn F$R1 1 45 5
F$R2 1
F$R3 1
F$R5 1
F$R6 1
F$R7 1
F$RS8 1
F$R9 1
F$TR F$TR F$wW1 5 198 4
F$AR 4
F$CB 1
F$L6 1
AC1 2
AC2 1
AC3 1

Primary Fntry Sunhroutines
Name Points Called
F$W1 F3W1 F$I0

OSAP
03%AC
O3$AF
O$AB
F$w2 F$wz F$10
O$PF
O$PP
os$pPC
O$PB
F$W3 F$W3 F$IO
O$CH
O$CB
F$W4 F$W4 F$IO
O$LF
O$LP
O$LO
F$wWs5-9 W5 F$lO
F$W6 o$MC
F$W7? C$8TO6
F$ws O$MA
F$W9
F$Wn F$Wn F$wl
F$wz2
F$W3
F$w4
F$W5
F$Wo
F$W7
F$wWS8
F$W9
FLOAT FLOAT C$12
H$22 H$22 ARGS$
H$55 H$55 ARG$
AC1
AC2
AC3
AC4
H$66 H$66 ARGS$
AC1
AC2
AC3
IABS IABS
IDIM IDIM
IDINT See IFIX
IFETCH IFETCH ARGS$

Approx.

Number of Storage Tape
References (Words 10) Number
1 94 5
1
1
1
1
1 80 5
1
1
1
1
1 39 5
1
1
1 36 5
3
1
1
1 57 5
1
1
1
1 41 5
1
1
1
1
1
1
1
1
1 10 4
1 10 5
1 20 3
1
1
1
1
1 20 3
1
1
1
10 4
20 5
1 10 4
D-10

AMT4

Approx.

Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Wordslo) Number
IFIX IDINT L$22 1 10 4

INT Cs$21 1
IFIX
INT See IFIX
ISIGN ISIGN 20 5
ISTORE ISTORE F$AT 1 10 4
L$22 REAL ARGS$ 1 10 5
L$22
L$33 L$33 10 5
L$55 L$55 ARGS$ 1 20 4
AC1 1
AC2 1
AC3 1
AC4 1
L$66 L$66 ARGS$ 1 20 4
ACl1 1
AC2 1
AC3 1
LOC LOC 10 4
M$11 M$11 ARGS$ 1 110 5S
F$ER 1
M$11X M$11 ARGS$ 1 50 5H
M$11X F$ER
Ms$22 M$22 N$22 5 330 55
D$22 ARGS$ 2
DIV$ F$ER 3
M$22X M$22 F$ER 1 130 5H
M$52 M$52 F$AT 1 50 2
H$55 1
SUB$ 2
L$22 2
M$22 2
H$22 2
1.$55 1
M$55 M$55 F$AT 1 110 2
H$55 1
SUB$ 10
L$22 4
M$22 4
H$22 4
S$22 1
N$22 1
A$22 1
L$55 1

D-11 AMT4

Approx.

Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Wordsl Number
M$62 M$62 F$AT 1 20 1

H$66 1
DBLE 1
M$66 1
M$66 See A$66 35
M$66X See A$66X 34
MAXO0 AMAXO FLOAT 1 40 3
MAXO
MAX]1 AMAXI1 1.$22 2 50 3
MAX1 H$22 2
S$22 1
IFIX 1
MINO AMINO FLOAT 1 30 3
MINO
MINI1 AMINI1 L$22 2 50 3
MIN1 H$22 2
S5$22 1
IFIX 1
MOD MOD D$11 1 20 4
M$11 1
N$22 N$22 10 5
N$33 N$33 10 4
N$55 N$55 H$55 1 30 2
SUB$ 2
L$22 2
N$22 2
H$22 2
L$55 1
N$66 N$66 AC1 1 30 4
AC2 1
AC3 1
OVERFL OVERFL ACH 1 20 5
REAL See L$22 5
S$22 See A$22 55
S$22X See A$22X
S$52 S$52 F$AT 1 30 2
H$55 1
L$22 1
S$22 1
H$22 1
L$55 1
S$55 S$55 F$AT 1 40 2
H$55 1
SUB$ 4
L$22 2
S$22 2
D-12

AM74

Approx.

Primary Entry Subroutines Number of Storage Tape
Name Points Called References (Words 10) Number
N$22 2
H$22 2
L$55 1
S$62 S$62 F$AT 1 20 1
H$66 1
DBLE 1
S$66 1
N$66 1
S$66 See A$66 3S
S$66X See A$66X 3H
SIGN SIGN L$22 2 20 4
N$22 1
SIN CcOos ARGS$ 1 190 3
SIN N$22 2
M$22 7
S$22 1
A$22 4
SLITE SLITE ARG$ 3 70 5
SLITET L$33 1
SSWTCH
SLITET See SLITE
SNGL See C$62
SQRT SQRT ARG$ 1 70 3S
DIV$ 1
D$22 1
A$22
F$ER
SQRTX SQRT ARG$ 1 80 3H
SQRTX D$22 1
A$22 1
F$ER 1
SSWTCH See SLITE
SUB$ SUB$ M$11 3 130 4
F$ER 1
TANH TANH L$22 1 60 3
EXP 1
A$22 2
H$22 1
D$22 1
Z$80 7$80 AC1 1 20 3

Error

Message

AD
BF

DL
DT
DZ
EQ

EX
FE
GO

II

IM

IN
17
LG
MD

Pz
. RI
SA

SD
SM

SQ

APPENDIX E
ERROR MESSAGES

Condition
Over/underflow in double-precision

End-of-file mark encountered while unit
backspacing a record.

Negative or zero argument
Both arguments are zero
Division by zero

Exponential overflow adding integer to
double-precision exponent

Exponential overflow during exponentiation

Format error

Incorrect control variable in a GO TO
statement

First argument zero, second argument
negative

I>2and J> 15, or
1< -2 and J>15

Cver/underflow during integer
multiplication

Input error
Integer division by zero or -32, 768/-1
Log of negative or zero argument

Double-precision multiplication or
division over/underflow

Double-precision division by zero

Integer too large when converted from
real to integer

Arithmetic overflow (result > 2%%127)
Divisor unnormalized

Arithmetic overflow during multiplication
or division

Negative argument

Subroutine
A$66, S$66, A$66X, S$66X
F$F5-9

DLOG, DLOG10, DLOG2
DATAN2

D$22, D$22X

A$81

EXP
F$I10
F$GA

E$11, E$11X

M$11, M$11X

F$AR

D$11, D$11X

ALOG, ALOG10, ALOGX
D$66, M$66, D$66X, M$66X

D$66, D$66X
c$21

A$22, A$22X
D$22
M$22, M$22X, D$22X

SQRT, SQRTX

AM7T4

CUT ALONG LINE === === cmccoeaaananan..

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

ORDER No.:lAM74, REV. 0
TITLE: | SERIES 16 FORTRAN MATH LIBRARY
DATED: IDECEMBER 1973

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(Please Print)

FROM: NAME DATE:
COMPANY
TITLE

“

*
Your comments will be promptly mvestngated by appropriate techmcal personnel actlon wnH be taken as

renired and v wiill racaiva a wiritean vamloe 18 aime. A —ma oLt

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

A

f e e e e eeamsemeeacaaeassaceeacee-c-easmamemacoooocce--oc---=--CUTALONGLINE ----------
FOLD ALONG LINE

A
FOLD ALONG LINE

"The Other Computer Company:
Honeywell

HONEYWELL INFORMATION SYSTEMS

9125
11273

Inthe US.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154
Printed In U.S.A,

In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario AM74, Rev. 0

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	E-01
	replyA
	replyB
	xBack

