DDP-516
USERS GUIDE

March 1967

Honeywell

@ QOMPUTER CONTROL DIVISION

Doc. No. 130071627
M-1043

COPYRIGHT 1967 by Honeywell Inc., Computer Control
Division, Framingham, Massachusetts. Contents of this
publication may not be reproduced in any form in whole or in
part, without permission of the copyright owner. All rights
reserved,

Printed in U, S. A.

CONTENTS

Page
SECTION 1 1-1
INTRODUCTION
SECTION II
CONTROL CONSOLE
System Initialization » 2-3
Register Display . 2-3
Register Load 2-4
Memory Display 2-4
Memory Load 2-5
Single Instruction Operation 2-5
Run Operation 2-5
Key-In Loader 2-6
Checking the Kvey-In Loader 2-7
SECTION III 3-1
SOFTWARE PACKAGE
SECTION IV
GENERATION OF SELF-LOADING SYSTEM TAPES

Generating A Self-Loading DAP-16 System Tape 4-1
Load the Self-Loading Loader 4-2
Load the DAP-16 Object Tape 4-3
Punch the DAP System Tape 4-4
Computing DAP-16 Memory-Table Size v 4-4
Generating A Self-Loading FORTRAN IV System Tape ’ 4-4
Load the FRTN Object Tape 4-4
Load the FRTN I/O Selector 4-5
Punch the FRTN System Tape 4-5
Generate A Self-Loading Update System Tape 4-5
Load the SSUP Object Tape 4-6
Load the IOS and the 10S Calls | 4-6
Punch the SSUP System Tape ' 4-6

SECTION V

OPERATING PROCEDURES

Load 5-1
Load Self-Loading Programs 5-1
Load Object Programs 5-1
Options Following a Loader Halt 5-2

Assemble DAP-16 Source Programs 5-3

iii

CONTENTS (Cont)

Compile FORTRAN IV Source Programs
Debug Programs
Loading COP
Execute COP
Update Source Programs
Load SSUP
Execute SSUP
Dump the Contents of Memory
Punch Self-Loading Object Tapes
Load the Self-Loading PAL-AP
Execute PAL-AP

SECTION VI
UTILITY LIBRARY
DAP Assembler (DAP 16)
FORTRAN 1V Compiler (FRTN)
Punch and Load (PAL-AP)
Expanded Loader (LDR-A)
Expanded Loader (LDR-P)
Standard Loader (SLDR-A)
Standard Loader (SLDR-P)
Memeory Dump - Output on ASR-33 (DUMP)
Check-Out Program (COP)
Symbolic Source Update Program (SSUP)
Symbolic Source Update, lnput/Outpﬁt Supervisor (SSUP-IOS)
Symbolic Source Update - Revised Dummy Selection (SSUP-RDS)
Chain or Segment (CHAIN)
Indirect to Direct Address (ARGS$)
Argument Transfer (F$AT)
Error Ertry or Halt (FER, FHT)
Overilow - Set Error Flag (OVERFL)
Pseudo Sense Lights (SLITE, SLITET, SSWTCH)
Logical Complement (N$33)
Logical OR ¥From Memory (L$33)

SECTION VII
MATHEMATICAL LIBRARY

iv

6-6
6-6
6-7
6-7
6-8
6-8
6-9
6-10
6-10

CONTENTS (Cont)

SECTION VIII
INPUT/OUTPUT LIBRARY

FORTRAN IV Input/Output Supervisor (F4-I0S)
Input/Output Supervisor (IOS-16B)
FORTRAN IV Scanner and Conversions Routine (F$IO)
ASR-33 Typewriter Input Driver (F$R1)
ASR-33 Typewriter Output Driver (F$W1)
Paper Tape Reader Input Driver (F$R2)
Paper Tape Punch Output Driver (F$W2)
Card Reader Input Driver (F$R3)
FORTRAN Magnetic Tape Input Driver (F$R5-9)
FORTRAN Magnetic Tape Output Driver (F$W5-9)
Convert IBM Tape Code to ASCII (C$6T08)
Convert ASCII to IBM Tape Code (C$8T06)
Variable Input Driver Selection (F$RN)
Variable Output Driver Selection (F$WN)
ASR-33 Tape Reader, ASCII (IAA, IAI)
ASR-33 Tape Reader, Binary (IAB, IABI)
ASR-33 Typewriter Control Package (OAP, OAC, O$AF)
ASR-33 Typewriter - Listing and Heading Routines (OLL, OHH)
ASR-33 Tape Punch, ASCII (OAA, OAI, OAS, OALDR)
ASR-33 Tape Punch, Binary (O$AB, 0O$AS)
Paper Tape Reader, ASCII (I$PA, 1$PI)
Paper Tape Reader, Binary (I$PB, I1$PI)
Paper Tape Punch Control Package (OPP, OPC, O$PF)
Paper Tape Punch, ASCII (OPA, OPI, OPS, OPLDR)
Paper Tape Punch, Binary (OPB, OPS)
Paper Tape Punch - Listing and Heading Routines (OPL, OPH)
Card Reader, ASCII (I$CA)
Card Reader, Binary (I$CB)
Magnetic Tape Read Package (IMA, IMB, I$MC)
Magnetic Tape Control Package (CMR, CFR, CBR, CFF, C$BF)
Magnetic Tape Write Package (OMA, OMB, OMC, OME)
Magnetic Tape Unit Conversion Routine (M$UNIT)
FORTRAN Magnetic Tape Backspace Driver (F$F5-9)
FORTRAN Magnetic Tape End-of-File Driver (F$D5-9)
FORTRAN Magnetic Tape Rewind Driver (F$B5-9)

Page

8-5
8-5

8-6

8-6

8-7

8-7

8-8

8-9

8-9

8-10
8-11
8-11
8-12
8-13
8-13
8-14
8-15
8-15
8-16
8-17
8-17
8-18
8-18
8-19
8-20
8-21
8-21
8-22
8-22

CONTENTS (Cpnt)

SECTION IX
ERROR MESSAGES
Loading Messages
DAP-16 Assembly Program
FORTRAN Compiler Program
Error Message

Library Subroutines
SECTION X
PAPER TAPE FORMATS

ASCII Format
Source Tape Preparation
4/6/6 Format

ILLUSTRATIONS
2-1 DDP-516 Control Panel ‘
4-1 Self Loading System Tape Generation
10-1 General Paper Tape Format

10-2 ASCII Format

10-3 DAP-16 Source Code Punched in ASCII

10-4 4/6/6 Format

10-5 DAP-16 Object Code Punched in 4/6/6 (Invisible) Format

TABLES

2-1 Registers Displayed on DDP-516 Control Panel
2-2 Function of Countrol-Panel Pushbuttons

2-3 Function of Control-Panel Selector Switches
2-4 OP Display

3-1 Utility Routines

3-2 Input/Output Routines

3-3 Mathematical Routines

4-1 Lioader Selection

4-2 Memory Map

4-3 1/0O Selection for SSUP

vi

10-1
10-2
10-3

Page
2-1

4-2

10-1
10-2
10-4
10-4
10-6

5-1
5-2
5-3
5-4
5-5
5-6
7-1
9-1
9-2
9-3
10-1

TABLES (Cont)

Loader Messages

Assembly and I/O Device Selection
I/O Device Selection

Sense Switch Settings

COP Operations

SSUP Operations

Mathematical Routines

Error Messages Generated by the DAP-16 Assembly Program

Error Messages Generated by the FORTRAN Compiler Program
Error Messages Generated by the Library Subroutines
4/6/6 Translations

vii

10-5

RONETWELL

Computer

DDP-516 General Purpose

SECTION I
INTRODUCTION

The User's Guide is intended to familiarize you with the operation of the DDP-516
computer, From a user's point of view, the DDP-516 computer is a relatively simple device
to operate, Its movable control console is designed to allow complete operator freedom
which provides for easy, error-free operation. The comprehensive software package sup-
plied with the DDP-516 includes a FORTRAN IV compiler, a DAP-16 assembler, a variety
of utility routines and an extensive subroutine library. Furthermore, with each DDP-516,
Honeywell provides a complete library of instruction manuals and program listings that tell
the programmer /operator all he needs to know about preparing and using FORTRAN IV and
DAP-16 programs.

The FORTRAN IV and DAP-16 Manuals (3C Doc. No. 130071634 and 130071629)
present complete instructions for preparing programs in the two DDP-516 source languages.
The Programmers Reference Manual (3C Doc. No. 130071585) lists and describes all the
instructions in the DDP-516 repertoire. ' :

In the User's Guide, you will find detailed instructions for using your computer and
its software package. The guide is sectionalized for easy referencing so that information
you will refer to again and again can be found easily, At the same time, the user can pro-
gressively increase his knowledge of the DDP-516 by reading the sections in the order they
appear in the guide. Sections Il and III will be of greatest interest initially. Section II
explains the function of éa.ch of the controls on the control console and presents a few simple
procedures for using them to perform basic, manual operations. Section III lists, by type
and function, all the programs in your software package and describes the formats in which
they are punched on paper tape.

Section IV presents step-by-step instructions for generating self-loading system
tapes that are tailored to your installation, These tapes will enable you to use your DDP-516
efficiently and conveniently. Section V contains generalized operating procedures for using
your newly generated system tapes and for using some of the more frequently used utility
programs, The remainder of the User's Guide contains reference material designed to help

you make effective use of your DDP-516 and its software package.

SECTION II
CONTROL CONSOLE

The basic DDP-516 computer system includes a main frame, a control console and
a typewriter. In addition to these standard devices, your installation may include any or

all of the following peripheral devices:

High-speed paper tape reader Line printer
High-speed paper tape punch One or more magnetic tape units
Card-reader One or two disc file units

The DDP-516 Programmers Reference Manual (3C Doc. No. 130071585) and the
appropriate peripheral device option manuals contain operating instructions for each device,
whether standard or optional. The software package contains the input/output subroutines
required for using the devices included in your installation.

The control console (Figure 2-1) includes the controls and indicators for normal
system operation. These controls and indicators are listed and described in Tables 2-1

through 2-3.

CLEAR

 alaba adl|ega aga ooo IS

POWER SENSE JEGISTERR MsTA bEL & BTART

-— 1o/

SRR Mithashsiciea —. @ @@3 @

OFF a2 2 CLEAR PFHM FETCH Pt auUN

() HONEY WELL

3877

Figure 2-1. DDP-516 Control Panel

Table 2-1,
Registers Displayed on DDP-516 Control Panecl

Register Bits Display
X 1-16 Index Register
A 1-16 Register A (primary arithmetic and logic register).
B 1-16 Register B (secondary arithmetic and logic register).
OP 1-16 State of key flip-flops in system. (Refer to Table 2-4.)
P/Y 1-1¢ Register Y (memory address register). When the
computer is operating in the memory access (MA)
mode, Registers P and Y contain the same address.
When in the single instruction (SI) or RUN mode
Register P contains an address which is one greater
than the address contained in Register Y,
M 1-16 Register M (meniory buffer register) contains the
contents of that memory location specified by
Register Y.
Table 2-2,
Function of Control-Panel Pushbuttons
Pushbutton Function

16 Indicator

CLEAR
POWER-ON

POWER-OFF
X

M
M3TR CLEAR

START

Enter or display data. A "ONE" is indicated when pushbutton/
indicator is illuminated. A "ZERO'" is indicated when pushbutton/
indicator is not illuminated.

Clears displayed registers (A, B, P/Y or M only).

Applies power to main frame, The indicator is illuminated when
power is applied.

Removes power from main frame.

Displays contents of index register. (Data can be entered into
Register X via location 000008.)

Displays and permits alterations in contents of Register A,
Displays and permits alterations in contents of Register B.
Displays state of key flip-flops in the system.

Displays and permits alterations in contents of Register P and Y.
(Registers P and Y contain the same address when the computer
is in the memory access (MA) mode, Register P contains an
address which is one higher than that contained in Register Y
when the computer is in the single instruction (SI) or RUN modes.)

Displays and permits alterations in contents of Register M.

Clears Registers A, B, P, Y and M; sets all timing to that state
exisving following a HLT (halt). Initializes standard peripheral
devices and options.

Starts machine in all modes. Indicator is 1lluminated when
machine is in RUN mode.

Table 2-3,
Function of Control-Panel Selector Switches

Switch Position Function
SENSE 1-2-3-4 Enables altering the course of a program via
switch interrogation during program operation.
Up Switches are set.
Down Switches are reset,
PFI/PFH PFI Allows the machine to cause a program in-
(Power Fail Interrupt/ terrupt when power fails,
Power Fail Halt) '
PFH Allows the machine to halt when power fails.
STORE/FETCH STORE Enables data to be written into memory when
the computer is in the MA mode.
FETCH Enables data to be read out of memory when
the computer is in the MA mode.
P/P+1 P Enables accessing a specific memory location
when the computer is in the MA mode.
P+l Enables accessing consecutive memory loca-
tions when the computer is in the MA mode.
MA/SI/RUN MA Enables data to be written into or read from a
(Memory Access/ location in memory and disables the protection
Single Instruction/ for locations 1-178.
Run) SI Enables step-by-step execution of a program.
RUN Enables normal operating mode,

Data within memory and several of the main frame registers can be monitored on
the control panel. Data can also be manually entered into memory and several registers
from the control panel. Procedures for initializing the system, reading out and entering

data into memory and the main frame registers are provided in the following paragraphs.

SYSTEM INITIALIZATION

The system can be initialized by depressing the MASTER CLEAR pushbutton. This
operation has no effect on the contents of memory or Register X. The MASTER CLEAR
function is also performed when power is applied to the system via the POWER-ON

pushbutton,

REGISTER DISPLAY

The contents of Register X, A, B, OP, P/Y, or M can be displayed by depressing
the appropriate REGISTER pushbutton. The contents of the selected register is displayed
on the 16 pushbutton/indicators. Refer to Table 2-4 for the significance of the OP display.

REGISTER LOAD
Data is entered into Register A, B, P/Y, or M as follows.

a. Depress the appropriate REGISTER pushbutton.

b, Depress the CLEAR pushbutton.

C. Enter the desired data by depressing the appropriate pushbutton/indicators
(1 through 16).

(Data can be entered into Register X by addresj ng location 0000008 and entering
the data into that location. For the procedure to enter data into memory, refer to the

paragraph on Memory Load in this section.)

Table 2-4.
OP Display
Bit Significance Bit Significance
1 T1, timing level 1 9 P1l, permit interrupt
2 T2, timing level 2 10 Unassigned
3 T3, timing level 3 11 ML, memory lockout (option)
4 T4, timing level 4 12 EA, extended addressing (bank
switching option)
5 F, fetch cycle 13 DP, double precision (option)
6 I, indirect cycle 14 Unassigned
7 A, execute cycle 15 MP, memory parity error
8 C, c-bit 16 P, 1/0 parity error

MEMORY DISPLAY
The contents of any memory location is displayed as follows.

a. Set MA/SI/RUN switch to MA.

b, Set FETCH/STORE switch to FETCH,

c. Set P/P+1 switch to P,

d. Depress REGISTER-P/Y pushbutton.

e. Depress CLEAR pushbutton.

f. Depress the appropriate pushbutton/indicators (1 through 16) to designate the
octal address of the memory location containing the data to be displayed.

g. Depress REGISTER-M pushbutton.

h. Depress START pushbutton. The contents of the addressed memory location
will be displayed on the pushbutton/indicators (1 through 16).

The contents of successive memory locations can be displayed as follows.

i, Set P/P+l switch to P+1.
jo Depress the START pushbutton. Each time the START pushbutton is depressed

the contents of the next memory location is displayed.

MEMORY LOAD
Data is entered into any memory location as follows.

a. Set MA/SI/RUN switch to MA.

b. Set FETCH/STORE switch to STORE.

c. Set P/P+1 switch to P.

d. Depress REGISTER-P/Y pushbutton. °

e. Depress CLEAR pushbutton.

f. Depress the appropriate pushbutto!n/indicators to designate the octal address of
the memory location to be loaded.

g. Depress REGISTER-M pushbutton.

h. Depress CLEAR pushbutton, | f

i, Depress the appropriate pushbutton/indicators to enter the desired data into the
addressed location.

jo Depress START pushbutton.

The desired data is now in the addressed location. Successive memory locations can

be loaded as follows.

k., Set the P/P+l switch to P+l,

1. Repeat steps h through j for each successive memory location to be loaded.

SINGLE INSTRUCTION OPERATION
A program is executed in the single-instruction mode as follows.

a. Set MA/SI/RUN switch to SI. (When the switch is not in the MA position, the
FETCH/STORE and P/P+] switches are disabled.)

b. Depress MASTER CLEAR pushbutton.

c. Enter initial parameters into Register A, B, or P/Y as required. (Refer to the
procedure for Register Load described in this section.)

d. Depress START pushbutton. ‘

The first instruction is fetched from memory and placed in Regls’cer M and may be exammed
by depressing the Reglster -M pushbutton. Thereafter, each time the START pushbutton is
depressed, the previously fetched instruction is executed the next 1nstruct1on is fetched,
and the computer halts. If the P/Y pushbutton is depressed, the address from which the
new instruction was fetched is displayed on the pushbutton/i.ndicators (1 through 16).

During execution (run operation) fhe SI position may be used at any time to aid in program

debugging.

RUN OPERATION
A program is executed in the run mode as follows,

a. Set MA/SI/RUN switch to RUN.
b. Depress MASTER CLEAR pushbutton.

¢, Enter initial parameters igto Register A, B, or P/Y as required. (Refer to the
procedure for Register Load described in this section.)
d. Depress START pushbutton.

The program will run until a HALT is executed or until the MA/SI/RUN switch is set to SI.

KEY-IN LOADER

The octal instructions listed below normally occupy memory locations 18 through
178 and enables the loading of ''self-loading'' paper tapes via the teletype or high-speed

paper tape reader,

Octal Octal
Address Instructioa Meaning
1 010057 STA '57
2 03000X OCP '000X
3 13100X INA '100X
4 002003 IMP .1
5 101040 SNZ
6 002003 IJMP -3
7 010000 STA 0
10 13100X INA '100X
11 002010 IMP *-1
12 041470 LGL 8
13 13000X INA '000X
14 002013 | IMP -1
15 110000 ' STA *0
16 024000 IRS 0
17 100040 SZE

The value of '"X'' in the above instructions is dependent upon the input device used to read
the paper tape. A '"l'" specifies the high-speed paper fape reader and a ''4'" specifies the
teletype.

The hardware protects memory locations 18 through 178 from modification by a
stored program. Therefore, under normal conditions, the key-in loader should rernain
intact in these locations. However, ‘when operating in the MA mode, locations 18 through
178 are unprotected, therefore care must be exerted to avoid inadvertently destroying the
key-in loader while loading memory. The key-in loader is entered into memory as

follows.

' a. Depress MSTR CLEAR pushbutton. The program counter (Register P) is set
to zero.
L. Set MA/SI/RUN switch to MA., This unlocks the protected area, addresses 1-17
¢. Set STORE/FETCH switch to store.
Set P/P+ 1 switch to P+ 1.

8°

e. Enter the first instruction (0100578) into Register M.
f. Depress START pushbutton. Register P will be incremented by one, and the

first instruction will be entered into location 0000018.

g. Repeat steps f. and g. for each of the remaining instructions to be loaded.
Each time the START pushbutton is depressed, Register P will be incremented by one,

and the instruction in Register M will be loaded into memory.

Checking the Key-In Loader

The following instructions are performed to ensure that the key-in loader has been

loaded correctly into the designated memory locations.

a. Depress MSTR CLEAR pushbutton.

b. Set MA/SI/RUN switch to MA.

c. Set STORE/FETCH switch to FETCH.
d. Set P/P+1 switch to P+1.

e, Depress Register-M pushbutton.
f. Depress START pushbutton. Register P will be incremented by one and the

contents of memory location 00000 18 (010057) will be displayed on the pushbutton/

indicators (1 through 16).
g. Repeat step f. for each of the remaining memory locations to be monitored.

Each time the START pushbutton is depressed,. Register P will be incremented by one and

the contents of the addressed memory will be displayed.

SECTION III
SOFTWARE PACKAGE

This section presents tables that list all routines in the DDP-516 software package,
their document number, the format, and equipment required for each routine, Utility
routines are given in Table 3-1, Input/Output routines are given in Table 3-2, and

Mathematical routines are given in Table 3-3,

Table 3-1.
Utility Routines
Equipmentss
Type and Function Mnemonic Doc. No. Formats* Required
Assemble DAP-coded DAP-16 180275000
source program
Chain or segment CHAIN 180070000
program
Check:
Error entry or halt FER, FHT 182602000
Overflow (and set OVERFL 182600000
error flag)
Pseudo sense lights SLITE
on/off
Pseudo sense lights | SLITET 182599000
Sense switches SSWTCH
Compile FORTRAN- FRTN 180463000 8K memory
coded source program minimum
Convert indirect address| ARG$ 180072000
to direct address
Debug (search, modify, COP 188807000
clear memory, enter
breakpoints)
DAP/FORTRAN loaders
Expanded loaders:
ASR input (paper LDR-A 180335000 DAP self-
tape) loading
& object
Paper tape reader LDR-P 180336000 DAP self- Paper Tape
input loading Reader
& object

% All routines are in DAP object format unless otherwise specified,

#% 1"Equipment Required" is basic (ASR-33 or ASR-35 1/0) unless otherwise

specified,

Table 3-1,

(Cont)

Utility Routines

E i ki
Type and Function Mnemonic Doc. No. Format %Zlcilf;::d
Standard loaders:
ASR input (paper tape) | SLDR-A 180341000 DAP self-
loading
Paper tape reader SLDR-P 180342000 DAP self- Paper tape
input loading Reader
Dump:
ASR Typewriter DUMP 188806000
(verious formats)
Logic:
Logical complement N$33 180090000
Logical OR 1.$33 180065000
Object program punch PAL-AP 180311000
and load
Transfer arguments from|F$AT 180071C00
calling to called routine
Update:
Symbolic source SSUP 180767000
update Paper tape
Symbolic source SSUP-I0S 180000000 Reader
update, I/0O and Punch,
supervisor Magnetic
Symbolic source SSUP-RDS 180304000 Tape
Transport

update, revised
dummy selection

s

* All routines are in DAP format unless otherwise specified.

** 'Equipment Required' is basic (ASR-33 or ASR-35 I/0) unless otherwise

specified,

Table 3-2,

Input/Output Routines¥*

Type and Function Mnemonic Doc. No.
FORTRAN IV Drivers:
ASR Typewriter -
Input F$R1 182610000
Output F$wW1l 182611000
Paper Tape Reader F$R2 182612000
Paper Tape Punch F$w2 182613000
Card Reader F$R3 182614000
Magnetic Tape Transport
Input F$R5-9 180306000
Output F$W5-9 180307000
Write File Mark F$D5-9 180308000
Rewind F$B5-9 180309000
Back space F$F5-9 180310000
Device n
Input F$RN 180088000
Output F$WN 180089000
FORTRAN IV:
Format Control F$IO
Argument Transfer F$AR 182618000
Buffer Closeout F$CB
1/O Supervisors: |
DAP ASR I0S-16A 180323000
DAP Expanded I/0 10S-16B 180324000
FORTRAN 1V F4-10S 180016000
Standard Library:
ASR Typewriter -
Type a line O$AP
Carriage return O$AC 180255000
Advance to next line O$AF
Initialize heading O$HH 180774000
Initialize listing O$LL
ASR Paper Tape Reader -
ASCII I$AA 189001000
Binary I1$AB 189002000
ASR Paper Tape Punch -
ASCI O$AA 189003000
Binary O$AB 189004000
Leader O$AL 189005000

All routines are in DAP object format,

3-3

Table 3-2. (

Cont)

Input/Output Routiness*

Type and Function Mnemonic Doc, No,
High-Speed Paper Tape Reader-
ASCII I$PA 189006000
Binary I$PB 189007000
High-Speed Paper Tape Punch -
ASCII O$PA 189008000
Binary O$PB 189069009
Listing O$PL 181479000
Heading O$PH
Leader O$PLDR 185008000
Punch one line O$PP
Punch carriage return O$PC 180257000
Advance to next line O$PF
Card Reader
ASCI I$CA 1801190000
Binary I$CE 180609000
Magnetic Tape
Input -
BCD I$MA
Binary I$MB 182604000
Binary (3 characters/word) I$MC
Output -
BCD OSMA
Binary O$MB 182605000
Binary (3 characters/word) o$MC
File mark O$ME
Backspace
One file - C$BF
One record C$BR
Rewind C$MR 182606000
Forwardspace -
One file C$FF
One record C$FR
Conversion -
ASCII code to IBM tape code C$8T06 1800820600
IBM tape code to ASCII code C$6TO08 180091000
Translate transport numbers M$UNIT 180228000

* All routines are in DAP object format.

Table 3-3,

Mathematical Routines

Type and Function Mnemonic Doc. No, Format
Complex:
Absolute value CABS 182596000 FTRN object
Add A$55 182544000 FTRN object
Add single-precision argument A$52 180041000 FTRN object
Conjugate CONJG 182598000 FTRN object
Convert imaginary part to real AIMAG 182578000 DAP object
Cosine CCOs 180066000 FTRN object
Divide D$55 180034000 FTRN object
Divide by single-precision D$52 180044000 FTRN object
argument
Exponential, base e CEXP 182593000 FTRN object
Load L$55 182542000 DAP object
Logarithm, base e CLOG 182591000 FTRN object
Multiply M$55 182545000 FTRN object
Multiply by single-precision M$52 180045000 FTRN object
argument
Negate a complex quantity N$55 180069000 FTRN object
Raise to integer power E$51 - 182594000 FTRN object
Sine CSIN 182595000 FTRN object
Square root CSQRT 182592000 FTRN object
Store (hold) H$55 182543000 DAP object
Subtract S$55 180093000 FTRN object
Subtract single-precision S$52 180042000 FTRN object
argument
Double-Precision:
Fixed-Point:
Add DADD 188812000 DAP object
Arctangent DATNXI1 188793000 DAP object
Arctangents DATNX2 188794000 DAP object
Cosine DCOSX1 188792000 DAP object
Cosinex* DCOSX2 1.80762000 DAP object
Divide DDIV 188808000 DAP object
Divide* DDIVH 188809000 DAP object
Exponential, base e DEXEX1 188799000 DAP object
Exponential, base e * DEXEX?2 188800000 DAP object
Exponential, base 2 DEX2X1 188797000 DAP object
Exponential, base 2% DEX2X2 188798000 DAP object

* Operates with Multiply/Divide option only.

Table 3-3. (Cont)

Mathematical Routines

Type and Function Mnemonic Doc. No. Format
Logarithm, base e DLGEX1 188801000 DAP object
Logarithm, base e DLGEX2 188802000 DAP object
Logarithm, base 2 DLG2X1 188795000 DAP object
Logarithm, base 2% DLG2X2 188796000 DAP object
Multiply DMPY 188808000 DAP object
Multiply # DMPYH 188809000 DAP object
Round‘ up binary number RODD 188804000 DAP object
Sine DSINXI1 188790000 DAP object
Sinesx DSINX2 188791000 DAP object
Square root DSQRX1 188788000 DAP object
Square root#* DSQRX2 188789000 DAP object
Subtract DSUB 188813000 DAP object
Two's complement TWOS 188803000 DAP object

Floating~point:
Absolute value DABS 182587000 FTRN object
Add A$66 182540000 DAP object
Add single-precision argument A$62 180037000 FTRN object
Add integer to exponent A$81 180064000 DAP object
Arctangent, principle value DATAN 182584000 FTRN object
Arctangent, x/y DATAN2 180056000 FTRN object
Clear (zero) exponent Z$80 180060000 DAP object
Convert exponent to integer C$81 180046000 DAP object
Coavert to integer C$61 182554000 DAP object
Convert to single-precision Cc$62 182576000 DAP object
{from pseudo accumulator)
Cosine DCOs 189955999 FTRN object
Divide D$66 182541000 DAP object
Divide by single-precision D$62 180040000 FTRN object
argument
Exponential, base e DEXP 182581000 FTRN object
Load L$66 182538000 DAP object
Liogarithm, base e DLOG 182579000 FTRN object
Logarithm, base 2 DLOG2 182579000 FTRN object
Logarithm, base 10 DLOGI10 180051000 FTRN object
Maximum value DMAXI1 182585000 DAP object
Minirmum value DMINI1 182586000 DAP object
Multiply M$66 182541000 DAP object

3-6

Operates with Multiply/Divide option only,

—

Table 3-3. (Cont)

Mathematical Routines

Type and Function Mnemonic Doc. No. Format

Multiply by single-precision M$62 180039000 FTRN object
argument

Negate N$66 180061000 DAP object

Raise to double-precision E$66 1180054000 FTRN object
power

Raise to integer power E$61 180052000 FTRN object

Raise to single-precision E$62 180053000 FTRN object
power

Remainder DMOD 182588000 FTRN object

Sine DSIN 182583000 FTRN object

Square root DSQRT 182580000 FTRN object

Store (hold) H$66 182539000 DAP object

Subtract S5$66 182540000 DAP object

Subtract single-precision S$62 180038000 FTRN object
argument

Transfer sign of second DSIGN 182589000 FTRN object
argument to first

Truncate fractional bits DINT 180049000 DAP object

Integer:

Absolute value IABS 182552000 DAP object

Convert to double-precision C$16 180059000 FTRN object

Convert (FORTRAN-generated) FLOAT 180062000 DAP object
to single precision ’

Convert to single precision Cc$12 182575000 DAP object

Divide D$11 182546000 DAP object

Maximum single-precision AMAXO 182548000 DAP object
value

Maximum value MAXO 182548000 DAP object

Multiply M$11 180035000 DAP object

Positive difference IDIM 182556000 DAP object

Raise to integer power E$11 182547000 DAP object

Remainder MOD 182555000 -DAP object

Transfer sign of second ISIGN 182557000 DAP object
argument to first

Single-precision:
Fixed-point:

Arctangent ATNXI1 188779000 DAP object

Arctangent s ATNX2 188780000 DAP object

Cosine COsXl1 188781000 DAP object

Cosine * COSX2 180761000 DAP object

* Operates with Multiply/Divide option only.

Table 3-3, (Cont)

Mathematical R but{ne s

Type and Function Mncmonic Doc. No. Format
Divide DIV 188810000 DAP object
Exponential, base e EXEX]1 188786000 DAP object
Exponential, base e* EXEX2 188787000 DAP object
Exponential, base 2% EX2X1 188782000 DAP object
Exponential, base 2% EX2X2 188783000 DAP object
Logarithm, base e LGEX1 188814000 DAP object
Liogarithm, base e* LGEX2 188815000 DAP object
Logarithm, base 2 LG2X1 188784000 DAP object
Logarithm, base 2% LG2X2 188785000 DAP object
Multiply MPY 188811000 DAP object
Round up binary number ROND 188805000 DAP object
Sine SINX1 188777000 DAP object
Sine SINX2 188778000 DAP object
Square roct SQRX1 188775000 DAP object
Square root* SQRX2 188776000 DAP object

Floating-peoint:

Absolute value ABS 182570000 DAP object

Add A$22 182536000 DAP object

Arctangent, principle value ATAN 182564000 DAP object

Arctangent, y/x ANTAN?2 182564000 DAP object

Convert (FORTRAN-generated DBLE 180058000 DAP object
to double precision

Convert to integer or truncatce IFIX 182553000 DAP object
fractional bits and convert

to integer
Convert pair to complex CMPLX 182597000 FTRN object
Convert to complex format C$25 180068000 FTRN object
Convert to double-precision C$26 182590000 DAP object
Convert to integer Cs$21 182558000 DAP object
Divide D$22 182537000 DAP object
Exponential, base e EXP 182561000 DAP object
Hyperbolic tangent TANH 182565000 DAP object
Lioad 1.$22 182534000 DAP object
Logarithm, basc ¢ ALOG 182559000 DAP object
Logarithin, base 10 ALOG10 182559000 DAP object
Maximum integer value MAXI1 182549000 DAP object
Maximum value AMAXI1 182549000 DAP object
Minimum integer value MINI 182551000 DAP object
Minimum value AMINI 182551000 DAP object

(98]

% Operates with Multiply /Divide option only,

Table 3-3; (Cont)
Mathematical Routines

Type and Function Mnemonic Doc. No. Format
Multiply M$22 182537000 DAP object
Positive difference DIM 182573000 DAP object
Raise to double-precision E$26 182582000 FTRN object

power
Raise to integer power E$21 1182562000 DAP object
Raise to single-precision E$22 180045000 DAP object

power
Remainder AMOD 182572000 DAP object
Sine SIN 182563000 DAP object
Square root SQRT 182560000 DAP object
Store (hold) H$22 182535000 DAP object
Subtract S$22 182536000 DAP object
Transfer sign of second SIGN 182574000 DAP object
argument to first
Truncate fractional bits AINT 182571000 DAP object
Two's complement N$22 180097000 DAP object

3-9

'SECTION IV ,
GENERATION OF SELF-LOADING SYSTEM TAPES

The DDP-516 Software package contains, in addition to an extensive library of
object tapes, a few tapes that are self-loading. The self-loading tapes are the loader
(LDR or SLDR) and the punch and load (PAL-AP) programs. » (PAL-AP is also supplied in
relocatable object form.) These two programs enable you to generate self-loading system
tapes tailored to your installation. (A DAP or FORTRAN system with less than 8K of
memory cannot generate system tapes.) This section contains detailed procedures for gen-
erating self-loading system tapes for the DAP-16 Assembler, the FORTRAN IV (FRTN)
Compiler and the Symbolic Source Update (SSUP) Program.

As illustrated in Figure 4-1, the procedure for generating a self-loading system

tape (SLST) involves six operations. These operations are as follows.

a. Entering the loader (LDR or SLDR) into high sectors of memory.

b. Loading the main program (DAP-16, FRTN or SSUP) into memory with
specified starting locations at which loading and cross-sector linkage are to begin.

c. Loading the I/O routines (IOS, I/O Library, etc.) to satisfy the main program
calls.

d. Obtaining a memory map to determine the area of memory which contains data
to be punched out on the system tape. A

e. Loading the punch and load program (PAL-AP) into the high sector of memory
with the contents of a specified area of memory assigned to be punched out.

f. Punching out the SLST.

The procedural steps that follow have been abbreviatedso that the instruction ''Load XXXXX8
into Register ' implies the three step REGISTER LOAD procedure described in Section II.
Therefore, it is recommended that you familiarize yourself with the control console before

attempting to generate an SLST.

GENERATING A SELF-LOADING DAP-16 SYSTEM TAPE

The DAP- 16 Manual (3C Doc. No. 130071629) and the DDP-516 Programmers
Reference Manual (3C Doc. No. 130071585) contain a completé description of the DAP-16
symbolic assembly program and the instructions for preparing programs iﬁ DAP-16 source
language. The following paper tapes from your library are required to generate a self-

loading DAP-16 system tape.

a. Some version of SLDR or LDR as determined from Table 4-1
b. PAL-AP (self-loading form)

DAP-16 (also contains I0S and MG TD)

1/O Library

DECCL and SETSIZ,

o 0

o ———

(U SELF-LOADING
LOADER

L/N

T ——)

(b) MAIN

- PROGRAM

SELY - LOADING
SYSTEM TAPE

MEMORY

E) 1/0

— ROUTINES
L ——
SELF ~LOADING

@ PUNCH 8 LOAD

@ MEMORY MAP

figure 4-1, Self Loading System Tape Generation

Table 4-1.
Loader Selection
Device Loader
Teletype:
Standard Loader SLDR-A
Expanded Loader LDR-A
High Speed Paper Tape Reader:
Standard Loader SLDR-P
Expanded Loader LDR-P

As tudicated in Table 4-1, the peripheral devices at your installation determine which loader

s required to generate the SLST. In addition, the number of pasées desired during an as-

embly and the options available at your installation effect the choice of loader. The standard

liaders do not allow a one pass assembly and will not function with systems using the ex-

v

.

rended addressing or memory lockout options. When you have determined which loader is

¢quired, proceed as directed in the following paragraphs.

Load the Self-Loading Loader

a. Check the key-in loader as described in Section II to ensure that it is intact.

“the ioader has been disturbed, you must reload it.

Depress the MSTR CLEAR pushbutton.

c. Load 00000 18 into Register P.

d. Insert the loader tape into the appropriate input device.

e. Setthe MA/SI/RUN switch to RUN. -

f. Depress the START pushbutton. (If you are loading from an ASR 33 teletype unit,
the manual START switch on the device must be actwated If you are loadlng from an
ASR-35 teletype unit, the MODE switch must be set.to KT.) The loader program W111 be
loaded into the high-order sectors of memory (the four high-order sectors for LDR or the

three high-order sectors for SLDR), and the computer will halt.

Load the DAP- 16 Object Tape

a. Depress the MSTR CLEAR pushbutton.
b. Load XX000, the starting location of the loader, into Register P (XX is the highest
sector of memory). 7 | | |
c. Insert the DAP-16 object tape into the approprlate 1nput dev1ce
d. Depress the START pushbutton. The tape will be loaded into memory starting at
location 4008. Loading will halt before the entire tape is read and the teletype will produce
MR to indicate that additional routines must be loaded.
e. Insert the I/O Library tape into the a.ppropnate 1nput device.
Depress the START pushbutton. The teletype will again producc MR
g. Insert the tape contammg DECCL and SETSIZ into the approprlate input device.
h. Depress the START pushbutton. The teletype will produce LC to indicate that
loading is complete

i. Load XX002, into Register P to obtain a memory rr;ap.

8
j. Depress the START pushbutton. A memory map, having the format shown in
Table 4-2, will be produced on the teletype.

Table 4- 2

Memory Map
* START DDDDD The entry location of the main program.
* HIGH DDDDD The first location not used by the main program.
* BASE DDDDD The first location not used in the base sector
* NAMES DDDDD The lowest location used by the loader.
SUBI DDDDD The entry location of a subroutine. B
LC . Loading complete

Punch the DAP System Tape

a. Depress the MSTR CLEAR pushbutton.

b. Load 0000018 into Register P. _

c. Insert the PAL-AP tape into the appropriate input device.

d. Depress the START pushbutton. The tape will be loaded into the highest 12008
locations of memory.

e. Load XXlOO8 into Register P,

f. Load 1008 into Register A. (If a teletype is being used, modify the Register-A
load by setting bit 1 of the register. Depress the ON switch on the ASR-33 teletype punch
or set the MODE switch to KT on the ASR-35 teletype unit.)

g. Depress the START pushbutton. The program will halt immediately.

h. Load into Register A location HIGH obtained from the memory map.

i. Depress the START pushbutton. The self-loading DAP-16 system tape will be
punched out by the appropriate output device. To test your system tape, perform an

assembly as described in Section V.

Computing DAP-16 Memory-Table Size

Each DAP-16 literal-, symbol-, and transfer-vector-table entry occupiesvthree words
in memory. To calculate the total number of locations available in your computer, subtract
the HIGH address obtained from your DAP-16 memofy' map frorr"»[the last address of your
computer memory. Then subtract IOO8 from the remainder and divide the new remainder

by 3. ({All computations in octal.)

GENERATING A SELF-LOADING FORTRAN IV SYSTEM TAPE

The FORTRAN IV Manual (3C Doc. No. 130071364) contains instructions for the
preparation of FORTRAN IV programs to be used on your DDP-516 computer. To generate
a self-loading FORTRAN IV system tape, you will need the following tapes from your library.

a. Some form of SLDR or LDR as determined from Table 4-1.
b. PAL-AP (self-loading form)
c. FRTN

F4-I0S

When you have determined which loader is required, proceed as follows.

Load the FRTN Object Tape

a. Perform the procedure for loading the self-loading loader as described carlier
in this section.

b. Depress the MSTR CLEAR pushbutton.

c. Load XXOOOS, the starting location of the loader, into Register P (XX is the

highest sector of memory).

4-4

d. Insert the FRTN object tape into the éppropriate input device.

e. Depress the START pushbutton. (If you are loading from ‘ar‘l ASR-33 teletyfﬁe unit
the manual START switch on the device must be activated. If you are loading from an
ASR-35 teletype unit, the MODE switch must be set to KT.) When the tape has been read

into memory, the teletype will produce MR to indicate additional routines must be loaded.

Load the FRTN I/O Selector

a. Insert the F4-IOS tape into the appropriate input device.

b. Depress the START pushbutton. When the tape has been read into memory, the
teletype will produce LC to indicate that loading is complete. '

c. Load XXOOZ8

d. Depress the START pushbutton. A memory map, having the format shown in

into Register P to obtain a memory map.
Table 4-2, will be produced on the teletype.

Punch the FRTN System Tape

a. Depress the MSTR CLEAR pushbutfon.

b. Load 000001, into Register P. |

c. Insert the PAL-AP tape into the appropriate input device.

d. Depress the START pushbutton. The tape will be loaded into memory.

e. Load XX100, into Register P. o

f. Load 408 into Register A. If a teletype is being used, modify the Register-A
load by setting bit 1 of the register. Depress the ON switch on the ASR-33 teletype punch
or set the MODE switch to KT on the ASR-35 teletype unit.

. g. Depress the START pushbutton. The program will halt.

h. Load into Register A location HIGH obtained from the memory map.

i. Depress the START pushbutton. The self-loading FRTN system tape will be
punched out by the appropriate output device. To test your system tape, perform the com-

piling procedure described in Section V.

GENERATE A SELF-LOADING UPDATE SYSTEM TAPE

The following paper tapes from your library are required to generate a self-loading

update system program.

a. Some version of SLDR or LDR as determinéd from Table 4-1
b. PAL-AP (self-loading form)
c. SSUP
SSUP-IOS
e. SSUP-RDS
f. 1/O Library.

When you have determined which loader is required, proceed as follows.

4-5

Looad the SSUP Object Tape

''a. Perform the procedure for loading the self-loading loader as described carlicer

in this section.
b. Depress the MSTR CLEAR pushbutton.
c. Load XXOOO8,

highest sector of memory).

the starting location of the loader, into Register P (XX is the

d. Insert the SSUP object tape into the appropriate inputvdevice.

e. Depress the START pushbutton. The tape will be read into memory starting at
location 4008. When loading is complete, the teletype will produce MR to indicate that
additional routines must be loaded.

Load the IOS and the IOS Calls

You must specify which I/O devices you wish to use when updating a symbolic source
program. Only one device may be specified for each I/O form as indicated in Table 4-3.
After you have determined which devices you wish to use, you must isolate the I/O routines
required from the I/O Library tape by loading them individually using the appropriate input

device. The procedure is as follows.

a. Insert the SSUP-IOS tape into the appropriate input device.

b. Depress the START pﬁshbutton. When loading is complete, the teletype will
produce MR.

c. Insert the required I/O routines into the appropriate input device.

d. Depress the START pushbutton. When loading is éomplete, the teletype will
produce MR.

e. Insert the SSUP-RDS tape into the appropriate input device.

f. Depréss the START pushbutton. When loading is complete, the teletype will
_produce LC. ‘ .

g. Load XXOOZ8 into Register P to obtain a memory map.
h. Depress the START pushbutton. A memory map will be produced on the tele-

type having the format shown in Table 4-2.

Punch the SSUP System Tape

To punch out the SSUP system tape, perform the procedure for punching a DAP System
Tape as described earlier in this section. The SSUP system tape can be tested by perform-

ing an update as described in Section V.

Table 4-3.
1/Q Selection for SSUP

I1/O Form

1/0 Device Desired*

1/0 Routines Required

Source Program to be
Updated

Source Program Con-
taining Corrections

Updated Source Program

Listing of the Cor-
rections

Magnetic Tape Unit
High-Speed Paper Tape Reader

ASR Paper Tape Reader’
High-Speed Paper Tape Reader
Card Reader

Magnetic Tape Unit
High-Speed Paper Tape Punch

ASR Paper Tape Punch
ASR Listing

IMA, C6T08, M$UNIT
’ I$PA

I$AA
I$PA
I$CA

OMA, C8T06, M$UNIT
O$PA

O$AA
Oo$LL

T

#*The update program requires a high-speed paper tape reader and punch or two

magnetic tape units.

SECTION V
OPERATING PROCEDURES

This section presents detailed procedures for loading, executing, assembling and
compiling programs, and generating self-loading paper tapes. The assembly, compilation,
and updating procedures describe how to use the self-loading system tapes that you gen-
erated in accordance with the instructions given in Section IV. Some of the procedures that
you performed for specific programs in Section IV have been generalized to cover all pro-

grams on paper tape.

LOAD

The following paragraphs contain procedures for loading both self-loading and

object programs on paper tape.

Load Self—Loadinj Programs

a. Depress the MSTR CLEAR pushbutton,

b. Load 00000 18 into Register P,

c. Insert the self-loading tape into the appropriate input device.

d. Depress the START pushbutton. (When lqading with an ASR-33 teletype unit, the
manual START switch on the device must be activated. When loading with an ASR-35 tele-
type unit, the MODE switch must be set to KT.) (Observe Register X which should indicate
counting if the tape is being loaded correctly.) The program will be loaded into the loca-
tions it occupied when it was punched out. Loading any self-loading tape destroys the con-

tents of locations 000208 through 000578 inclusive.

Load Object Programs

a. Perform the procedure for self-loading programs described above using the
appropriate self-loading loader program. i

b. Load XXOOOS, the starting location of the loader, into Register P (XX is the high-
est sector of memory). If the object program is relocatable (REL), perform steps c. and
d. If the object program is absolute (ABS), skip steps ¢. and d. and continue at step e.)

c. Load Register A with the octal address of the location at which loading is to begin.
Otherwise a starting location of 10008 will be assumed. To force a starting location of
000008’ load 10010008 into Register A. (Locations 1 through 17 octal in memory are write

protected and nothing will be loaded into this area.)

d. Load Register B with the octal address of the location at which the inter-scctor
indirect address word table is to begin. Otherwise, a starting location of lOO8 will be

assumed.
. NOTE
The inter-sector indirect word table must be located in sector 0
for DDP-516 computers without the Memory Lockout Option. The
table may be in any sector for computers with the option. The
sector may be changed at load time by the pseudo-operation SETB.
e. Insert the object program into the appropriate input device.
Depress the START pushbutton. The object program will be loaded into memory

until a halt occurs and a loader message is produced on the teletype. Refer to Table 5-1

for the significance of the loader messages.

Table 5-1.
Loader Messages
Message Meaning Action Required
LC Loading complete Depress the START pushbutton to begin program
execution
MR More subroutines Insert the required subroutine tapes into the
required appropriate input device and depress the START
pushbutton to continue loading
CK Checksum error in the Depress the START pushbutton to ignore the
last block read block and continue loading. A valid load is not
assured
BL Block too large or Depress the START pushbutton to ignore the
improperly formatted block and continue loading. A valid load is not
assured
MO Memory overflow due to Depress the START i)ushbutton to obtain a
program attempting to memory map. Refer to Table 4-2 for the
overwrite the loader memory map format. No recovery is possible

from this error.

The loader cannot detect a program overlaying the indirect word tables or the tables over-
laying the program. You must obtain a memory map to determine whether overlap exists.

The loader will detect base sector overflow and produce an MO message.

Options Following a Loader Halt

Whern a loader halt occurs and a message is produced, there are several options you
can perform other than those specified in Table 5- 1,

The options allow you to:

a. Reload the object tkape by répeating the procedure for load 6bject programs
described above. o i o ' '
b. Recover from a missing end-of-tape block. The prbcedure is as follows.
(1) Momentarily set the MS/SI/RUN switch to SI to stop the computer.
(2) Load XXOOI8 into Register P,
(3) Depress the START pushbutton.

5-2

teletype.
d.

Print a memory map. The procedure is as follows.

(1) Load XXOOZ8 into Register P.

(2) Depress the START pushbutton. A memory map will be produced on the

See Table 4-2 for the format of the memory map.
Set a program break. The procedure is as follows.
(1) Load XX0038 into Register P.

(2) Load Register A with the address of the location at which loading is to con-

tinue. If Register A is cleared, the origin for loading remains unchanged.

(3) Depress the START pushbutton and loading will continue.
Force-load a subprogram. The procedure is as follows.

(1) Load XX0048 into Register P.

(2) Insert a tape into the appropriate input device if required.

(3) Depress the START pushbutton. The tape will be loaded into memory.

Begin executing the object program. The procedure is as follows.

(1) Load XXOOS8 into Register P.

(2) Depress the START pushbutton and the program will be executed.

ASSEMBLE DAP-16 SOURCE PROGRAMS

This procedure enables you to perform an assembly by using your self-loading

DAP-16 system tape. To perform the assembly, proceed as follows.

a.
b.
c.
d.

Depress the MSTR CLEAR pushbutton.

Load 0000018 into Register P.

Insert the DAP-16 system tape into the appropriate input device.

Depress the START pushbutton and the sysiem tape will be loaded into memory.

Monitor Register X for counting.

e,

Select a bit pattern from Table 5-2 to designate a one- or two-pass assembly

and to designate the I/O devices to be used during the assembly.

f.
g.

Load the selected bit pattern into Register A.

Load 4008

for the DAP-16 Assembler.

h.

(1) 400, - Start assembly

(2) 4012 - Continue assembly

(3) 4028 - Start subroutine tape assembly

(4) 4038 - Terminate assembly

(5) 4048 - Restart pass two to produce additional object tapes.

Insert a DAP-16 source tape into the appropriate input device and turn on your

input/output equipment.

NOTE

If you are using the high-speed paper tape equipment or an
ASR-35 to assemble, perform step i to complete the procedure.
If you are using the ASR-33 to assemble, skip step i and per-
form steps j through n.

into Register P. There are five standard starting options available

i. Depress the START pushbutton and the assembly will be executed.
j. Depress the START pushbutton. A portion of the source tape will be read and a

halt will occur.

k. Depressthe ON pushbutton on the ASR-33 paper‘tape punch.
1. Depress the START pushbutton. A length of object tape will be punched and a

halt will occur.

m. Depress the OFF pushbutton on the ASR-33 paper tape punch.

n. Repeat steps j through m untilthe complete source tape has beenread and a complete
objecttape has beenpunched. (Ifafter a punch sequence the source tape isnotreadas instep j,
repeat steps kthroughn. This occurs whenthere are two blocks to be punched.)

After the assembly is completed, you will have an object tape and a listing of your
program if these were requested. When operating in the two-pass assembly mode, the
output is generated during the second péss which is accomplished by repeating steps h. and
i. after the source tape has been read the first time. If the assembly was successfuliy
completed, Register A will contain all ONEs when the computer halts. If a MOR pseudo-
operation was encountered, Register A will contain all ZEROs.

The DAP-16 assembler indicates coding errors by typing or printing error flags in
the left-hand margin of the listing. (See Table 9-1.) Such errors do not interfere with the
assembly process. Undefined symbols arc automatically defined by the Assembler and are

listed at the end of the last-pass,

Table 5-2
Assembly and I/O Device Selection
Set Bit ' Assembly or I/O Device Selected
1 Two-pass assembly. If bit 1is not set,
a one pass assembly is executed.

Input Device

2 Teletype Unit

3 High-Speed Paper Tape Reader

4 ‘Card Reader

5 Magnetic Tape Unit

6 Teletype Unit with halts for manual inputs
Output Device

7 Teletype Unit

8 High-Spe€d Paper Tape Punch

9 Card Punch

10 Magnetic Tape Unit

11 No Object Output
Listing Device

12 Teletype Unit

13 High-Speed Paper Tape Punch

14 Magnetic Tape Unit

15 Line Printer

16 No Listing

NOTE

If any of the five-bit I/O groups are all ZEROs, a standard
device, depending on the configuration, will be selected.

5-4

COMPILE FORTRAN IV SOURCE PROGRAMS

This procedure enables you to compile FORTRAN IV source tapes by using your
self-loading FORTRAN IV system tape. The procedure is as follows.

a. Depress the MSTR CLEAR pushbutton,

b. Load 00000 18 into Register P.

c. Insert the FORTRAN IV system tape into the appropriate input device.

d. Depress the START pushbutton and the system tape will be loaded into memory.

e. Select a bit pattern from Table 5-3 to designate the I1/O devicés to be used
during the compilation. ‘

f Load the selected bit pattern into Register A.

g. Load 10008 into Register P. '

h Set the SENSE switches to desired positions. (See Table 5-4.)

i, Insert a FORTRAN IV source tape into the appropriate input device and turn on
your input/output equipment.

jo Depress the START pushbutton and the compilation will be executed.

When the compilation has been completed, the teletype will produce "End of Job'".
The selected devices will generate a listing and an object tape provided that these outputs
have riot been suppressed. The FORTRAN IV compiler indicates coding errors, typing or
printing errors by printing error flags on the listing following the FORTRAN statement con-
taining the error. (See Table 9-2.) Some errors are recoverable and do not interfere with

the compilation. Others, however, halt the computer and must be corrected before con-

tinuing.
Table 5-3.
1/O Device Selection
Bit Selection I/0 Device Selected
Contents of bits 8-10 Input Device
1 Teletype Unit
2 Card Reader
3 High-Speed Paper Tape Reader
Contents of bits 11-13 Listing Device
0 Suppress Listing
1 Teletype Unit
2 Line Printer
Contents of bits 14-16 Output Device
0 Suppress Cutput
1 High-Speed Paper Tape Punch
2 Teletype Unit

5-5

Table 5-4.
Sense Switch Settings

Sense Switch Significance

1 Expand the symbolic listing to include side-by-side octal
information

v

Inhibit symbolic listing (not valid if Sense Switch 1 is set)

3 Halt before inputting next record. During the pause (A)
will display the current status of the I/O keyboard. The
status may be changed before resetting Sense Switch 3
and depressing the START pushbutton

4 Cause trace-coupling information to be included in the
object coding being generated regardless of any trace
statements in the program. (This is an operator
override.)

DEBUG PROGRAMS

Your software package includes a utility program called COP (Check-Out Program)
which is designed to assist you in debugging programs. The COP program is relocatable
and therefore can be loaded into memory so as not to interfere with the program being

debugged. The following procedures describe loading and executing COP.

Loading COP
This procedure assumes that the object program to be debugged has been loaded into
memory using the procedure for loading object programs which is described earlier in this

section.

a. Load XXOOZ8 into Register P to obtain a memory map.

b. Depress the START pushbutton. A memory map will be produced on the teletype.
(See Table 4-2 for map format.) »

c. Load the COP object program into memory by using the procedure for loading
object programs which is described earlier in this section. (COP may utilize locations in
scctor zero for cross-sector linkage. Refer to the memory map before selecting the start-

ing locations to be loaded into Registers A and B as part of the loading process.)

Execute COP

When COP has been loaded into memory, there are a number of operations that you
can perform with the teletype. These operations are explained in Table 5-5 where the
first column designates the operation, the second column specifies the keys used on the

teletype, and the third column explains the operation performed.

5-6

Table 5-5.

COP Operations

Teletype Keys

Operation Activated* Explanation
A A RETURN Type the octal contents of memory from location
X, Y RETURN X to location Y.
B B RETURN Insert correction Y into location X. Type Y
X, Y RETURN RETURN to insert second and successive cor-
(.) rections. A slash (/) will be printed out when
the memory modification has been completed.

C C RETURN Enter breakpoint at location X and start program

X, Y RETURN at location Y. Location 511 of sector zero is
used to RETURN from a breakpoint.
D D RETURN RETURN to the breakpoint and continue the
program being debugged, Clear breakpoint,
only one breakpoint active at a time.
E E RETURN Clear the contents of memory from location X
X, Y RETURN to location Y.

F F RETURN Search memory between locations X and Y for
X, Y RETURN address Z.
Z RETURN

Gl Gl, A,B,X, C RETURN | Start at location X and print the contents of the
X, Y RETURN specified registers every time control passes

through location Y.

G2 G2, A,B,X, C RETURN | Start at location X and print the contents of the
X, Y RETURN specified registers every Nth time control
N RETURN passes through location Y.

G3 G3, A,B,X,C RETURN Start at location X and print the contents of the
X, Y RETURN specified registers the first I times of every
I RETURN N times control passes through location Y.
N RETURN

G4 G4, A,B,X,C, RETURN Start at location X and print the contents of the
X, Y RETURN specified registers for the first N times
N RETURN control passes through location Y.

G5 G5, A,B,X,C, RETURN/| Start at location X and print the contents of the
X, Y RETURN specified registers every time control passes

through location Y.

Gb6 G6, A, B,X,C RETURN Start at location X and print the contents of the
X, Y RETURN specified registers every time control passes
A or B or M space > through Y if the specified condition is true.
or = or <
Space D RETURN
Z RETURN
(Z is entered only if
a memory location M
is to be tested.) _

G7 G7, A,B,S,C, RETURN | Start at location X and print the contents of the

X RETURN

specified registers (trace).

*X, Y, and Z denote octal numbers.

D, I, and N denote decimal numbers. In the G

operations, A, B, X, and C denote registers. Any combination of these registers may
The checkpoint and its contents are printed whether or not registers are

be specified.

specified.

5-7

UPDATE SOURCE PROGRAMS -

Ycur software package contains a symbolic source update program (SSUP) which will
enable you to delete, correct, preserve or add records to a symbolic source program.

The following procedures describe loading and execﬁting SSUP,

Load SSUP
To load p.rogram SSUP, proceed as follows.

a. Depress the MSTR CLEAR pushbutton.

b. Load 00000 18 into Register P.

c. Insert the SSUP system tape into the appropriate input device.

d. Depress the START pushbutton and the system tape will be loaded into memory.
Monitor Register X for counting.

e. Insert the source tape to be updated into the appropriate input device.

f. Set SENSE SWITCH 1 to the appropriate position. The up position (set) selects
the FORTRAN IV updating option; the down position (reset) selects the DAP- 16 updating

option.

Execute SSUP

When SSUP has been loaded into memory, there are a number of operations you can
perform using the teletype which allows you to modify the old source tape and punch a new
source tape which reflects the modifications. These operations are explained in Table 5-6
where the first column designates the operation command, the second column specifies the
keys used on the teletype, and the third column explains the operation performed. Refer to
the SSUP program listing (3C Doc. No. 180767000) for a complete description of the rules
for using SSUP.

Table 5-6.
SSUP Operations

Operation Teletype Keys

Command Activated W Explanation

List $LIST (*F=*L 1%, *L2) Make a listing of the program including correc-
tions as specified by L1 and L2.

No List $NLST Do not make a listing

Begin $BEGN (*F*L 1) Position the new source tape to the file or
record specified by L 1.

Halt SHALT Halt SSUP and print a breakpoint halt on the
listing.

V An asterisk (%) indicates permissible spaces and the entries within the paren-
thesis indicate optional operations dependent upon the command.

5-8

Table 5-6. (Cont)
SSUP Operations

Operation Teletype Keys

Command Activated V Explanation

Reset $RSET (*F*L1) Set the internal file or record counter for the
tape being updated to the value specified
by L1.-

No Copy $NCPY Do not write onto the new source tape.

Copy $COPY (*F*L1%, *12) Copy onto the new source tape that information
specified by L.l and L2.

Done $DONE Terminate the updating process.

Insert $NSRT (*FxL1s%, *12) Insert new information onto the new source tape
which does not appear on the old source tape.

Omit $OMIT (:F*L 1%, *12) Delete information that appears on the old
source tape by not copying it onto the new
source tape.

End of File | $WEOF Write an end of file mark on the output mag-
netic tape.

W An asterisk (*) indicates permissible spaces and the entries within the paren-
thesis indicate optional operations dependent upon the command.

DUMP THE CONTENTS OF MEMORY

Your software package contains a memory dump program which is appropriately
called DUMP. The program enables you to print selected areas of memory on the teletype

in any one of three formats. The procedure for using DUMP is as follows.

a. Depress the MSTR CLEAR pushbutton.

b. Load XXOOZ8 into Register P and depress the START pushbutton to obtain a
memory map.

c. Load the DUMP program into memory by using the procedure for loading object
programs that was described earlier in this section.

d. Load into Register P the address at which the DUMP program begins. (This
address is determined from the memory map and is loaded into Register A during the
loading procedure performed in step c.)

e. Depress the START pushbutton. The program performs a carriage return, a
line feed and awaits instructions via the teletype.

f. Select the appropriate sense switch settings to obtain the desired dump format.

The selections are as follows.

Sense Switch Setting Format Option
1 Set Octal printout with eight columns per row.
2 Set - Mnemonic printout with four columns per row.
1 and 2 Reset Mnemonic printout with one column per row.

5-9

g. Specify the limits of the dump by typing in X CARRIAGE RETURN and Y
CARRIAGE RETURN where X and Y are octal numbers specifying the lower and upper limits
of the dump, respectively. The contents of the specified area of memory will then be
printed by the teletype. If an error is made in the entry format, a slash (/) will be typed

and the .arguments must be entered correctly.

PUNCH SELF-LOADING OBJECT TAPES

A program is provided in your software package which enables you to punch self-
loading object tapes of any segment of memory. This punch and load program (PAL-AP) is
supplied in self-loading form. The following procedures describe the method for loading

the program and executing the program once it is loaded.

Load the Self-Loading PAL-AP

a. Depress the MSTR CLEAR pushbutton.

b. Load 00000 18 into Register P.

¢. Depress the START pushbutton. The tape will be loaded into the highest 12008
iocations of memory. (The program overlays the relocating loader if it is currently in the

high sectors of memory and locations OOO?.O8 through 000578 are destroyed.)

Execute PAL-AP

a. Depress the MSTR CLEAR pushbutton.

b. Load ZZ100 into Register P. (ZZ is the sector into which PAL-AP was loaded.)

c. Load into Register A the starting address of the data to be punched out. (If the
teletype is being used, set tne high-order bit of Register A and turn on the punch unit on the
teletype.)

d. Depress the START pushbutton. The program will halt at location 221178.

e. I.oad into Register A the ending address of the data to be punched out.

f. Depress the START pushbutton. A self-loading object tape will be punched out.

SECTION VI
UTILITY LIBRARY

This section contains short descriptions of the routines in the DDP-516 Utility Library.
The purpose, storage requirements, and usage are given for each routine. Errors that
may occur and other routines called are also given where applicable. In some cases more

detailed information contained either in the program listing or other documents is referenced.
DAP ASSEMBLER (DAP 16)

Purpose

The DAP assembler is designed to convert DAP source language programs to object
form for execution on the DDP-116, 416, or 516. DAP-16 is a one- or two-pass assembler.

Additional passes may be made to produce extra copies of the program in object form.

Storage Requirements

DAP-16 requires a minimum of 4K core storage using IOS-16A (preselected 1/0), or
8K using I0S-16B (selectable 1/0).

Usage
Refer to the DAP-16 Reference Manual, 3C Doc. No. 130071629, to the program
listing, 3C Doc. No. 180275000, and to section V of the manual for complete details on

use and operation.

FORTRAN IV COMPILER (FRTN)

Purpose

The FORTRAN IV Compiler is designed to compile ASA standard FORTRAN IV
programs in one pass and generate optimum object code for execution on the DDP-116,
or 516.

Storage Requirements

FRTN requires a minimum of 8K storage.

6-1

Usage
Refer to FOR’TRAN IV Manual, 3C Doc. No. 130071479 and section V of this manual

for complete details on usage.
PUNCH AND LOAD (PAL-AP)

Purpose

PAL-AP is used to punch self-loading object tapes for execution on the DDP-516.
PAL-AP consists of a punch section and a load section. The load section is of the boot-
strap variety. PAL-AP will first punch out its own loader section in 8-8 format followed
by 12 in. of leader. The desired program is then punched in PAL format, which is
recognized by the loader. The self-loading ability of a PAL program may thus be seen.

The loader on the front of the tape will load itself and then the PAL-format program.

Storage Requirements

PAL-AP requires less than one sector of memory.

Usa_g_e

Refer to Section V of this manual for complete procedures for using PAL-AP and

to 3C Doc. No. 180311000 for a program listing.
EXPANDED LOADER (LDR-A)

Purpose

LDR-A loads absolute and relocatable main programs and subprograms produced
by the DAP-16 Assembler (in a one or two-pass mode) or the FORTRAN IV Compiler into

the DDP-516 memory. LDR-A loads paper tape through the ASR teletypewriter.

Storage Requirements

LDR-A requires approxiinately 3 1/2 sectors of memory.

Usage
Refer to program listing, 3C Doc. No. 180335000, and to Section V of this manual

for complete details on usage.

EXPANDED LOADER (LDR-P)

PurEose

LDR-P loads absolute and relocatable main programs and subprograms produced
by the DAP-16 Assembler (in a one or two-pass mode) or the FORTRAN IV Compiler into
the DDP-516 memory. LDR-P loads tape through the high-speed paper tape reader.

Storage Requirements

LDR-P requires approximately 3 1/2 sectors of memory.

Usage

Refer to program listing, 3C Doc. No. 180336000, and to Section V of this manual

for complete details on usage.

STANDARD LOADER (SLDR-A)

PurEose

SLDR-A loads absolute and relocatable main programs and subprograms produced by
the DAP-16 Assembler (two-pass mode only) or the FORTRAN IV Compiler into the
DDP-516 memory. SLDR-A loads paper tape through the ASR tape reader. SLDR-A may

not be used with Extended Addressing and Memory Lockout options.

Storage Requiremenﬁs

SLDR-A requires more than two sectors of memory.

Usase

Refer to program listing, 3C Doc. No. 180341000, and to Section V of this manual

for complete details on usage.

STANDARD LOADER (SLDR-P)

Purgose

SLDR-P loads absolute and relocatable main programs and subprograms produced
by the DAP-16 Assembler (two-pass mdde-only) or the FORTRAN IV Compiler into the
DDP-516 memory. SLDR-P loads paper tape through the high-speed paper tape reader.
SLDR-P may not be used with Extended Addressing and Memory Lockout options.

Storage Requirements

SLDR-P requires more than two sectors of memory

Usage
Refer to program listing, 3C Doc. No. 180342000, and to Section V of this manual

for complete details on usage.
MEMORY DUMP - OUTPUT ON ASR-33 (DUMP)

Purpose

Print out selected areas of core on the ASR-33 typewriter with three different

format options as follows:

a. If sense switch 1 is set, memory is printed octally between specified limits
with eight columns per row.

b. If sense switch 2 is set, memory is printed in mnemonic format between
specified limits with four columns per row.

c. If sense switches 1 and 2 are reset, memory is printed in mnemonic format

between specified limits with one column per row.

Storage Requirements

DUMP requires one sector of memory.

Usage

Refer to the program listing, 3C Doc. No. 188806000, and to Section V of this

manual for complete operating procedures.

Errors

Arguments entered incorrectly. A slash will be typed and the user must re-enter

the arguments correctly.
CHECK-OUT PROGRAM (COP)

Purpose

COP aids in check-out and debugging of DDP-516 programs by permitting the user
to print out selected areas of core (trace option), delete or insert single words or blocks of
werds, enter breakpoints, initiate jumps or jumps and halts, and search all or any part

of memory for references to specific addresses.

Storage Requirements

COP requires 62810(11648) locations (Rev. A).

Usage

Refer to program listing, 3C Doc No. 188807000 and to Sect1on \'4 of th1s manual

for complete details on options avalla.ble and their use.

Errors

Incorrect format for calling an option. A slash will be typed and the user must

re-enter the call for the option correctly.

SYMBOLIC SOURCE UPDATE PROGRAM (SSUP) -

PurEose

SSUP reads symbolic records that are less than 80 characters long and. permits a user
to delete, correct, preserve, or add records to the symbolic source to create a new revised
symbolic source. SSUP is compatible with any peripheral device that can be controlled by
10s, and will operé.te on any DDP-516 having either the high-speed paper-tape reader and

punch option or two magnetic tape units.

. Storage Requirements

SSUP requires 105510(20378) locations (Rev. B).

Usage

Refer to program listing, 3C Doc. No. 180767000, and to Section V of this manual for
a complete description of the use of commands, the procedure for making corrections, and

error messages.

Errors

For complete details of invalid commands or incorrect limits, refer to the program

listing:

Other Routines Called

SSUP-IOS

SYMBOLIC SOURCE UPDATE, INPUT/OUTPUT SUPERVISOR (SSUP-IOS)

PurEo se

SSUP- IOS selects the proper input/output device requlred by SSUP, and causes it to
input to or output from buffer areas provided by SSUP. SSUP never calls an input/output
routine directly, but rather calls on SSUP-IOS when it is required to input the updating
master or old master, or output the new master, the print master, or comments. SSUP
also calls on SSUP-IOS for initialization of a heading line and when an end-of- JOb or an

end-of-file condition is encountered.

Storage Requirements

~——

- SSUP-10s requireé 16110(2418) locations (Rev. A).

Usage
Refer to the program listing, 3C Doc. No. 180000000, for complete details on

usage and method.

Other Routines Called

OLH, IAA, OME, IMA, C$T06, OSLA,
OAH, IPA, OPS, IPA, OMA, OLL,
ICA, OAL, O$AS : C$TO08, O$PA

SYMBOLIC SOURCE UPDATE - REVISED DUMMY SELECTION (SSUP-RDS)

Purgose

SSUP-RDS satisfies IOS calls for input/output routines that have not been loaded.
This subroutine is loaded after all input/output routines. Its prime use is in the preparation
of an SSUP systems tape. The subroutine is entered at execution time only when a non-
selected I/O subroutine is called by 1I0S. It automatically steps through the calling

sequence, and then returns directly to the IOS to call on the next I/O subroutine on the list.

Storage Requirements

SSUP-RDS requires 2510(318) locations (Rev. A).

Method

Refer to program listing, 3C Doc. No. 180304000, for details on the method used.

CHAIN OR SEGMENT (CHAIN)

Pnrggs e

CHAIN is used to read in the next segment of a '""chained" program. The chain
segment is assumed to be written in load- mode on paper tape, to be read by the paper tape
reader, and to start at location 1000 The size of memory is determined and Lhe modified
load mode program is transferred to the end of memory. The segment from the paper tape

reader is then loaded in and control is transferred to 10008.

Storage Requirements

CHAINAreqﬁires 6710(1028) locations (Rév. A). '

6-6

Usage
The calling sequence for this routine is as follows.

CALL .CHAIN
INDIRECT TO DIRECT ADDRESS (ARGS$)

Purpose

ARGS$ provides a software representation of indirect addressing by converting the

indirect address of an argument to its corresponding direct address and storing it in the

index register.

Storage Requirements

ARGS$ requires 1510(178) locations (Rev. A).

Usage

The calling sequence for this routine is as follows.

CALL ARG$
DAC* (argument address)

ARGUMENT TRANSFER (F$AT)

PurEose

F$AT transfers a variable number of arguments from the calling routine to the
called routine. The number of arguments are specified by the first pseudo-operation
following the call. The second pseudo-operation specifies the beginning location of the

block into which the arguments'are to be ‘pla‘ced.

Storage Requirements

F$AT requires 4910(618) locations (Rev. A).

Usage

The calling sequence for this routine is as follows.

(entry to routine)
CALL F$AT
DEC N (number of arguments to pass)

DAC A . (pointer to storage block for arguments)

6-7

ERROR ENTRY OR HALT (FER, FHT)

Purpose

F$ER causes a mnemonic error indicator to be printed on the ASR-33 when an
object time error is encountered in a specific routine. F$HT causes the computer to stop
and print PA if a PAUSE statement has been encountered, or to print ST if a STOP state-

mernt has been encountered.

Storage Requirements

F$ER and F$HT require 3610(448) locations (Rev. A).

Usage
The calling sequence for F$ER is

CALL F$ER
DAC ARG1

where ARG is the address of the indicator to be printed out. The routine will print out
the error indicator and then halt if SENSE SWITCH 3 is set. Depressing the START push-
button after the halt will cause the program to continue. If SENSE SWITCH 3 is not set,
F$ER will exit with no printout or halt taking place.

The calling sequence for F$HT is as follows.

CALL F$HT
DAC = 151724

This calling sequence is normally generated when the STOP statement has been
encountered in the compilation process. The literal specified is the ASCII equivalent of

ST which is the object time indicator specifying that a stop has been encountered.

OVERFLOW - SET ERROR FLAG (OVERFL)

Purpose

OVERFL is used to check error conditions. The error flag is turned off. Indicator
J is set to 1 if the error flag was on, or set to 2 if the error flag was off. The error flag
is located in subroutine F$ER and is set anytime an error occurs in an arithmetic function

calculation or in an input/output conversion.

Storage Requirements

OVERFL requires 1410(168) locations (Rev. A).

6-8

Usage

The calling sequence for OVERFL is as follows.

DAP FORTRAN
CALL OVERFL CALL OVERFL (J)
DAC J

(return)

PSEUDO SENSE LIGHTS (SLITE, SLITET, SSWTCH)

Purpose

SLITE (I) - To set sense light I; or if I=O, to reset all sense lights.
SLITET (I,J)

To test sense light I and turn it off.

If sense light I Was set, indicator J is set to 1.

If sense light I was reset, indicator J is set to 2.
SSWTCH (I,J) - To test sense switchl and to sef indicator J to 1 if I is

set or to set indicator J to 2 if I is reset.

Storage Requirements

Routines SLITE, SLITET, and SSWTCH require 7310(1118) locations (Rev. A).

Usage

The calling sequence for SLITE is as follows.

DAP : FORTRAN
CALL SLITE CALL SLITE (I)
DAC I (address of variable
containing sense light number)
The calling sequence for SLITET is as follows.

DAP FORTRAN
CALL SLITET CALL. SLITET (I,7J)

DAC I (address of variable
containing sense light number)

DAC J (address for storing indicator)
The calling sequence for SSWTCH is as follows.

DAP : FORTRAN
CALL SSWTCH CALL SSWTCH (I, J)

DAC I (address of variable
containing sense switch to
be interrogated)

DAC J (address for storing indicator)

QOther Routines Called

ARG$ and L$33

LOGICAL COMPLEMENT (N$33)

PurBose

N$33 is used to obtain the complement of a logical argument by changing the

of the least significant bit in Register A from 0 to 1 or from 1 to 0.

Storage Requirements

N$33 requires 410(48) locations (Rev. A).

Usage

The calling sequence for N$33 is as follows.

CALL N$33

LOGICAL OR FROM MEMORY (L$33)

Purgose

value

L$33 is used to form an inclusive OR from memory with the argument in Register A.

The argument in Register A is first exclusive ORed with the argument from memory. The

result is ANDed with the argument from memory and this result is then exclusive ORed

with the argument from memory, thus forming the inclusive OR.

Storage Requirements

L$33 requires 1210(148) locations (Rev. A).

Usage
The calling sequence for L$33 is as follows.

CALL L$33
DAC ARG!

SECTION VII
MATHEMATICAL LIBRARY

All mathematical routines in the DDP-516 library are listed in Table 7-1. Each
routine is listéd alphabetically according to the function that it performs. Information given
for each routine includes a mnemonic name, éallihg sequence, mode, errors, accuracy and
timing (where available), storage locations required, and other routines used. The actual
mnemonic name for a routine is given in the calling sequence in Column 3. The routine
identification in Column 2 is not necessarily the entr)} for the routine indicated in Column 1,
but rather the identification of the routirie that contains it.

After each call, in Column 3, is the statement DAC Arg (1, 2 or n). DAC Argl
indicates that the program requires only one argument, and the address of that argument
appears to the right of the DAC, DAC Arg 2 indicétes that the program requires two argu-
ments. In this case, the first argument is in the appropriate accumulator,Aand the address
of the second argument appears to the right of the DAC. DAC Argn indicates that the pro-
gram requires more than two arguments. The first argument is in the appropriate accu-
mulator, the address of the second is to the right of the firét DAC, and the following lines
contain additional DAC statements with the addresses of the additional arguments. There

are four accumulators, as follows.

The integer accumulator is Register A,

The single-precision, or real, accumulator includes the Registers A and B, with
the sign in A1 , the exponent in A2-9’ and the fraction in A10-16 and B 16

The double-precision accumulator is memory locations 758, 768 and 778, with the
sign in bit position 1 of 758, the exponent in bit positions 2-9 of 758, and the fraction in bit
positions 10-16 of 758, 1-16 of 768, and 1-16 of 778.

The complex accumulator is memory locations 748 through 778. The sign of the
real part is in bit position 1 of 748, the exponent is in bit positions 2-9 of 748. and the
fraction is in bit positions 10-16 of 748 and bit positions 1-16 of 758. The imaginary part
of the complex number occupies words 768 and 778 in the same manner,

When you are not using FORTRAN IV and you wish to use an integer or single-

precision subroutine that requires more than one argument, you can place the first argument

in Register A, or Registers A and B, via LDA, or subroutine L$22.

For integer: LDA (address of integer variable)
For single-precision: CALL L$22
DAC ARG

With double-precision and complex subroutines, you can load the accumulators via
the L$66 and L.$55 subroutines, as follows.

7-1

For double-precision:

CALL L$66

DAC (address of first word of double-precision argument)
For complex:

CALL L$55

DAC (address of first word of complex argument)

Column 4, Mode, gives a symbolic represedtation of the mathematical function

accomplished by each routine. Abbreviations that are used are defined as follows.

C Complex number
R Single-precision number
I Integer
D

Double-precision number

The symbolic expressions given are to be interpreted in the conventional mathe-
maticzl manner, The portion of the expression to the left of the equal sign is the result of
the function, and the portion on the right is the actual function performed. For example,
in the first expression in the table R = CABS (C) would be read R is a function of C, where
R is the resulfing'single—preciéion nuxﬁber, CABS (or complex absolute value) is the function
pertormed, and (C) is the input'argument (a complex number),

The last column in Table 7-1 gives other routines used by the routine listed in
Column 1. For routines coded in DAP format, "Other Routines Used'" includes only those
called by the CALL pseudo-operation, For routines that are coded in FORTRAN, routines
that are called by the FORTRAN compiler to fulfill the FORTRAN coding are given, in
addition to those called by the FORTRAN source coding. '

Ar explanation of conventions used throughout the library for transferring argu-
ments to and from routines is presented in FORTRAN IV Library Introduction (3C Doc. No.
180092900). The FORTRAN IV Manual (3C Doc. No, 130071364) describes the distinction
between functions and subroutines and provides instructions for writing programs that
call both,

*Afuo uonido apratp/Arduinw Yyirm sajeradQsx

HAdJWA ‘HAIAQ ‘dNsd ‘aaoy ‘aavd L6 91821 | © " " z/1>wewnday | *° (Q)zxeDIA=A 181y Dva ‘zxzDTIq UeD | " "exeoTral| Z aseq ‘wyyriedoy
XdWd ‘AIAd ‘dNsd ‘dao¥ ‘aavda L6 ¥U106% | © 7 g/ 1> wewnday | CC (@) 1X2DTA=A 181y OVa@ ‘1XZDTIQ Ued | " 1XzoIa |- Z 9seq ‘wiyyrreda
aavda ‘9dnsd ‘HAdWda ‘zxzo1d 28 9:96%1 | "2 <iuwswmBae <o/ | " (@)ZXIADTA=A | " 181y OVA ‘ZXIDTA UED| " "ZXADTIA| "~ 2 aseq ‘wyjrredors
aava ‘g9nsd ‘Adnda‘ 1Xzo1a z8 1°8616 | "2 Tjuawndae < 3/ a)IXan1a-=a| 131y ova ‘IXIDTIA UED | I IXIADTIA | T > aseq ‘wyjriedo
gNsd ‘HAIQd ‘ddvdad ‘HAdWA ‘adoy 16 S¥26 0 <wdwnday | (Q)zXzXIAA=A 184y OVA ‘ZXZXAA MeD | © " eXexda | " Z ?seq ‘rerjuauodxys
g0Sd ‘Aldd ‘adva ‘AdNda ‘aaod 16 ¥ 188¢ 0 <juswmBay | *° (@) 1XZXIA=A 131y OVa ‘IXeX3AQ TeD | " " iXex3a | vttt Z @seq ‘renuauodxy
d0Ssd ‘HAIQd ‘HAdIWA ‘adqoy ‘aava g€l 0°6001 | """t suoN | * * (@)zxAXAA=d | " 181y DVA ‘ZXIXIA 11D | " exaAXIA | " 2 aseq ‘tenjuauodxyx
d08d ‘Alad ‘AdNd ‘daod ‘adva 8¢l 8°gr6g |~ 7t euoN |t (@) IXAXAA=A | ' 181y OVA ‘IXAXIA 1ED | T TIXAXAQ | T 3 aseq ‘lenjusuodxy
soOmL €02 ¥ 502 T pudpIAIp > dosmAr@ | Tt a/a=a| ‘- z38%iv Ova ‘HAIQQ 1UeD | " " HAAWaQ | " """ " e IPIAId%
AIQ ‘SOML ‘AdN €22 €°L121 | * Pudpralp S tosmrg | "ttt a/a=al| " z81yOova ‘Alqq UeD | " RAWa@ |ttt apIAla
ZXNISA S prgrev | e auoN | * * (a)zXs0Da=a | " " 181y OvA ‘ZXSODQ UeD | ©"ZXSODQ | Tttt 2UTS0 D
IXNISd S 9°90€% | T *rttteuoN | U (@)IXSODA=A | C 184y DVQA ‘1XSODQ TMED | T IXSODQ |ttt auison
agoy¥ ‘aavd ‘HAdWAd ‘HAIAd ‘soml Lyl 9 ko€l | Tt *c v BuoN | T (@)ZXNLIVA=A| 181y OVA ‘ZXNLVA 1D | © "ZXNLVA ** juadued iy
agoy ‘aavda‘Adnda ‘A1dd ‘soml Lyl LLRBY | L suoN | * * (@) IXNLVA=a| 181y OV ' IXNLVAJ 112D | * " IXNLVA jusfuepay
2 soid es
auoN Lz LUig 0] UINIAT IMOTFIBAQ [" " " 7 T a+a=af - -"z31yova ‘agva 1ed | " T Caava | ottt uonIPPY
. :jutod-paxt
uotstoaxd-arqnog
qeawndae
GG$T'22$H ‘22$S°22$ T SS$H ‘L VT 02 6°90G [Tttt SuoN cttrz8ay ova ‘zegsTED | 25$S uorstoa1d-afdurs 3oeiiqng
mqu.NN%m.NNWW.NNW‘H‘mmW:.lﬁ<%h~ mM m.th UCOZN W&< U<Q .mm%m ﬁﬂNU mmﬂm uUNkun—Jm
$OUY €1 vee | JuoN ©r 181y Ova ‘GS$H 11BD GeH [" (p1oY) 21038
66$1°22$A ‘NDIS'22$T LYUDS
‘22N Z2$V I SEVD ‘2Z$H ‘sEV ‘L V$Ed 89 PregIL f T auoN * 181y Dva ‘1¥0SD 11edD LYosSD | Tt 3001 3aenbg
SOD '22$S°SS$T ' ZZ$N ‘NIS
‘22$V '22$A ‘2241 '22$H ‘IXA ‘L v$d [LoLyoLt) duoN ctr18ay Dva NISD UED | T UNISD |ttt Do aurg
GS$ASSEN 'SS$ T SHVI ‘GS$H ‘L VS 184 1weog | JuoN ©t 1 8ay ova ‘1e$d ued | s | 1amod 12333jur 03 astEy
SS$T2Z$H 'ZTEN 'Z2TSSH sz ggbe | T duoN T 181w OVA 'SEN TIED | T T GGEN | e a1e8aN
‘juawn8aie
SS$T ZTSH ‘2SN ‘224 T 'SSSH ‘1S 2€ =52 2 O E QueN Tz 81y DVAZSSN IBD | T T T 2SS uotstoaxd-ai3urs £q Al dnnw
(153 SraA 2 .
‘22$S 22$H ‘22$N ‘22$ T GSH L VSd 79 zrrgLz | auoN T2 Bav Oova 'SSEIW UIBD | T TGSEIN | T Tttt Adunw
SS$T'ZNVIY
‘DOTV '22$V '22$H '2Z$W 225 T L VS s 18Lye | T auoN “(D)DOTD=D| " 181y Dvd ‘DOTID l1ED DOTD ' 2 aseq ‘wiyjrrefor
$DuV e A swon | < eT 351 - 181V OVA o4 TeD | "t Geg | e peoT
SS$TNIS
‘ZZ$IN SOV ‘2Z$H ‘A XM ‘L V$d k44 9 'gskpr| T T BUON | * 7 (D)MXAD=D| T 181y DvVa ‘dXAD IED| T dXdAD | T 2 aseq ‘Tenjusuodxy
66$T'22%H ‘225 ‘223 T GS$H ‘L vEd o€ g8'6Le2 | T QUON | Tttt M/D=0| """ z 81y ova ‘zssa meD | coessal Juswn8ae
ot uorstoaid-a18urs £q apralg
6687T'22$5'228A ‘2%
‘ZZSH ‘Z7SN ‘22$7T ‘SSSH 1vEd L8 0°L¥09 | T QUON | " "ttt D/D°D z 8ay ova ‘ssga meD |t ss$a apIalg
NISD ‘6SSH ‘SSSV ‘G6$ T Lv$d Pl z-L9081) suoN (2)S00D2=0| * " " 131y OVa ‘SODD 1BD| ~ ° * "SODD autson
22$1°6S$T 6 676L suoN “(D)DVWIV=¥| " ° 181V OVA '‘DOVIWIV 1D | ~ ° "DVWIV | "1821 03 11ed Areurfewr 1134u0)
SSST 2SN ‘ZZSH ‘228 T LS 0¢ EA X/ S R auoN “(D)DINOD=D| """ 181y DVa ‘CNOD TED| " "OINOD | """ " - "~ a1ednfuon
6GST22$H ‘2261 GSSH ‘1 vEd 02 0o'gog | auoN T y+D=D | 2 81y OvVa ‘ze$v 1eD | © °° C zs$v | “Iudwndae uorsdaxd-a13urs ppy
GS$T Z2SH 228V ‘22T SSSH (L vSd 13 8618 | SuoN © T D+D=D 281y OVA ‘SS$V UED | T TGy | e PPV
L¥OS‘ 22V '2ZSH ‘2SN ‘2281 1LV Lz 1°9262 |~ SUoN | Tt (D)sdvD=d| T 184y Ova ‘SAvVO MED| T TSAVD | ottt anjea aIn{osqy
"xwdeoU
pasn sauunoy I13yio (1eutroa)| (oosrti) sioxay QpoIN souanbag Aurr e aunnoy uortjdoun g
sdeiolg Jurwiry

saurinoy [BOI3BWIYIBIN

“1-L 219eL

7-3

‘Atuo uonydo apratp/Aduinw yitm sajeradQu

juawin8ae
99$W ‘I TIA ‘99$H 'Lv$d 21 FA4:1:13 O R * auoN Tz 3av Dva ‘Z9$W 11ED BEALIA uorsroaad-ardurs Aq Adurnpy
99$T'99$H "‘99$N ‘$DYUV €55 01801 |~ ERECIF S o) Z 31y OvVa ‘99$W 11eDd TTT99gy [e Adurnw
99$S*99$H ‘9941 9¢ PoreLl |t 2UON | ‘Za‘1A) INING=d | " v 81y Ova ‘ININQ 11eD | " " " ININg | * """ 7 e AN[RA WNWITUTN
(ua
99$S *99$H ‘99T 3 PrO6LT |ttt . wcoz ‘20 I IXYNG=A | " "u 81y OVA " IXVINA T1eD | " " "IXvING | © "ttt anjes wWnWITXxep
‘Juswindaie
998 ‘2D01A ‘L ¥$d 01 192561 oxaz 1o aanedan | (@)o1DOTA=A | * 181y Ova ‘01D071d 11ED 01DOTA | """ " 01 2seq ‘wyitxedor
99$V ‘998A ‘08$Z ‘99$S ‘99$H ‘juswndae
‘91$D 188D " HAST ‘99$T ' 99$N ‘L v$I €8 0°L2¢%1 019z 10 aanedaN | * * (d)2DOTA=A | * * 184y Dya ‘ZDOTA MED | ' DOTA| CCCCCCt t z aseq ‘wipiraeSor
99$V ‘99$a
‘08$Z ‘99$S99$H ‘9 1$D° 18$D ‘judwnidre
‘IS 99$T'99$I 'ZDOTA ‘LA 6 2722551 o013z 10 aspedaN | * ' (d)DOTA=A | * * "1 8iv OVA 'DOTA 1D Tootalf ‘9 eseq ‘wipyrredor
$ouY - PP P S RUON [@e@ |ttt 1BV OVA ‘99§ T TIES | 1 99§ | - L peo
188V '99$Q 99$S ‘99$T99$ v
‘99N 91$D 198D 99$H ‘99N ‘L v €01 €IPpLL| PUON | * © " (@)XAA=A | " " 181v Ova ‘dXAQ TeD | T dxaa| ot © 0 aseq .R:i:mﬁ_xu
‘juawndae
99$d ‘99$1 A TLA ‘99$H ‘1 VA 91 [0 5274 2 PUON | * " " "t /a=a | © " " 'z fav ova ‘z9sa uwen | Tt z9sa uorsaud-s(durs £q aprarg
99$7T ‘99$H ‘HASA ‘99$N ‘$D UV €69 0°259% | ToomopIaAQ |ttt @/a=a |t 'z 8av ova ‘99$a med |t 99§ | - Crre ap1atq
NISA ‘99$H ‘99$V ‘99$1 Lv$d A 97GBEFI| T T T T T T T AUON | T (@)SODA=A | T 18aAV OVA ‘SODA TMED | T T TSODA | Tttt aurson
‘(103enWNdO® opnasd wouay)
JuoN S L9 U RuoN |t (@)e9$o=d |t "1 21y ova ‘z9$D 1D | Tt 29%D uoisto01d-a18urs 03 119.1u0D
12$D°29$D k4 8897 co BUON | " (@)19$D=1 | * " "1 81y DVaA ‘19$D 1ED | 9o 12393ut 03 1124U0D
QuOoN 8 L SR QUON [" ° " " AQ:meuu © 1 8ay ovg ‘18$D 118D 186D | ° ° * 19832jur 03 1uouodxa 110 \uo
auoN 11 90T frrrrmrre uoN |t (a)ossz:a | C C "1 84v Dva ‘08%7Z 11eD Trossz| (Juduodxa ‘ocaaz) 1ea()
99$v ‘99$s
‘'NVLVA ' d3$d ‘99$H ‘9941 ‘Lv$a 9g gr19zez - c 0=& | "(Q'AINVIVA=A | "z 31V DVA ‘ZNVIVA [BD | " "gNVIva | """t A/x qualueyory
NOISA ‘99$W ‘99$A ‘99% v
‘99%7 ‘18$D '99%H ‘SEVA ‘L v$a PEL 9'8LLBT| " QUON (@INVIVa=a | 181y Ovad ‘NVIVA 11eDd | * " 'NvLlvda| - ° * ourea atdpured Qualueisay
dI$d 6 8°82 . MOTFIIAQ | * "t (1) 1ggv=a | * * " 'z 31y Dva ‘18¢v MeD | - 18§y |~ * " * "jusuodxa o3 133d3ur ppy
998V ‘HTAA ‘99$H ‘L VA Z1 8°€59 |- TTrtAuoN f ittt d+a=a | " 'z 91y ova ‘79$v 1ed © " Z29$v | "juswndie uorstoaxd-ai3urs ppy
99$T'998H "UASI ‘99$N ‘$DUY €55 9rsve | MO[JL3A0 C o a+a-a ©r oz 8av Dva 99V 1en AL 2 4 " PPV
99$N ‘99$T ' Lv$a 11 8€LT : TUrr U teuoN |ttt (adsava=ad | ot 181y ova ‘sdvd 11eD TrUtsdvay vttt Tt onfea anjosqy
‘jutod-3urjeor g
suoN 21 S 1l Tttt suoN c{alsomi=a | "1 8iv OVa ‘SOMI 11ED! T 'soml C ottt juawatdwod somp
cr ot gz snid 1es
auoN 82 03 UIMIAI IMO(JI2AQ | " " ° ‘Ta@-a=a |t zBavova ‘ansa nen| Cccodnsal ottt uondeIIqNG
ado¥ ‘HAIQd 'ddvd ‘HAdWNA ‘SOmL 13 R PUON | * * (d)ZXMDBSA=a | * 1 81y Hva ‘zxX¥0sd nen cIxdosal ottt © 7 3001 aaenbgy
ddao¥ ‘AIdd ‘davd ‘AdNd ‘SOML 06 T RUON | (A)IX¥DSA=A | © 1 8Iv Ova ‘1X9OSd 118D TIXMosg| 1001 s1enbg
aavda ‘HXdWa vL T9uON | T (A)ZXNISA=A | T T 1 %1y Ova ‘ZXNISA 11eDd TUZXNISQf ottt cro UG
aava ‘Adna 122 TURUON T (@) IXNISA=A | 181y DVa IXNISA 11'D T UIXNTSA R © T aurg
AuoN L TrUTAuoN | {@@ac¥=a | c 181y 2vd ‘daod 11eD T 'dgoy |t vt 0t Taquinu Areurq dn punoy
(9191ssod
SOML ‘AdIN €02 €ragi $0U MO[IIIAO0) DUON | © * * 1ttt A=A | 7 BV OVA 'HADANA TeD| " HAAWA| © """ Sdump
ottt (91qrissod
AId ‘SOMI ‘AN €22 6LLS JOU MOTFINAO) BUON | * * * * * * * @ud=A 2 54v OVA 'AAWA 1eD| CC AdWda T Coo s Adnpupy
{3uo) used-paxt g
(3uoD - uwotsiderd-nianog
pasn sauincy I1s3y1Q {1 () { 28Tl s1oxay SPOA aouanbag durfien Q2unnoNT uoijoun g o N
ERERCHY ERITEeT)

SRAUIINOY [BOIJBWAYJ RN
(1uon) "1-. 2198

7-4

‘Auo uorydo apratp/Ardunu yrm sojeradOx

7-5

ANOY ‘AId ‘AdW GL 1'geg T suoN |° * * (¥)IXAXTA=¥ |~ 1 31V OVA ‘IXTXH TED Xaxa | 5 aseq ‘Terjusuodxy
SAIQ 08 8022 10s1ATp < PUAPIAIQ |7 T T T g/¥=9 |* """ 281y ova ‘Al@ued [Al@ |t ap1a:d
ZXNIS S 8¢ T suoN | * (¥)ZXSO0D=¥ 1 31y DOVA ‘ZXSOD 118D 2XSoD |ty aurson
1XNIS S FAAS: B suoN | * * (¥)XSOD=Y 1 81y OVd ‘1XSOD 118D IXsoo | "t aurson
aNnoyd €€ 6°9%1 Tt suoN [* " (M)ZXNLIV=¥ |~ 131v OvVd ‘ZXNLV 11D ZXNIV | -t juadueId v
aNoOy ‘AdW 9¢ [VRX=1+] S suoN | " (W)IXNLIV=Y | 183y OVA ‘1XNLIV 11®D IXNLY |~ 7" s juadueiday
:jutod- paxt,
:uotrstoaid-arsulg
‘3sa1j 03 juswW
auoN 12 9'pg |ttt suoN | "(I‘INDISI=I |* ° ° 2 82y Ova ‘NOISI 11D " NOISI -n81e puooas Jo udrs 1dysuel]
TSN ' 11 22 601y "t suoN | ' (I'I)AOW=I |*° " "z 8av Ovd ‘QON TBD | """ " @OW |~ ettt 19purewray
HA$T TI$W ‘$DUY 08 103 2 QUON | Tttt IxxI=1 |° °° "2 31y ova ‘11$d 118D 1omod 138a3ur 03 Is1ey
suoN 61 9'pe T suoN | (21'TI)NIN-TI=T | °° "z 81y Dva ‘WIdI 11BD © Tt 20Ud13FIp 2A1ITSOd
$ouv o1 A R suop |t elol |* - 281y HVG TSN TIED | * IS | AN
(up * v -
H<°-H,W vm 0 hm OCOZ .N— ..—Mvox<2na e u Mh< U<Q .Ovﬁ¢ﬁw>~ .:MU 05~N> ESEmXNE
- uy e
1VOT1d 143 0°9ge Tttt suoN |‘Z1°11)0OXVINV=¥ |~ "u 81y DVA '0XVAV I1¥D O0X VI | 2n1ea uorstoaad-a8urs wnuixey
%Omtw Avm ® mﬁN OCOZ ﬂ\HHHN Wk< U<Q .A—*Q AANU ﬁa%Q JU—>AD
22$N ‘228 14 €962 Tt QuoN | Tttt (Vz1$D=9 | * * ":8av ova ‘z1$D 11eDd 21$D| ° ° - uorstooid-31duts 03 jr0su0D
uotstoaad-ar8urs o3
Z21$D 8 [0 VA A : suoN | * " (1)LVOTI=¥ | " 181y OvA ‘LVOTJ 118D 1VOTd| (pereraudd-NvYLYOJ) 3194U0D
92$D°'21$D S ¢'gLe |ttt duoN |ttt T (N91$o=a| - - ° "1 81y Ova ‘91$D 11®D 91$D| - * ruorstda1d-a1qnop 03 3124U0D
SuoN ¢ Al R . swon |ttt (Dsgvi=I | - ** *1 31V OVa ‘SEVI e e onfea IM[OSTY
"umwouﬁn
99$S°99$V ‘99$N ‘99$T 22 g6t |t suoN | " " ° (Q)LNIA=d 1 81y Dva ‘1NIA T1®D INI| © " §31q [BUOIIDBIY jEIUNIT
*3sI1y 03 judW
99$N ‘99$T1 'LV 12 oter |ttt suoN | * "(a‘a@)NDIsa=a| * © "z 31v Dva ‘NDISA 1ieD NDISa -n31e puosas yo udts B?mﬁa
“juawndre
99$N ‘99$S‘ITHA ‘99$H ‘L V$d [6°ShL suoN | "ttt ¥g-a=a| ‘" "z 8av ova ‘z9$s 11eD uotstoaxd-a18urs 1oRIIqNG
OQWJ .Ooax .@@@Z.WU&.@ €66 8°21¥% moryreAQ| "ttt a-a=a g Mu&« ova _.woww ueo| " 99gy| 12e13qNG
$ouV 1 ot swopg |ttt q=a| - 131y 5va ‘99%H e QORH| Tt (Pow) 23018
18$V ‘99$V '99$A '99$H ‘92$D
‘LYDS‘22$H ‘29$D°99$ T LvEd 44 68019 [ttt suoN | ' ((@)LYOMA=a | * ° 1831V Ova ‘LYDSA 11ED rygosal s jo0x 21enbg
99$S ‘AON ‘99$V ‘99$N
‘91$D 19$D '99$H *99$W ‘998 T LvEd 911 0°6b8ET | T suoN |ttt (QINIs@=a | "~ * 1381y DVA ‘NISQ 1D NISQ| "ottt sutg
99$N ‘99$S‘99$ N
‘LNIC ‘99$H ‘99$a ‘99$1 ' Lv$d 02 1°26s9 |-t swoN| * “(a*a)aowa=a| " 'z 81v Ova ‘@ONd 1ED| T dOWa| C Uttt SvEmEMm
- B *IaMO!
99$H ‘29$N ‘L v$d 91 9rehSbe | T dUON | * Tttt Maxd=d | ° °° "7 81y Ova ‘29$3 med| T 29%d uotstoaxd-agdurs 03 astey
99$N ‘AON ‘99%$3d
‘99$T1'91$D°SAVA ‘99$H ‘L VS 8¢ 6grye | duoN| "ttt ed=d | ©° ° "z 81y Oova ‘19$d 11®D 9% " 1amod 1932jur 03 astey
rxomod
dX3d ‘99$W ‘DOTA ‘99$H ' LV$A 91 vregzye | T E1) R axxa=al - ° 'z 8av ova ‘99¢d med| T 99%3 uots1o21d-aquop 03 asrey
SuoN 1z M R suon |t e (@a@=a| * - 181y DYA ‘99N 1TED| T 99N| it o188
. (juoD) - jutod-3uryeory.
(3uo)n) - uorsidaad-arqnog
pas() saunoy I3Yi0 {irwid3Qg (29sT) ERGESIC PO souanbag 3urrren aunnoy uotjdoun g
23e103g Burwrg, .

SauIINO Y [ed13ewWaYyjeN
(3uoD) "1-L @19el

*Aluo uornydo

opratp/Ardimue Girw soteaadu

TEERE
XIdI'22$S'22$H ‘2231 Lt 98021 |~ PUON |2 T INIWV=Y [* " udiy Dya 'ININV 1IRD | ~ " " " INIW |~ """ ATERSIRUREHEIIEN
(ug ¢ - -
XidI'22$S°228H ‘2281 Lt LUpbRL | SUON ‘ZYTE) ININGET [0 0 w81y Ova CINTW HeD | """ T ININ | © 0 onpes dodoyur W
(uy
XI141°22$S22$H ‘22$1 9% 671021 | PUON 29 TH) IXYNV=Y | "uBay DVA "IXVINV [eD |~ TIXVIN [ONTRA WNWIXBN
Uy -
XI1A1°22$S 22$H ‘22T 9¥ 0°88FT | T PUON | ZHMTINIXVINCEL | T T uBay DVA IXVN TBD | T CIXVIN| T 0 U anfes zafajur winwixey
HA$d '228S | _)
‘2SN LTAW 228V ‘218D ‘$DUY 881 . 0°888¢ | 0> wowniay (4)01D0TV=Y 171y DVA ‘01DOTY Ued | """ ™DOTV |~ " 01 2s®eq ‘wyjraedo
gAa$4‘228S
‘TSN LTANW 22V TI$SD '$D YUY 881 7UE88E |t 0> wownday [T (M)DOTVEY |7 181y HVA ‘DOTV 11BD | T DOV . © 0t e eseq ‘wyitiedory
$OUV 8 887 | SQUON |1ttt =y CCor Ay ova ‘zedT ued | ot 2ed Tttt peoT
22$0 ‘Z2$H ‘TZ$V ‘A X ‘2281 €3 GTLBEG | ottt SUON | "7 T (M)HNVI=Y | 134y OVA ‘HNVL 11®D| *° ° "HNVL . * *1uaduey drjoqradAy
MOTJIIPUN/MO[JIIAO
dHSA ‘228U juauodxa ‘juaw
228V ‘2288 TTIN (2SN SO YUY 02 ¢ L'R6EF | -uBie pazrewrouun |t (M)AXA=Y |00 134y Ova AXI UES| AXA| 2 oseq ‘[enuauodxy
"I0STATP
: At
AT UASH “AdINY 'SDEY (2SN s6z 1201 049z ‘mojIiaaQ | T CoAd/¥d=Y |0 7 Bay ovd ‘zesa e . Tt apag
dHSq 228V ‘228N +Z “ Srgee ot Gl < a82qur | * 7 (M)128D=I | ° T 1 84y Ova ‘12$D 11D . £3391UT 0] 1I3AU0 D
auoN 8 A2 S T RUON | (W)92$D0=a | T T "1 Py Ova ‘92$D 11'D © 1 92$D | * 7 "uorsrooid-aquop 03 1194U0D
XTdIND ‘2Z$H 6 prree o suoN (4)62$0=0 | " ' "1 84y OvQ ‘sz$D 11BD | G2$D | 7 " mewrog x2(dwod 03 113au0)
CESTTISH ‘225 T LVSd €2 0867 | T duoN | (Y Y)XTIWD=D | 'z 81v Dva ‘XTdWD 118D XIdWS | ©° " 7" xardwod o :Rw:@éou
e &2 ajur o3
Aﬁ:rﬁzﬂﬁ:”a ._ m.~<< o2Va 112AU0D puU® S31q ANCO.:U.NM‘«
12$0'22$1 8 8°€62 T * ot duoeN | 20 Y=l (¥)XIdI=T ‘LNIAI 10 LNI‘XI4I 11eD | * X141 21EOUNI) 10 12337 0F 1194U0D
‘uotrsioaxd-arqnop o3
9280 '22$T LVEd 6 9°%51 tooe QuoN | © 1 (W)adda=a | " 184y Dva ‘dT9d 112D AT | (PAIRIduad-NYULYOL) 1134000
7789275V 'ZZSIN ‘22N '22$a ‘$DUY 822 0" Lb9¢ | T o SUON | * (M'Y)ZNVLIV=d | * 2 81y OVA ‘ZNVLIV 1®D x/A& ‘quodueiday
2245225V ‘228N ‘22$N 1228 “$ONY 822 grgeez | SUON | * " (MINVLIV=Y | " 181V OVA ‘NVIV 118D ° a3ueday
MA$A ‘22N SO UV $81 1'ggz MOTFIRAQ | T U+H=¥ | ° 7 31y Ovd ‘72$V 118D g CPPY
T2SN 2231 6 g'gg | BUON | Tt (M)sdv=d | "~ 181y OVQ ‘Ssdv 11en | " " " sdv | " anes nosqy
;juted -8urjeor g
suoN 09 686 | auoN (9)7X40s=Y 194y DVA ‘ZX¥OS TTeD| * " " gX¥Os| " 1002 axenbgy
AId AdIN 19 RIGLY | T AUON | 7T (M) IXHDS=Y 181y DVA * IX¥DS 118D T 1001 aaenbg
auoN ST (O A QUON | © " " (Y)ZXNIS=Y | * " 124y OVA ‘ZXNISTI®D| ~ " " "ZXNIS| ~ " """ e auIGs:
AW 0¢ Y508 T PUON | * " " (MY IXNIS=Y | * " 182y OVA "IXNISTIBD | * " " "IXNIS| “ """ " ourg
AUON 9 L9 | A CCteuoN | Ut T (M)ANO¥=Y | U U1 84y HVA ‘aNOY 118D ‘anoyg | Zsqunu Lieuiq dn punoy
‘a1qissod
SAdIN pL %G1 JOU MO[FIAA0) SUON | * T Tttt ¥x¥=d | * 'z 84y OVA AW 1T®D CAAN| Adarmp
JuoN ve 509 | Shudwniie < g (9)zxzD1=4 | ** 151y Dva ‘eXzOT Ued ZXEOT| 7 oseq ‘uigiriedor,
AdW Al LS 9°82L I <wswnBre < g |t (4)1XZDTY 134y DVa 1XZOT ') [5:445]s & E z 9s®q ‘ungitiefon
aNOY '7X7D'1 65 YITLL B wawndan <2/ (M)ZXADTEY | 1By Ova TXADT (TR0 CXADT| > oseq uitaedorTy
ANOY ‘AN INEDT 09 27166 azauswniae < /1| T (9)IXADT=d 183y DV CIXUDT 17D IXADT 2 oseq ‘wifiraedory
1w
aNou 9% ¥L8 150 CooMlzvexdod Ay Dyd 7XIXd [1eD IXTXA| ¢ 2seq ‘ieniuauodxyy:
wndae
ATQarOd AdW 8 0618 10 3A1Ts9d | © 7 7 (¥)IXZXKA= 183y OVU IXTXH (1D CAXeX@l| ot © 7 aseq ‘rErusuodxgy
anod €L 011 QUON | ** * (M)ZXAXA=" | 1 3y Ova IXIAXA 1UeD IXAXA| 5 9s®g ‘TRUUIUODXT:
(quoD) - jutod-poxrg
(3u0D - uotsIdaId-o]3uUlg
pas(y saunnoy 12430 (1ewda() sIoxdg AP acusnbag 3urren sunnoy uorjdoun g
o8e10jg Surwir

S8UIIN0OY [BI1JBRWAYIRN
(woD) "1-L 319el

7-6

*Aruo uonydo apiatp/Ardnow ym sazeradox

auoN o1 9°8 ceeece et JuON o .. .AﬁvNNWZHm ceter w.—< sva .NN%Z meo |- NNWZ .. .o . uCQEU.—n_EOU som]
22$S‘22$V ‘22N ‘22$T ve 8°1€§ e suoN | - (WINIV=¥ | " 18iv Ova ‘INIVTIED | " " LNIV| ~ "'~ "s31q [euordeay 3jeduniy
*38113 03 JUdW
ZZ$N‘22$ 1| - o2 ot | ot ccctcauoN | C(W'YINDIS=¥ | ‘'z 81y Dva ‘NDISTED | " ° NDIS -n81e puodas yo udrs 1aysuell
WA ‘22$N ‘$D UV $81 6192 . *** MOJIZAQ s g-gmg |tttz 8ay OVa ‘zegsTED |t vt zegv| e -+ ppenqng
wom< €1 9gg | e suoN eyt w.~< ova .NNGm 1en e NN%.: e e e e s .:w.—O-uv 1035
HI$T ‘22$V 22$A ‘$AIA ‘$DUY 11 9°6¥G1 s juewn3re aapgeSoN | - .vaimcwum * 181y ova .pmcmwsno MR A (o] R j001 arenbg
*(9) s0D=¥ ‘1 81y
22$V '22$S ‘TSN ‘22N .nwm< ov1 6°2ppy | ° " suoN 10 (YINIS=¥ ova (soD 10) NISTIeD | © SOD ‘NIS| “ """~ °** ° sursop ‘surg
28V
‘ZZ$N ‘2Z$ ' LNIV ‘22$a ‘22$1 ve 8°60€2 Tttt oluoN (4 '9)aonv=d| "z 81v OVA '‘QONV TIED | """ AOWV| " """ """ " """ uovE«wa
. I3 MO!
dXJ ‘2Z$W ‘DOTV ‘$D UV 62 9°22513 s JuoN tCtt dsx¥=¥| 'z 8av Ovda ‘zzsa ued | C C C C 2esd uotstoe1d-o18urs 03 astey
NN%Q.NNWS.WO&Q Ly 2 66¥ 28 cauoN | vttt Texd=¥ | " " ‘2 mh< ova .uN%ﬂ meo | -t —NWW « e+ 13mod hmwm.uﬂm 03 astey
dX3da xamod
'99$I ‘DOTG ‘99$H ‘92$D ‘L VA L1 pog9TpeE | vttt suoN | v d#x¥=a | * *° 'z 81v DvVA ‘92$FA 11eD| © ° 9z$d uo1sroa1d-aiqnop 03 asrey
22$s'2e$1 [9°L62 cctcrccccccsuoN |t (WY)WIA=¥| v g B3Iy Oova ‘miamed |ttt wial "ttt 9duaI3xTp A13ISOd
AIQ “¥d$T ‘AdWY ‘$DUV ‘ZZ$N 662 8 LEY R V-1 ¢ 570 B IR Ux¥=¥| " z33vova ‘zz$Wwmed| - zedwW| c RS Gl L 1
(3u0n) - jutod-Burgeo]
(3u0)) - uorsidaad-ardurg
QOOD sadunoy I?3Y430 AuﬂEmUUQv Auwniv sJO0Ixj IponN 0050570% Uﬂwz@nv Oﬂmun.o& uorjdoun g
a8e103g Surwary,

sauIInNo Yy 1ed1jewrayjieNy

(Juoy) °1-L @219el

7-7

SECTION VIII
INPUT/OUTPUT LIBRARY

All routines in the DDP-516 Input/Output Library are described in this section.
The purpose, storage requirements, and use (or calling sequence) is given for each
routine. '"Method', "Errors', and "Other Routines Used'' are also included as applicable.

Standard I/O library mnemonics consist of four characters as follows.

a. The first character is generally either an I (for input) or an O (for output).
b. The second character (dollar sign) identifies the routine as a library routine.

c. The third character designafes the device

A ASR-33/ASR-35
C Card reader or card punch
P Paper tape reader or paper tape punch

M Magnetic tape transport

d. The fourth character specifies the mode or function

A ASCII
Binary
E Eject (or end of file)
H Heading
I Initialize -
P Punch
S End of message
F File

The magnetic tape control and conversion mnemonics are an exception to the general rule

for standard I/O library routines and are designated as follows.

CONTROL CONVERSION
C$MR Rewind . Cc$6TO08 IBM to ASCII
C$BR Backspace record C$8TO06 ASCII to IBM -
C$BF Backspace file M$UNIT Physical to logical

C$FR Forward record
C$FF Forward file

Routines that are FORTRAN IV links are identified by F$ as the first two characters of

the mnemonic.

FORTRAN IV INPUT/OUTPUT SUPERVISOR (F4-10S)

Purpose
¥F4-108 scervices all I/C requirements of the FORTRAN IV compiler. ‘The comprler
makes use of five entry points to F4-10S as follows. ‘
F4$INT Initialization
F43IN Input
r4$0UT Binary output

F4$SYM Symbolic output
F4$END Compilation complete

This program will operate on a standard DDP-516 with a minimumn of 8K storage.
2 P g

Storage Requirements

¥4-I0S requires 35910(5478) locations. Locations 100-113 arce also initialized for

use by the compiler.

Usage
Refer to the program listing, 3C Doc. No. 180016000 Rev. A, in the FORTRAN IV

compiler manual for complete instructions on use.
INPUT/OUTPUT SUPERVISOR (I10S-16B8)

Purpose

I0S-16B performs the necessary supervision and control of DAP-16 assembler
inpui/ouiput device requirements. I0OS-16B consists of 15 entrics that are used by the
DAP asscmibler, as required. Each entry returns control to the assembler when its

function has been accomplished.

Storage Requirements

10S-16B requires 74:71 13538) locations.

ol

Usage

Refer to program listing, 3C Doc. No. 130329000 Rev. A for complete details on

operation and usage.

8-2

FORTRAN IV SCANNER AND CONVERSIONS ROUTINE (F$10)

Purpose

F$IO accommodates the proper input/output device to accomplish the appropriate
input/output conversion, as required, and to control the filling and emptying of the input/
output buffer. This routine contains the argument transfer subroutine (F$AR), and the
buffer closeout subroutine (F$CB). .

Storage Requirements

F$IO requires 125510(23478) locations.

Usage

Refer to program listing, 3C Doc. No. 182618000 Rev. A, for complete instructions

on use.

Other Routines Called

F$ER
ASR-33 TYPEWRITER INPUT DRIVER (F$R1)

Pui‘Eose

F$R1 provides linkage between the FORTRAN calling program and the I/O control
subroutine (F$IO) and provides the driving logic needed to input on the typewriter keyboard
by calling I$AA.

Storage Requirements

F$R1 requires 1010(128) locations.

Calling Sequence

CALL F$RI1

DAC N (location of descriptor list given by FORTRAN format
statement) ‘

Method

Refer»to program listing, 3C Doc. No. 182610000 Rev. A, for details on the
method used.

Other Routines Called

F$10, I$AA

8-3

ASR-33 TYPEWRITER OUTPUT DRIVER (F$W1)

Purpose

F$W1 provides linkage between the FORTRAN calling program and the I/O control
subroutine (F$I0). It also provides the driving logic needed to output on the ASR-33 type-
writer by calling OAC, OAP, and O$AF.

Storage Requirements

F$WI1 requires 61, (75.) locations.

10078

Callirg Sequence

CALL F$wl

DAC N (location of format descriptor list given by
FORTRAN format statement)

Method

Refer to program listing, 3C Doc. No. 182611000, Rev. A, for details on method

used.

Other Routines Called

F$I0, OSAC, OSAP, OS$AF
PAPER TAPE READER INPUT DRIVER (F$R2)

Purpose

F§R2 provides linkage between the FORTRAN calling program and the I/O control
subroutine (F'$10) and the driving logic needed to input from the paper tape reader by
calling I$PA.

Storage Requirements

ER2 requires 10 (128) locations.

10

Calling Sequence

CALL F$R2

DAC N (Location of the descriptor list given by FORTRAN format
statement, or 00000 if input is in binary format)

(Return)

Method

Refer to program listing, 3C Doc. No. 182612000 Rev. A, for details on method

used.

Other Routines Called

F$IO and I$PA.
PAPER TAPE PUNCH OUTPUT DRIVER (F$W2)

Purpose

F$W2 provides linkage between the FORTRAN calling program and the I/O control
subroutine (F$IO) and the driving logic needed to output on the paper tape punch by calling
OPF, OPC, and O$PP. \

Storage Requirements

This routine requires 4610(568) locations.

Calling Sequence

CALL F$w2

DAC N (Location of descriptor list given by FORTRAN format
statement, or 00000 if output mode is binary)

(Return)

Method

Refer to program listing, 3C Doc. No. 182613000 Rev. A, for details on method used.

Other Routines Called

F$10, O$PF, O$PC, and O$PP.
CARD READER INPUT DRIVER (F$R3)

Purpose

F$R3 provides linkage between the FORTRAN calling program and the I/O control
subroutine (F$IO) and the driving logic needed to input from the card reader by calling
I1$CA or I$CB.

Storage Requirements

F$R3 requires 1010(128)' locations.

used.

Calling S«wquence
5 i

CALL F$R3

DAC N (Location of descriptor list given by FORTRAN formaf‘
statement, or 00000 if input is in binary format)

2

(Return)

Method

Refer to the program listing, 3C Doc. No. 182614000 Rev. A, for details on method

Errors

Ca~d reader error.

Other Routines Called

F$IO, I1SCA

FORTRAN MAGNETIC TAPE INPUT DRIVER (F$R5-9)

PurEose

F$R5-9 controls reading of magnetic tape by connecting the FORTRAN calling program

with the I/O control routine (F$I0) and the standard magnetic tape read subroutines.

used.

Storage Requirements

F$R5-9 requires 81 121.) locations.

10(<)

Cailling Sequence

CALIL F$Rx (Where x=5, 6, 7, 8, or 9)

DAC N (Location of description list given by FORTRAN format
statement or 00000 if output mode is binary.)

Method

Rzfer to the program listing, 3C Doc. No. 180306000 Rev. A for details on method

FORTRAN MAGNETIC TAPE OUTPUT DRIVER (F$W5-9)

Purpose

F$W5-9 controls writing of magnetic tape by connecting the FORTRAN calling pro-

gram with the I/O control routine (F$I0O) and the standard magnetic tape write subroutines.

8-6

—

Storage Requirements

F$W5-9 requires 5810(728) locations.

Calling Sequence

CALL F$wx (Where x 5, 6, 7, 8, or 9)

DAC N (Location of descriptor list given by FORTRAN format
statement, or 00000 if output mode is binary.)

Method

Refer to the program listing, 3C Doc. No. 180307000 Rev. A, for details on method

used.

CONVERT IBM TAPE CODE TO ASCII (C$6T08)

Purpose

C$6TO08 converts standard magnetic tape code to ASCII. The data buffer is assumed
to initially contain data in IBM tape code, stored two characters per word in bit positions
1-6 and 7-12 (data in bits 13-16 is ignored). After conversion, the contents of the buffer
is replaced on a character-by-charactebr basis. The character originally occupying bit
positions 1-6 of a word will occupy bit positions 1-8 of the same word. The character

originally occupying bit positions 7-12 will occupy bit positions 9- 16.

Storage Requirements

C$6T08 requires 6310(778) locations

Calling Sequence

CALL C$6TO08
DAC (Buffer address)
DEC (Number of words in buffer)

Method

Refer to the program listing, 3C Doc. No. 180091000, Rev C for details on the

method used,

CONVERT ASCII TO IBM TAPE CODE (C$8T06)
Purpose

C$8TO06 converts ASCII to standard magnetic tape code. The data buffer is
assumed to initially contain ASCII data stored in bits 1-8 and 9-16, After conversion, the
contents of the buffer is replaced on a character-by-character basis, The character
originally occupying bit positions 1-8 of a word will, after conversion, occupy bit positions
1-6 of the same word. The character originally occupying bit positions 9-16 will occupy

bit positions 7-12, Bit positions 13-16 of each word will be set to zero.

8-7

Storage Requirements

C$8TO06 requires 6410(1008) locations.

Calling Sequence

CALL C$8TO06
DAC (Buffer address)
DEC (Number of words in buffer)

Method

Refer to the program listing, 3C Doc. No. 180082000 Rev B for details on method

used.
VARIABLE INPUT DRIVER SELECTION (F$RN)

Purpose

F$RN controls the input devices for variable input device numbers. The value of
the input device number is checked for correct limits and then used to determine the

entry position of a jump table. The jump table transfers to the proper F$R - subroutine.

Storage Requirements

I'SRN requires 3110(378) locations.

Calling Sequence

LDA D (location of device number)
CALL F$RN v . v
DAC N (location of descriptor list given by FORTRAN statement,
or 00000 if format is binary)
(Return)
Errors

d< 1, or d > 9. Characters IO will be typed. Computer will stop. To continue,

entcr acceptable value in Register A and press START pushbutton.

Other Routines Called

¥F$R1 through 3, and F$R5 through 9.

——

VARIABLE OUTPUT DRIVER SELECTION (F.$WN)

Purpose

F$WN controls the output drivers for variable output device numbers. The value
of the output device number is checked for correct limits and then used to determine the

entry position of a jump table. The jump table transfers to the proper F$W - subroutine.

Storage Requirements

F$WN requires 2710(338) locations

Calling Sequence

LDA D . (location of device number)
CALL F$WN
DAC N (location of descriptor list given by FORTRAN format

statement, or 00000 if format is binary)

Errors

d< 1, or d>9. Characters IO will be typed. Computer will stop. To continue,
enter an acceptable value into Register A and depress the START pushbutton.

Other Routines Called

F$R1 through 9.
ASR-33 TAPE READER, ASCII (IAA, IAI)

Purpose

I$AA reads ASCII paper tape, using the ASR-33 paper tape reader. If I$AA is not
initialized by I$AI, it will assume that the input buffer is 40 words long and that there
are three tab settings corresponding to character positions 6, 12, and 30 (DAP 516 source

format).

Storage Requirements

I$AA requires 12710(1778) locations.

8-9

Calling Sequence

CALL I$AI
Initialization - DEC {number of words in input buffer)
DEC (number of tabs in following table, if any)
DEC TAB (1)
DEC TAB (2)

DEC | TAB (n)
(Normal return)
Read data - CALL I$AA
DAC .'(Data. buffer address)
(end of message return)

(Normal return)

Method

Refer to the program listing, 3C Doc. No. 189001000, Rev C, for details on the

method used.
ASR-3% TAPE READER, BINARY (IAB, IABI)

Purpose

I$AB reads binary paper tape by using the ASR-33 paper tape reader. This routine
is initialized by using the I$ARI entry. The address 'of the 60-word buffer into which the

bivary data will be read appears in the variable field following the CALL pseudo-operation.

Storage Requirements

ISAB requires 12110(1718) locations,

Calling Sequence

Initialization - CALL I$ABI
DAC (Data)
(End of message return))
(Normal return)
Read data - CALL 1$AB
DAC (Data)
(End of message return)

{Normal return)

Errors

Oversize input record. Computer will halt. Check input tape for correct control

S

characters between records. Press START pushbutton to take normal return.

Method

Refer to the program listing, 3C Doc. No. 189002000, Rev. B, for details on the

method used.
ASR-33 TYPEWRITER CONTROL PACKAGE (OAP, OAC, O$AF)

Purpose

This routine perforfns one of three ASR-33 control functions depending on which

entry is used. The entry mnemonics and corresponding control functions are as follows.

O$AP Type a line
O$AC Carriage return
o O$AF Advance to next line

Storage Requirements

This routine requires 5410(668) locations,

Calling Sequence

(1) CALL O$AP
DAC ARGI (Where ARG is the location of the buffer
to be typed out)
(2) CALL O$AC
(3) CALL O$AF
Method

Refer to the program listing, 3C Doc. No. 180255000, Rev. A for details on

method used.
ASR-33 TYPEWRITER - LISTING AND HEADING ROUTINES (O$LL, ‘O$HH)

Purpose

These routines type out listings on the ASR-33 typewriter. O$LL is called to type
a line of data, and O$HH is called to type out a heading. This routine backscans each

buffer to edit trailing blanks. Refer to Doc. No. 180774000 Rev B for a program listing.

8-11

Storage Requirements

O$LL and O$HH require 14710(2238) locations.

Calling Sequence

Listing CALL
DAC

Heading CALL
DAC

(Normal return)

(Data Line Address)

{Normal return)

(Head Heading Addres s)

ASR-33 TAPE PUNCH, ASCII (OAA, OAI, OAS, OALDR)

Purpose

O$AA punches ASCII paper tape using the ASR-33 paper tape punch. This routine
will assume, if not initialized by O$AI, that the data buffer is 40 words long and that there

are three tab positions corresponding to character positions 6, 12, and 30 (DAP-516

source format). The O$AS entry is used to punch end of message, and the O$ALDR entry

is used to punch 10 inches of blank tape.

Storage Requirements

These routines require 12110(1718) locations.

Calling Sequence

O$AI

(Number of words in data buffer)
(Number of tabs in following table, if any)
TAB (1)

TAB (2)

TAB (n)

(Normal return)

O$AA
(Data buffer address)

(Normal return)

Initialization - CALL
DEC
DEC
DEC
DEC
DEC
Data - CALL
" DAC
End of
message - CALL
Lzader - CALL

O$AS
O$ALDR

Method

Refer to program listing, 3C Doc No. 189003000, Rev C for details on method used.
ASR-33 TAPE PUNCH, BINARY (OAB, OAS)

Purpose

O$AB punches binary paper tape using the ASR-33 paper tape punch, The O$AS

entry is used to punch end of message.

Storage Requirements

O$AB requires 8710(1278) locations.

Calling Sequence

Punch Data - CALL O$AB
DAC (Data)
(Normal return)

End of

message - CALL O$AS

(Normal return)

Refer to program listing, 3C Doc. No. 189004000, Rev B for complete details on use.
PAPER TAPE READER, ASCII (IPA, IPI)

Purpose

I$PA reads paper tape in ASCII format by using the high-speed paper tape reader.
The I$PI entry is used for initialization. If not initialized, the read routine will assume
that the input buffer is 40 words long and that there are three tab settings corresponding

to character positions 6, 12, and 30 (DAP-516 source format).

Storage Requirements

I$PA and I$PI require 1171‘0(1658) locations.

Calling Sequence

Initialization - CALL I$PL
DEC (Number of words in input buffer)
DEC (Number of tabs in following table, if any)
DEC TAB (1)
DEC TAB (2)

8-13

DEC TAB (n)
(Normal return)
Read Data - CALL I$PA
DAC (Data buffer address)
{(End of message return)

(Normal return)

P

sier to program listing, 3C Doc. No. 189006000, Rev D for complete information

on use.
FAPER TAPE READER, BINARY (IPB, IPI)

Purpose

I$PD reads paper tape in binary format by using the high-speed paper tape reader.
The I$PI ontry is used for initialization. The address of the 60-word buffer into which
the binacy information will be read appears in the variable field following the CALL

pseudo-cperation.

Storage Requirements

I5PB requires 10910(1558) locations.

Initialization . CALL I$PI
DAC (Data)
(End of message return)
(Normal return)
Data read - CALL I$PB
DAC (Binary data address)
(End of message return)

(Normal return)

Errors

Oversize input record. Computer will halt. Check input tape for correct control

characters between records. Press START pushbutton to take normal return.

Method

Refer to the program listing, 3C Doc. No. 189007000, Rev B for details on the

method used,

PAPER TAPE PUNCH CONTROL PACKAGE (OPP, OPC, O$PF)

Purpose

These routines perform one of three paper tape punch control functions depending
on which entry is used. The entry mnemonics and corresponding control functions are

as follows.

O$PP Punch a line
O$PG Punch carriage return
O$PF Advance to next line

Storage Requirements

These routines require 5110(638) locations.

Calling Sequence

CALL O$PP

DAC ARG! (Where ARG is the location of
the buffer to be punched out)

CALL Oo$PC

CALL O$PF

Method

Refer to the program listing, 3C Doc. No. 180257000 Rev. A, for details on the

method used.
PAPER TAPE PUNCH, ASCII (OPA, OPI, OPS, OPLDR)

Purpose

O$PA punches paper tape in ASCII format by using the high-speed paper tape punch.
The package also has provisions for initialization (O$PI), punching end of record (O$PS),
and punching leader (O$ PLDR), depending on which entry is used. If not initialized, the
punch routine will assume that the data buffer is 40 words long and that there are three

tab settings corresponding to character positions 6, 12, and 30 (DAP-516 source format).

Storage Requirements

These routines require 12010(170'8) locations.

Calling Sequences

Data - CALL O$PA
DAC (Data buffer address)

(Normal return)

Initialization - CALL O$PI
DEC (Number of words in data register)
DEC (Number of tabs in following table, if any)
DEC TAB (1)
DEC TAB (2)
DEC TAB (n)

(Normal return)
End of record - CALL O$PS
Leader - CALL O$PLDR
Refer to the program listing, 3C Doc. No. 189008000 Rev. C for complete details

on use.
PAPER TAPE PUNCH, BINARY (OPB, OPS)

Purpose

O$PB punches paper tape in binary format using the high-speed paper tape punch.

This package also has provisions for punching end of message by using the O$PS entry.

Storage Requirements

O$PB requires 8810(1308) locations.

Calling Sequence

Data - CALL 0$PB
DAC Data (Binary data address)

(Normal return)
End of ressage - CALL O$PS
(Normal return)

Refer to the program listing, 3C Doc. No. 189009000 Rev. B, for complete details

on use.

PAPER TAPE PUNCH - LISTING AND HEADING ROUTINES (OPL, OPH)

Purpose

O$PL punches listings on the paper tape punch. O$PL is called to punch a line of
output, and O$PH is called to punch a heading. This routine backscans each buffer to
edit trailing blanks. Refer to 3C Doc. No. 181479000 for a program listing.

Storage Requirements

O$PL and O$PH require 14110(2158) locations.

Calling Sequence

Listing -CALL - O$PL
DAC Data (Line address)

(Normal return)

Heading - CALL O$PH
DAC Head (Heading address)

(Normal return)
CARD READER, ASCII (I$CA)

Purpose

I$CA reads ASCI (Hollerith) cards using the DDP-516 card reader. One card will
be read on each I$CA entry. The data will be stored two characters per word in a 40-
word data buffer after being converted from the 6-bit code generated by the card reader
to the 8-bit ASCII code,

Storage Requirements

I$CA requires 75,0(113g) locations.

Calling Sequence

CALL I$CA
DAC (Data buffer address)

(End of file return)

(Normal return)

used.

CARD READER, BINARY (I$CB)

used.

Errors

Card rcader empty, jammed, or in manual.,

Method

Refer to the program listing, 3C Doc. No. 189011000 Rev. C, for details on method

Purpose

I$CB reads column binary cards using the DDP-516 and reader.

Storage Requirements

This routine requires 4210(52’8) locations.

Czlling Sequence

CALL 1$CB

DAC (Data address - first word of 6-word block)
(End of file return)

(Normal return)

Errors

Card rcader empty, jammed, or in manual,

Method

Refer to the program listing, 3C Doc. No. 180609000 Rev. B, for dctazils on method

MAGNETIC TAPE READ PACKAGE (IMA, IMB, I$MC)

o

Purpose

To read a miagnetic tape in one of three modes depending on which entry is used.

e entry mnemonics and corresponding read modes are as follows.

I$MA Rcead in RCD mode, 2 characters per word
ISMB Read in binary mode, 2 characters per word

ISMC Read in binary mode, 3 characters per word

Storage Requirements

These routines require 10410(1508) locations.

Calling Sequence

CALL I$Mx ' (where x is A, B, or C)
DAC BUFA (Buffer address)

DEC wC (Word count)

DEC N (Logical type unit)

(Record unreadable return)
(End of tape return)
(End of file return)

(Normal return)

Method

Refer to the program listing, 3C Doc. No. 182604000 Rev. B, for details on the

method used,

Other Routines Called

M$UNIT
MAGNETIC TAPE C_ONTROL PACKAGE (CMR, CFR, CBR, CFF, C$BF)

Purpose

This routine performs one of five magnetic tape control functions, depending on
which entry is used. The entry mnemonics and corresponding control functions are as

follows.,

C$MR - Rewind tape

C$FR - Forward space one record
C$BR - Backspace one record
C$FF - Forward space one file
C$BF - Backspace one file

Storage Requirements

This routine requires 67 10(1038) locations.

Calling Sequence

For CSMR, C$FF, or C$BF -

CALL Céxx (Where xx is MR, FF, or BF)
DEC N (Logical tape unit)

(Normal return)
For C$FR or C$BR -

CALL C$xx (Where xx is FR or BR)
DEC N (Logical tape unit)

(End of file return)

(Normal return)

Method

Refer to the program listing, 3C Doc. No. 182606000 Rev. B, for details on the

method used.

Other Routines Called

M$UNIT
MAGNETIC TAPE WRITE PACKAGE (OMA, OMB, OMC, OME)

Purpose

These routines are used to write a binary tape in one of three modes or to write
an end of file depending on which entry is used. The entry mnemonics and corresponding

write modes are as follows,

O$MA Write in BCD mode, 2 characters per word
O$MB Write in binary mode, 2 characters per word
O$MC Write in binary mode, 3 characters per word

O$ME Write end of file

Storage Requirements

These routines require 10110(1458) locations.

Calling Sequence

For writing a magnetic tape in a BCD or binary mode,

CALL O$Mx (Where x is A, B, or C)
DAC BUFA (Buffer address)
DEC wC (Word count)

(End of tape return)
(Normal return)

For writing an end of file on magnetic tape,

CALL O$ME Call subroutine
DEC N Logical tape unit
Method

Refer to the program listing, 3C Doc. No. 182605000 Rev. B, for details on the

method used.

Other Routines Called

M$UNIT
MAGNETIC TAPE UNIT CONVERSION ROUTINE (M$UNIT)

Purpose

M$UNIT provides a physical tape number associated with a logical tape when

called by the magnetic tape read, write and control routines.

Storage Requirements

This routine requires a variable number of locations depending upon the system

configuration. (Usual size is 1510.)

Calling Sequence

(Load logical tape number in Register A - bits 13-16.)
CALL M$UNIT
(Physical tape number will be stored in Register A - bits 14-16.)

NOTE
The logical tape number must be between 1 and 8.
The physical tape number will be between 0 and 7.
Method

Refer to the program listing, 3C Doc. No. 180228000, Rev. B, for details on the

method used.

FORTRAN MAGNETIC TAPE BACKSPACE DRIVER (F$F5-9)

PurEose

F$F5-9 controls backspacing of magnetic tape by connecting the FORTRAN calling
program with the I/ O control routine (F$IO) and the standard magnetic tape backspacing
subroutines. ‘

8-21

Storage Requirements

F$#5-9 requires 42 528) locations.

10(

Calling Sequence

CALL F$EFx (Where x=5, 6, 7, 8, 9, or n.)

Method

Refer to the program listing, 3C Doc. No. 180310000 Rev. A, for details on method

used.
FORTRAN MAGNETIC TAPE END-OF-FILE DRIVER (F$D5-9)

Purposc

F$D5-9 controls writing end-of-file marks on magnetic tape by connecting the
FORTRAN calling program with the I/O control routine (F$IO) and the standard magnetic

tape end-file subroutine,

Storage Requirements

F$D5-9 requires 2710(338) locations.

Calling Sequence

CAILL F$Dx (Where x=5, 6, 7, 8, 9, or n.)

Method

Refer to the program listing, 3C Doc. No. 180308000 Rev. A, for details on

method used.
FORTRAN MAGNETIC TAPE REWIND DRIVER (F$B5-9)

Purpose

F$B5-9 controls rewinding of magnetic tapes by connecting the FORTRAN calling

program with the standard magnetic tape rewind subroutine.

Storage Requirements

F$B5-9 requires 2710(338) locations.

8-22

Calling Sequence

CALL F$Bx (Where x 5, 6, 7, 8, 9, or n.)

Method

Refer to the program listing, 3C Doc. No. 180309000 Rev. A, for details on

method used,

8-23

SECTION IX
ERROR MESSAGES

LOADING MESSAGES

A message, which indicates the reason for halting, is always typed whenever

loading halts. See Table 5-1 for an explanation of these messages.

DAP-16 ASSEMBLY PROGRAM

DAP-16 is able to detect mahy types of clerical errors commonly made in coding
programs. These errors are indicated by an appropriate error code printed in the left
margin of the assembly listing. ' Examples of errors that are detected are shown in
Table 9-1. ' |

Errors in a field will generally result in that field being assembled as a 0. In the
case of multiply defined symbols, the first symbol definition is used.

Table 9-1.
Error Messages Generated by the DAP-16 Assembly Program
Error
Message Condition

A Address field missing where normally required, or error in address
format .

C Erroneous conversion of a constant or a variable field in improper format

F Major formatting error

L Location symbol missing where required, or error in location symbol

M Multiply defined symbol

N Missing name (main program or subroutine)

O] Operafion code missing or in error

R Relocation assignment error

S Address of variable field expression not in sector being processed or
sector zero (applicable only in load mode) '

T Improper use of or error in index field

8) Undefined symbol

A% Unclassified error in variable field of multiple field pseudo-operator
(i.e., DEC, OCT, etc.)

X Symbol table or literal table exceeded

FORTRAN COMPILER PROGRAM

Error Message

Any time the compiler detects an error in the format of a FORTRAN statement, a
two line error message is typed or printed in the listing, If the error is of a type that
is recognized as soon as it is encountered, the first line is a duplicate of the line in which
the error occurred. If the error cannot be recognized until later in the program, the
line at which the error is recognized contains a left pointing arrow (<) in column 6. In
either case, the second extra line consists of a row of asterisks broken by the word
ERROR in the left-hand margin and an error diognostic in approximately the same
horizorntal position as the error.,

The diagnostic messages generated by the FORTRAN IV compiler program to indicate
coding errors are listed in Table 9-2, Some errors are recoverable and their presence
will not prevent execution of the program. In most cases, however, a program containing
such errors will generate incorrect or ambiguous results. It is recommended that all

coding errors be corrected before a program is run.

9-2

Table 9-2.

Error Messages Generated by the FORTRAN Compiler Program

Error

Message Condition
AE Arithmetic statement function has over 10 arguments
AG Subroutine or array name not in an argument
AR Item not an array name ‘
BD Code generated within a block data subprogram
BL Block data not first statement
CE Constant's exponent exceeds 8 bits (over 255)
CG Compiler or computer error caused a jump to 00000
CH Improper terminating character (punctuation)
CM Comma outside parentheses, not in a DO statement
CN Improper constant (data initialization)
CR Illegal common reference
DA Illegal use of a dummy argument
DD Dummy item appears in an equivalence or data list
DM Data and data name mode do not agree
DT Improper DO termination
EC Equivalence groupnot followedby comma or CR (carriage return)
EQ Expression to left of equals, or multiple equals
EX Specification statement appears after cleanup
FA Function has no arguments
FD Function name not defined by an arithmetic statement
FR Format statement error
FS Function/subroutine not the first statement
HF Hollerith character count equals zero
HS Hollerith data string extends past end of statement
I1C Impossible common equivalencing
ID Unrecognizable statement
IE Impossible equivalence grouping
IF Illegal IF statement type
IN Integer required at this position .
1T Item not an integer
MM Mode mixing error
MO Data pool overflow
MS Multiply defined statement number
NC Constant must be present
ND Wrong number of dimensions
NF No reference to format statement
NR Item not a relative variable
NS Subprogram name not allowed
NT Logical NOT, not an unary operator

Table 9-2. (Cont)

Error Messages Generated by the FORTRAN Compiler Program

Error
Message Condition
NU Name already being used
NZ Non-zero string test failed
OoP More than one operator in a row
PA Operation must be within parentheses
PH No path leading to this statement
PR Parentheses missing in a DO statement
PW *Preceded by operator other than another*
RL More than 1 relational operator in a relational example
RN Reference to a specification statement's number
RT Return not allowed in main program
SC Statement number on a continuation card
SP Statement name misspelled
ST Illegal statement number format
SU Subscript incrementer not a constant
TF "Type' not followed by ""Function' or list
TO Assign statement has word TO missing
Uuo Multiple + or - signs, not as unary operators
USs Undefined statement number
VD Symbolic subscript not dummy in dummy array or
symbolic subscript appears in a non-dummy array
VN Variable name required at this position

LIBRARY SUBROUTINES

The subroutines in the standard FORTRAN IV library are designed for use with a

machine configuration without the high-speed multiply and divide hardware option.

routine arguments are one of four types: integer, real, double, or complex.

If an error is detected by a subroutine, the object error diagnostic subroutine
(F$ER) will be called. Normally, a two-character mnemonic will be typed on the
ASR-33/3‘5 and the computer will halt, If SENSE SWITCH 3 is on, F$ER will return
control to the calling subroutine which will exit, with meaningless results, in most

cases, Table 9-3 lists those subroutines that call on F$ER and their associated error

message.

_ Table 9-3. ‘
Error Messages Generated by the Library Subroutines

Error
Message Condition Generating Subroutine
DA Arithmetic Overflow A$66/S$66 (Double Add/Sub)
DL Negative or Zero Argument DLOG/DLOG10 (Double Logarithm)
DM Arithmetic Overflow or Zero | M$66/D$66 (Double Mult/Div)
Divisor ‘ '
EQ Arithmetic Overflow A$81 (Add Integer to Double Exponent)
EX Exponent Overflow EXP (Real Exponential)
FE Format Error F$I0 (Format Scanner and Conversions)
I Result Greater (2%%15) -1 E$11 (Integer Raised to Integer)
IN Input Error F$IO (Format Scanner and Conversions)
RI Exponent Greater than 15 C$21 (Convert Real to Integer)
SA Arithmetic Overflow A$22/S$22 (Real Add/Sub)
SD Arithmetic Overflow or Zero D$22 (Real Div)
Divisor
SM Arithmetic Overflow M$22 (Real Multiply)
SQ Negative Argument SQRT (Real Square Root)

9-5

SECTION X
PAPER TAPE FORMATS

This section contains descriptions of the papef tape forrhats that are used as a
principle input/output medium for the DDP-516 computer. Data is recorded on paper tape
by groups of holes arranged in a definife format along the length of the tape. ,Paper tape
is a continuous recording medium, as opposed to cards which are fixed in length, and the
length of data records is limited only by the input/output requirements of the system. A
vertical column of holes extending across the tape is referred to as a frame, A horizontal
row of holes extending the length of the tape is referred to as a channel. For paper tapes
punched and read by the DDP-516 system, there are eight channel-hole positions per frame,

and one small sprocket hole, (See Figure 10-1.)

—— FRAME
f v
| o
2 (o} SPROCKET
3 o /HOLES
000000 0000000000 0000000000000000
CHANNELS <« o (o]
s o
3 o
7 P
8 .0
.

Figure 10-1. General Paper Tape Format

The format descriptions given in this section apply to tapes pu.nched by the high-
speed paper tape punch, as well as those punched by the ASR-33/35 paper tape punchv.'
Paper tape formats used with DDP-516 systems fall into two main categories: an ASCII

format (for punching source code) and a 4/6/6 format (for punching object code).

ASCII Format

ASCII format is an octal code that uses eight channels to define one character per
frame. Each frame is read from channel 8 to channel 1 in bit groups of 2/3/3 as
illustrated in Figure 10-2. Two ASR-33/35 typewritér control codes, '212 for line feed
and '215 for carriage return, are represented in Figure 10-2 to illustrate use of ASCII

format.

10-1

ASR-33 TYPEWRITER
CONTROL CODES

POSITION
I VALUES
.
1 ® o (M|
2 o '] BIT GROGUP 3< O 2
3 [] (o] O 4
00 00 0000000000 00D0VDO0DV0D0DOO0DODODO0DODODODODO0 0000000

CHANNEL) 4 ° ° o1
NUMBERS 5 o o BIT GROUP 2< O 2
6 (o] (o] O 4
; 2 2 BIT GROUP | 8;

I—'zna LINE FEED

'215 CARRIAGE RETURN PUNCHED HOLE

'HOLE POSITION

oe
"

Figure 10-2, ASCII Format

Source Tape Preparation

A DAP-16 or FORTRAN source-program data line for the ASR- 33 is recorded on

paper tape in ASCII format as follows,

.. LINE FEED ... TEXT ... X-OFF ... CARRIAGE RETURN...

The text string between the LINE FEED at the beginning of the 11ne and the X-OFF at the
end of the line is read into the mput buffer, The LINE FEED, X- OFF, and CARRIAGE
RETURN are contrcl characters and are not input as part of the text string. The X-OFF at
the end of the line (preceding the CARRIAGE RETURN) is necessary to be compatible with
the ASR-33/35 input routines. (The ASR-35 requires a RUBOUT following the CARRIAGE
RETURN.,) If the tapes to be read by the paper tape read subroutme are never to be read
by the ASR-33/35 tape read routine, the X- OFF (and RUBOUT) may be omltted

When preparing a source tape using the ASR-33, depress the LINE FEED key, type
the desired ASCII record (maximum of 72 characters), and then depress the X-OFF and
CARRIAGE RETURN keys. Repeat this process for each record. If a character is
panched erroneously, depress the back space and RUBOUT keys and proceed with the
rest of the line. If a line is punched er roneously, depress the Left Arrow, X- OFF, and
CARRIAGE RETURN keys. Source tapes punched usmg the ASR 35 are prepared in a
simnilar manner except that the max1mum number of characters per record is 75, and
the RUBOUT key must be punched after the RETURN key.

10-2

Tabs may be used to compress the data, much as tabs are used on a typewriter.

The backslash character (\) '334 is used as a tab code. The backslash is punched on the
ASR-33/35 as an upper case L (FORM). Tabs may be used whenever a string of spaces
precedes a TAB STOP. The tab is punched in place of the s;'z‘a‘ces.. Another way to describe
the backslash is that it is uséd as a field deli.mitef. For exarﬁplé, i:}'ie'backslash is
ordinarily used when the location, dperation, br variable field is nbt‘rp“resent.

The ASCII paper tape read subroutine (I$AA) will assume, if not initialized, that
there are three tab positions corresponding to character positions 6, 12, and 30 (DAP-16
source code format). .

The END OF MESSAGE (EOM) record has the following format,

.+« X-OFF EOM (EOM is '203 and is punched by using
the CONTROL KEY with the letter C).

The paper tape read subroutine will read one line of data per entry., If an end of
message code ('203) is encountered at any point in the line, the end of message return will
be taken, otherwise, the normal return is taken when a carriage return is encountered.
The end of message code is usually used as a unit record following the last data line to
be read.

If the data line exceeds the length of the data buffer, those characters in excess
will be ignored. No error indication will be given. Similarly, if a tab is encountered
after the last tab-stop has been passed,the tab will be treated as a space. No error indica-
tion will be given. The data line may be shorter than the length of the data buffer in which
case, the buffer is filled out with spaces,

Figure 10-3 shows a portion of an actual assembly listing (DAP-Test Program)

along with one line of corresponding source code punched on paper tape,

4/6/6 Format

The 4/6/6 format, in which object programs are punched is a binary code that uses
three frames to define one 16-bit word. As illustrated in Figure 10-4, bits 1-4 of a 16-bit
word are encoded to make up the first frame, 5-10 the second frame, and 11-16 the third
frame. Control codes that are punched in ASCII format precede and follow each block of
16-bit words encoded in 4/6/6 format and use only one frame each. Each data block begins
with an SOM ('201) and ends with a DC4 (or X-OFF '223).

When a frame is punched, channels 6 and 7 are ordinarily left blank, This is done
so that a frame will not print when read by the ASR. However, certain six-bit patterns
correspond to control functions, which if executed by the ASR, would interfere with -
further reading of this tape. Therefore, these (eight) six-bit groups are translated
according to Table 10-1 before being punched. A tape punched using this translation
will not type anything when read in by the ASR. Hence, the 4/6/6 format is sometimes
called the "Invisible Format."

10-3

LAST SIX BITS ENCODED —

«~ '212 LINE FEED

urol
0002
0003
ovod4
0ons
0o00o
0607
6008
0009
G010

00}1

'223 X-OFF (END OF MSG.)
'215 CARRIAGE RETURN
212 LINE FEED

o o L]
o0 oo e oo
o - ° []
90000 000000 0000

eoe. 0900 o [d
q‘l..........'..........’...........’..............’..O....

*
*
*
*
*

00010
00011
Go012
00013
00014
BONFES

Figure 10-3.

NEXT SIX BITS ENCODED
FIRST FOUR BITS ENCODED

-
I
2
3
CHANNEL J .
NUMBERS | ,
[}
7
8
-

10-4

0 02 G0N74
0 04 0GLOD
140040

{ 0> 0C07h
0 12 000Ch
0 04 00013

C580=-001-6504 (DAP-TEST) 7011A57 A
S1~RT OBJECT PRNGRAM AT OCTAL 10

PROGRAM

GRG
LUA
STA
LA
FERA
irs
JMP
CAS

SHOULD TYPE *0.K.® AND HALT

*10
nn
n

TT+1,.1
n

=2

LK sSM

COMPUTE CHECKSUM

* * % * * % #*

DAP-16 Source Code Punched in ASCII

‘223
—— X -OFF
M7 7T TT
N Nt e/
R To]|
——1 START CODE
coo ° o oo00 °
o000 e o000 °
000 eoe
00 00O GO 000 00000 00000000000 0’0 000 9 o] O‘O 000 O 0000O
0oocC e ooo0o
000 ee oo o
ooo
000
00O ° [X °
‘ ® = PUNCHED HOLE
,.l_\ ,]\ O = HOLE POSITION
J: A= A l
16 - BIT WORD ‘00 00 00 ‘I2 el 32

Figure 10-4.

4/6/6 Format

Table 10-1,
4/6/6 Translations

Intended Is Converted to Possible Ambiguity with
4 or 6 Bits Frame ASR-33/35 Control
05 or 45 174 or 374, respectively WRU
12 or 52 175 or 375 LF
21 or 62 176 or 376 : X-ON
23 or 63 177 or 377 : X-OFF

In Figure 10-5, the instructions at aédreéé 00024 (data word 13 on the tape) when
encoded without translation would result in an '45 being read by the ASR-33/35, The
'45 is the WRU co'nt‘royl code and would trigger the answer-back drum. This ambiguity
is resolved howe;ze;' bvy the translation. (Note in Figuré 10-5 that channels 6 and 7 are
punched in the tran‘s‘lation.) ‘

Object tapes that are produced by both the DAP assembly and the FORTRAN com-
piling process are punched in the binary 4/6/6 format. Within each block of object code,
there is a variable-length sequence of data words. There are a number of different types
of block, and they are defined in Section IV of the DAP-16 Manual, 3C Doc. No.
130071629. Object tapes generated in the 4/6/6 format are accepted by and compatible
with both the DDP-516 standard and expanded loaders,

Figure 10-5 shows a portion of an actual assembly listing (DAP-TEST Program)

along with corresponding object code punched in paper tape. As explained in the DAP
Manual, the first 4/6/6 group after the start code defines the block type. This particular
block type is 0-4 (000400), or a data block. The next 4/6/6 group specifies the number of
data words in the data block. In this case there are 728 words in the data block. The
words are interpreted as per the format for this block type given in the DAP Manual.
In block type 0-4 the remaining bits are grouped into groups of 24 bits eac‘h.,k These
groups are formed by using 16 bits of one 4/6/6 group and the first 8 bits of a second
4/6/6 group. The remaining 8 bits of the second 4/6/6 group and 16 bits of a third
4/6/6 group are used to form the second 24-bit group.

In the example given in Figure 10-5, the fi;'st 24-bit group is

000010000000000111011001

The DAP-16 Manual (3C Doc. No, 130071629) further explains the meaning of each 24-bit
group, based on the last three bits, This one converts to the LDA instruction at address
00010 as follows,

Flag Op-Code Relocation Bits
l " —~
000 010 000 000 000 111 011 001
Tag _ Address L— Standard 0-4 Type
Data Word Format
(Memory Reference
0 02 . 00073 Indicator)

10-5

DATA WORDS

) -
)
a2 a4 586 788 9810 nei2 13814
A A A A A A A
r 4 Bl g 4 2\ N N\

fo . » (X} ce
.>... * L X J [] o0 [X] L ® L] e o
FCQ;I‘OOA;..l;...l'»......l.;..'..........;....‘.........l.l...'..’..';,...
.) . oo o
Lt
[] [X)
" . \l \l
§ w § B / FIRST DATA WORD \ / SECOND DATA WORD \
> Q
g - ; 3| /000 /010,/000,/000 /000/ 111 /011 /001 000,/100,/000 /000 / 000/000 /000 /00!
Q = | -
Q Sl s ‘é’ 1";7-“ v 4 FT “——* Y J
T B OP-CODE ADDRESS OP -CODE _ ADDRESS
K] v vl v
0 02 00073 0 04 000000
no01 « C500-001-6504 (DAP=TEST) 7011657 A
2002 « START OBJECT PROGRAM AT OCTAL 10
0003 .
0004 + PROGRAM SHOULD TYPE “0.K.” AND HALT
v00s *
2006 .
0007 210
0008 00010 00 COMPUTE CHECKSUM
0009 ©0011 . 0 *
0010 00012 140040 CRA .
0011 00013 1 05 006075 ERA TT+1,1 .
0012 00014 9 12 00000 IRS 0 *
0013 00015 0 01 00013 JMP &=2 .
0014 (GO016 0 1! 00076 CAS CKSM *
015 00017 000000 HLT .
c016 01020 ¢ 01 00022 JMP *+2 *
3017 00021 0000060 HLT WRONG SUM
no18 GU022 0 02 00041 T LOA ==3 RIGHT SuM -
0019 00023 0 04 00000 sTa 0 _ TYPE *0.K.”
0020 00024 1 02 00045 TTTT LDA MSG+3,1 .
TSt M0025 34 0104 SKs *104 *
~1 son2s .- -

'

L

Figure 10-5. DAP-16 Object Code Punched in 4/6/6 (Invisible) Format

10-6

	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06

